1
|
Kalafateli M, Tourkochristou E, Tsounis EP, Aggeletopoulou I, Triantos C. New Insights into the Pathogenesis of Intestinal Fibrosis in Inflammatory Bowel Diseases: Focusing on Intestinal Smooth Muscle Cells. Inflamm Bowel Dis 2025; 31:579-592. [PMID: 39680685 DOI: 10.1093/ibd/izae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 12/18/2024]
Abstract
Strictures in inflammatory bowel disease, especially Crohn's disease (CD), are characterized by increased intestinal wall thickness, which, according to recent accumulating data, is mainly attributed to the expansion of the intestinal smooth muscle layers and to a lesser extent to collagen deposition. In this review, we will discuss the role of intestinal smooth muscle cells (SMCs) as crucial orchestrators of stricture formation. Activated SMCs can synthesize extracellular matrix (ECM), thus contributing to intestinal fibrosis, as well as growth factors and cytokines that can further enhance ECM production, stimulate other surrounding mesenchymal and immune cells, and increase SMC proliferation via paracrine or autocrine signaling. There is also evidence that, in stricturing CD, a phenotypic modulation of SMC toward a myofibroblast-like synthetic phenotype takes place. Moreover, the molecular mechanisms and signaling pathways that regulate SMC hyperplasia/hypertrophy will be extensively reviewed. The understanding of the cellular network and the molecular background behind stricture formation is essential for the design of effective anti-fibrotic strategies, and SMCs might be a promising therapeutic target in the future.
Collapse
Affiliation(s)
- Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
2
|
Ke BJ, Dragoni G, Matteoli G. Fibroblast Heterogeneity in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:13008. [PMID: 39684719 DOI: 10.3390/ijms252313008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Intestinal fibroblasts are pivotal players in maintaining tissue homeostasis and orchestrating responses to injury and inflammation within the gastrointestinal (GI) tract. Fibroblasts contribute significantly to the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis (UC), by secreting pro-inflammatory cytokines, modulating immune cell activity, and promoting fibrosis. In addition, fibroblasts play crucial roles in tissue repair and regeneration following acute injury or chronic inflammation. The dysregulation of fibroblast functions can lead to fibrotic complications, such as intestinal strictures and obstruction, which are common in advanced stages of IBD. Understanding the complex interplay between fibroblasts and other cell types in the intestine is essential to elucidate the underlying mechanisms of intestinal diseases and identify novel therapeutic targets. Future research aimed at deciphering the heterogeneity of intestinal fibroblasts and their dynamic roles in disease progression holds promise for the development of precision therapies to mitigate fibrosis and inflammation in intestinal disorders.
Collapse
Affiliation(s)
- Bo-Jun Ke
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Gabriele Dragoni
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Schmidt K, Lerm D, Schmidt A, Dickel N, Fiedler J, Thum T, Kunz M. Automated High-Throughput Live Cell Monitoring of Scratch Wound Closure. Biomed Eng Comput Biol 2024; 15:11795972241295619. [PMID: 40291412 PMCID: PMC12032466 DOI: 10.1177/11795972241295619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/09/2024] [Indexed: 04/30/2025] Open
Abstract
Background Angiogenesis and regenerative wound healing rely on the promotion of distinct endothelial cell phenotypes exhibiting increased migratory capacity. Monitoring of these hallmark events in vitro is invaluable for discovering novel therapeutics. However, respective methods often lack a high-throughput character or accurate analysis tools, which are essential for effective screening suitability. Methods and results We stained nuclei of confluent human umbilical vein endothelial cells with Hoechst33342 prior to induction of an artificial scratch wound. Treatments with various growth factors and several concentrations of nintedanib were performed to microscopically evaluate impacts on wound closure. We developed 2 tools for automated analysis of wound closure image sets. Utilizing cell-free area measuring or cellular density evaluation, respectively, migration behavior was assessed well-wise for each time point. We identified pro-migratory effects of interleukin 1β as well as inhibitory actions of nintedanib. Hoechst33342 staining allowed for cell counting which was excluded as a contributing factor to wound closure in our assay. Conclusion We developed a cost-effective, high-throughput pipeline for monitoring cell migration in vitro. We believe that our protocol will accelerate pre-clinical screenings not only for medications targeting endothelial wound closure but also drug discovery research in a broad range of diseases involving cellular migration.
