1
|
Hong R, Ping X, Liu Y, Feng F, Hu S, Hu C. Combined CT-Based Radiomics and Clinic-Radiological Characteristics for Preoperative Differentiation of Solitary-Type Invasive Mucinous and Non-Mucinous Lung Adenocarcinoma. Int J Gen Med 2024; 17:4267-4279. [PMID: 39324145 PMCID: PMC11423830 DOI: 10.2147/ijgm.s479978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Purpose The clinical, pathological, gene expression, and prognosis of invasive mucinous adenocarcinoma (IMA) differ from those of invasive non-mucinous adenocarcinoma (INMA), but it is not easy to distinguish these two. This study aims to explore the value of combining CT-based radiomics features with clinic-radiological characteristics for preoperative diagnosis of solitary-type IMA and to establish an optimal diagnostic model. Methods In this retrospective study, a total of 220 patients were enrolled and randomly assigned to a training cohort (n = 154; 73 IMA and 81 INMA) and a testing cohort (n = 66; 31 IMA and 35 INMA). Radiomics features and clinic-radiological characteristics were extracted from plain CT images. The radiomics models for predicting solitary-type IMA were developed by three classifiers: linear discriminant analysis (LDA), logistic regression-least absolute shrinkage and selection operator (LR-LASSO), and support vector machine (SVM). The combined model was constructed by integrating radiomics and clinic-radiological features with the best performing classifier. Receiver operating characteristic (ROC) curves were used to evaluate models' performance, and the area under the curve (AUC) were compared by the DeLong test. Decision curve analysis (DCA) was conducted to assess the clinical utility. Results Regarding CT characteristics, tumor lung interface, and pleural retraction were the independent risk factors of solitary-type IMA. The radiomics model using the SVM classifier outperformed the other two classifiers in the testing cohort, with an AUC of 0.776 (95% CI: 0.664-0.888). The combined model incorporating radiomics features and clinic-radiological factors was the optimal model, with AUCs of 0.843 (95% CI: 0.781-0.906) and 0.836 (95% CI: 0.732-0.940) in the training and testing cohorts, respectively. Conclusion The combined model showed good ability in predicting solitary-type IMA and can provide a non-invasive and efficient approach to clinical decision-making.
Collapse
Affiliation(s)
- Rong Hong
- Department of Radiology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215100, People's Republic of China
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China
| | - Xiaoxia Ping
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China
- Institute of Medical Imaging, Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Yuanying Liu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China
| | - Feiwen Feng
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China
| | - Su Hu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China
- Institute of Medical Imaging, Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Chunhong Hu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China
- Institute of Medical Imaging, Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| |
Collapse
|
2
|
Graf M, Gawlitza J, Makowski M, Meurer F, Huber T, Ziegelmayer S. Evaluating Treatment Response in GEJ Adenocarcinoma: The Role of Pretherapeutic and Posttherapeutic Iodine Mapping. Invest Radiol 2024; 59:583-588. [PMID: 38265075 DOI: 10.1097/rli.0000000000001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND Neoadjuvant therapy regimens have significantly improved the prognosis of GEJ (gastroesophageal junction) cancer; however, there are a significant percentage of patients who benefit from earlier resection or adapted therapy regimens, and the true response rate can only be determined histopathologically. Methods that allow preoperative assessment of response are lacking. PURPOSE The purpose of this retrospective study is to assess the potential of pretherapeutic and posttherapeutic spectral CT iodine density (IoD) in predicting histopathological response to neoadjuvant chemotherapy in patients diagnosed with adenocarcinoma of the GEJ. METHODS In this retrospective cohort study, a total of 62 patients with GEJ carcinoma were studied. Patients received a multiphasic CT scan at diagnosis and preoperatively. Iodine-density maps were generated based on spectral CT data. All tumors were histopathologically analyzed, and the tumor regression grade (TRG) according to Becker et al ( Cancer . 2003;98:1521-1530) was determined. Two experienced radiologists blindly placed 5 defined ROIs in the tumor region of highest density, and the maximum value was used for further analysis. Iodine density was normalized to the aortic iodine uptake. In addition, tumor response was assessed according to standard RECIST measurement. After assessing interrater reliability, the correlation of IoD values with treatment response and with histopathologic TRG was evaluated. RESULTS The normalized ΔIoD (IoD at diagnosis - IoD after neoadjuvant treatment) and the normalized IoD after neoadjuvant treatment correlated significantly with the TRG. For the detection of responders and nonresponders, the receiver operating characteristic (ROC) curve for normalized ΔIoD yielded the highest area under the curve of 0.95 and achieved a sensitivity and specificity of 92.3% and 92.1%, respectively. Iodine density after neoadjuvant treatment achieved an area under the curve of 0.88 and a sensitivity and specificity of 86.8% and 84.6%, respectively (cutoff, 0.266). Iodine density at diagnosis and RECIST did not provide information to distinguish responders from nonresponders. Using the cutoff value for IoD after neoadjuvant treatment, a reliable classification of responders and nonresponders was achieved for both readers in a test set of 11 patients. Intraclass correlation coefficient revealed excellent interrater reliability (intraclass correlation coefficient, >0.9). Lastly, using the cutoff value for normalized ΔIoD as a definition for treatment response, a significantly longer survival of responders was shown. CONCLUSIONS Changes in IoD after neoadjuvant treatment of GEJ cancer may be a potential surrogate for therapy response.