Collapse
Affiliation(s)
- Kevin Schmidt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, Hannover, Germany
| | - Dominik Lerm
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Schmidt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, Hannover, Germany
| | - Nicholas Dickel
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, Hannover, Germany
| | - Meik Kunz
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, Hannover, Germany
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Veisman I, Massey WJ, Goren I, Liu W, Chauhan G, Rieder F. Muscular hyperplasia in Crohn's disease strictures: through thick and thin. Am J Physiol Cell Physiol 2024; 327:C671-C683. [PMID: 38912732 PMCID: PMC11427014 DOI: 10.1152/ajpcell.00307.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Fibrostenosing Crohn's disease (CD) represents a challenging clinical condition characterized by the development of symptomatic strictures within the gastrointestinal tract. Despite therapeutic advancements in managing inflammation, the progression of fibrostenotic complications remains a significant concern, often necessitating surgical intervention. Recent investigations have unveiled the pivotal role of smooth muscle cell hyperplasia in driving luminal narrowing and clinical symptomatology. Drawing parallels to analogous inflammatory conditions affecting other organs, such as the airways and blood vessels, sheds light on common underlying mechanisms of muscular hyperplasia. This review synthesizes current evidence to elucidate the mechanisms underlying smooth muscle cell proliferation in CD-associated strictures, offering insights into potential therapeutic targets. By highlighting the emerging significance of muscle thickening as a novel therapeutic target, this review aims to inform future research endeavors and clinical strategies with the goal to mitigate the burden of fibrostenotic complications in CD and other conditions.
Collapse
Affiliation(s)
- Ido Veisman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Weiwei Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Cleveland Clinic Program for Global Translational Inflammatory Bowel Diseases (GRID), Cleveland, Ohio, United States
| |
Collapse
|
5
|
Maier A, Hartung M, Abovsky M, Adamowicz K, Bader G, Baier S, Blumenthal D, Chen J, Elkjaer M, Garcia-Hernandez C, Helmy M, Hoffmann M, Jurisica I, Kotlyar M, Lazareva O, Levi H, List M, Lobentanzer S, Loscalzo J, Malod-Dognin N, Manz Q, Matschinske J, Mee M, Oubounyt M, Pastrello C, Pico A, Pillich R, Poschenrieder J, Pratt D, Pržulj N, Sadegh S, Saez-Rodriguez J, Sarkar S, Shaked G, Shamir R, Trummer N, Turhan U, Wang RS, Zolotareva O, Baumbach J. Drugst.One - a plug-and-play solution for online systems medicine and network-based drug repurposing. Nucleic Acids Res 2024; 52:W481-W488. [PMID: 38783119 PMCID: PMC11223884 DOI: 10.1093/nar/gkae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
In recent decades, the development of new drugs has become increasingly expensive and inefficient, and the molecular mechanisms of most pharmaceuticals remain poorly understood. In response, computational systems and network medicine tools have emerged to identify potential drug repurposing candidates. However, these tools often require complex installation and lack intuitive visual network mining capabilities. To tackle these challenges, we introduce Drugst.One, a platform that assists specialized computational medicine tools in becoming user-friendly, web-based utilities for drug repurposing. With just three lines of code, Drugst.One turns any systems biology software into an interactive web tool for modeling and analyzing complex protein-drug-disease networks. Demonstrating its broad adaptability, Drugst.One has been successfully integrated with 21 computational systems medicine tools. Available at https://drugst.one, Drugst.One has significant potential for streamlining the drug discovery process, allowing researchers to focus on essential aspects of pharmaceutical treatment research.
Collapse
Affiliation(s)
- Andreas Maier
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Michael Hartung
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Mark Abovsky
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, Toronto, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada
| | - Klaudia Adamowicz
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sylvie Baier
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - David B Blumenthal
- Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Jing Chen
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Maria L Elkjaer
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Mohamed Helmy
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Canada
- School of Public Health, University of Saskatchewan, Canada
- Department of Computer Science, University of Saskatchewan, Canada
- Department of Computer Science, Lakehead University, Canada
- Department of Computer Science, Idaho State University, USA
- Bioinformatics Institute (BII), A*STAR, Singapore
| | - Markus Hoffmann
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, USA
| | - Igor Jurisica
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, Toronto, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Max Kotlyar
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, Toronto, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada
| | - Olga Lazareva
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Junior Clinical Cooperation Unit Multiparametric methods for early detection of prostate cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Hagai Levi
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Sebastian Lobentanzer
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Quirin Manz
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Julian Matschinske
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Miles Mee
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Chiara Pastrello
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, Toronto, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, 1650 Owens Street, San Francisco, 94158 California, USA
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Julian M Poschenrieder
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Dexter Pratt
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nataša Pržulj
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Department of Computer Science, University College London, London WC1E 6BT, UK
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Sepideh Sadegh
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Suryadipto Sarkar
- Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Gideon Shaked
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Nico Trummer
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Ugur Turhan
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Rui-Sheng Wang
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Zolotareva
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational Biomedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Fuster-Martínez I, Calatayud S. The current landscape of antifibrotic therapy across different organs: A systematic approach. Pharmacol Res 2024; 205:107245. [PMID: 38821150 DOI: 10.1016/j.phrs.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Fibrosis is a common pathological process that can affect virtually all the organs, but there are hardly any effective therapeutic options. This has led to an intense search for antifibrotic therapies over the last decades, with a great number of clinical assays currently underway. We have systematically reviewed all current and recently finished clinical trials involved in the development of new antifibrotic drugs, and the preclinical studies analyzing the relevance of each of these pharmacological strategies in fibrotic processes affecting tissues beyond those being clinically studied. We analyze and discuss this information with the aim of determining the most promising options and the feasibility of extending their therapeutic value as antifibrotic agents to other fibrotic conditions.
Collapse
Affiliation(s)
- Isabel Fuster-Martínez
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia 46020, Spain.
| | - Sara Calatayud
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; CIBERehd (Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas), Spain.
| |
Collapse
|
7
|
Maier A, Hartung M, Abovsky M, Adamowicz K, Bader GD, Baier S, Blumenthal DB, Chen J, Elkjaer ML, Garcia-Hernandez C, Helmy M, Hoffmann M, Jurisica I, Kotlyar M, Lazareva O, Levi H, List M, Lobentanzer S, Loscalzo J, Malod-Dognin N, Manz Q, Matschinske J, Mee M, Oubounyt M, Pico AR, Pillich RT, Poschenrieder JM, Pratt D, Pržulj N, Sadegh S, Saez-Rodriguez J, Sarkar S, Shaked G, Shamir R, Trummer N, Turhan U, Wang R, Zolotareva O, Baumbach J. Drugst.One - A plug-and-play solution for online systems medicine and network-based drug repurposing. ARXIV 2023:arXiv:2305.15453v2. [PMID: 37332567 PMCID: PMC10274948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
In recent decades, the development of new drugs has become increasingly expensive and inefficient, and the molecular mechanisms of most pharmaceuticals remain poorly understood. In response, computational systems and network medicine tools have emerged to identify potential drug repurposing candidates. However, these tools often require complex installation and lack intuitive visual network mining capabilities. To tackle these challenges, we introduce Drugst.One, a platform that assists specialized computational medicine tools in becoming user-friendly, web-based utilities for drug repurposing. With just three lines of code, Drugst.One turns any systems biology software into an interactive web tool for modeling and analyzing complex protein-drug-disease networks. Demonstrating its broad adaptability, Drugst.One has been successfully integrated with 21 computational systems medicine tools. Available at https://drugst.one, Drugst.One has significant potential for streamlining the drug discovery process, allowing researchers to focus on essential aspects of pharmaceutical treatment research.
Collapse
Affiliation(s)
- Andreas Maier
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Michael Hartung
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Mark Abovsky
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre, Osteoarthritis Research Program, Krembil Research Institute, UHN, Toronto, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada
| | - Klaudia Adamowicz
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sylvie Baier
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - David B Blumenthal
- Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Jing Chen
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Mohamed Helmy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Markus Hoffmann
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Institute for Advanced Study (Lichtenbergstrasse 2a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Igor Jurisica
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre, Osteoarthritis Research Program, Krembil Research Institute, UHN, Toronto, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Max Kotlyar
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre, Osteoarthritis Research Program, Krembil Research Institute, UHN, Toronto, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada
| | - Olga Lazareva
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Junior Clinical Cooperation Unit Multiparametric methods for early detection of prostate cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Hagai Levi
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Sebastian Lobentanzer
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Quirin Manz
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Julian Matschinske
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Miles Mee
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, 1650 Owens Street, San Francisco, 94158, California, USA
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Julian M Poschenrieder
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Dexter Pratt
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Nataša Pržulj
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Department of Computer Science, University College London, London WC1E 6BT, UK
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Sepideh Sadegh
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Suryadipto Sarkar
- Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Gideon Shaked
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Nico Trummer
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Ugur Turhan
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Ruisheng Wang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Zolotareva
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational Biomedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Liu X, Wu S, Gong Y, Yang L. Effect of Nintedanib Nanothermoreversible Hydrogel on Neovascularization in an Ocular Alkali Burn Rat Model. Curr Eye Res 2022; 47:1578-1589. [PMID: 36259508 DOI: 10.1080/02713683.2022.2129071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To compare the therapeutic effects of different forms of nintedanib ophthalmic preparations on neovascularization corneal alkali burns in rats. METHODS Forty rat models of left eye corneal alkali burns were constructed, and the five groups (N = 8) were treated with normal saline, dexamethasone ointment (dexamethasone), 0.2% nintedanib aqueous solution and nintedanib nano thermoreversible hydrogel (NNTH). A slit lamp microscope was used to observe the area of neovascularization. The levels of the inflammatory factors were detected by ELISA. HE staining was performed on the rat corneas. Vascular endothelial growth factor (VEGFA) was detected by immunohistochemistry, and the expression of corneal VEGFA and CD31 was detected by western blotting. An MTT assay was performed to detect the cytotoxicity of nintedanib on human corneal epithelial cells (HCECs) and human umbilical vein vascular endothelial cells (HUVECs). Cell migration was detected by a cell scratch assay, and the proportion of apoptotic cells was detected by Annexin/PI double staining. Immunofluorescence and western blotting were performed to detect the protein expression of VEGFA and CD31. RESULTS NNTH had a stronger inhibitory effect on corneal neovascularization (CNV) in alkali-burned rats while reducing the level of inflammatory factors. NNTH had a longer drug duration of release than nanoformulations in vitro. Nintedanib at low concentrations (<8 μM) had no significant cytotoxicity to HCECs but significantly induced apoptosis and inhibited the expression of VEGFA and CD31 and the migration of HUVECs. CONCLUSIONS Nanomorphic thermoreversible hydrogel is superior among the nintedanib ophthalmic preparations, showing better inhibition of CNV in alkali-burned eyeballs and it blocked the migration and proangiogenic ability of HUVECs.
Collapse
Affiliation(s)
- Xiaotian Liu
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Shanjun Wu
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Yan Gong
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, China
| | - Lili Yang
- Department of Science and Education, Ningbo Eye Hospital, Ningbo, China
| |
Collapse
|