Collapse
Affiliation(s)
- Markus Graf
- From the Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
3
|
García-Figueiras R, Oleaga L, Broncano J, Tardáguila G, Fernández-Pérez G, Vañó E, Santos-Armentia E, Méndez R, Luna A, Baleato-González S. What to Expect (and What Not) from Dual-Energy CT Imaging Now and in the Future? J Imaging 2024; 10:154. [PMID: 39057725 PMCID: PMC11278514 DOI: 10.3390/jimaging10070154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Dual-energy CT (DECT) imaging has broadened the potential of CT imaging by offering multiple postprocessing datasets with a single acquisition at more than one energy level. DECT shows profound capabilities to improve diagnosis based on its superior material differentiation and its quantitative value. However, the potential of dual-energy imaging remains relatively untapped, possibly due to its intricate workflow and the intrinsic technical limitations of DECT. Knowing the clinical advantages of dual-energy imaging and recognizing its limitations and pitfalls is necessary for an appropriate clinical use. The aims of this paper are to review the physical and technical bases of DECT acquisition and analysis, to discuss the advantages and limitations of DECT in different clinical scenarios, to review the technical constraints in material labeling and quantification, and to evaluate the cutting-edge applications of DECT imaging, including artificial intelligence, qualitative and quantitative imaging biomarkers, and DECT-derived radiomics and radiogenomics.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- Department of Radiology, Hospital Clínico Universitario de Santiago, Choupana, 15706 Santiago de Compostela, Spain
| | - Laura Oleaga
- Department of Radiology, Hospital Clinic, C. de Villarroel, 170, 08036 Barcelona, Spain
| | | | - Gonzalo Tardáguila
- Department of Radiology, Hospital Ribera Povisa, Rúa de Salamanca, 5, Vigo, 36211 Pontevedra, Spain
| | | | - Eliseo Vañó
- Department of Radiology, Hospital Universitario Nuestra Señora, del Rosario, C. del Príncipe de Vergara, 53, 28006 Madrid, Spain
| | - Eloísa Santos-Armentia
- Department of Radiology, Hospital Ribera Povisa, Rúa de Salamanca, 5, Vigo, 36211 Pontevedra, Spain
| | - Ramiro Méndez
- Department of Radiology, Hospital Universitario Nuestra Señora, del Rosario, C. del Príncipe de Vergara, 53, 28006 Madrid, Spain
- Department of Radiology, Hospital Universitario Clínico San Carlos, Calle del Prof Martín Lagos, 28040 Madrid, Spain
| | | | - Sandra Baleato-González
- Department of Radiology, Hospital Clínico Universitario de Santiago, Choupana, 15706 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Zhang H, Li F, Jing M, Xi H, Zheng Y, Liu J. Nomogram combining pre-operative clinical characteristics and spectral CT parameters for predicting the WHO/ISUP pathological grading in clear cell renal cell carcinoma. Abdom Radiol (NY) 2024; 49:1185-1193. [PMID: 38340180 DOI: 10.1007/s00261-024-04199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE To develop a novel clinical-spectral-computed tomography (CT) nomogram incorporating clinical characteristics and spectral CT parameters for the preoperative prediction of the WHO/ISUP pathological grade in clear cell renal cell carcinoma (ccRCC). METHODS Seventy-three ccRCC patients who underwent spectral CT were included in this retrospective analysis from December 2020 to June 2023. The subjects were pathologically divided into low- and high-grade groups (WHO/ISUP 1/2, n = 52 and WHO/ISUP 3/4, n = 21, respectively). Information on clinical characteristics, conventional CT imaging features, and spectral CT parameters was collected. Multivariate logistic regression analyses were conducted to create a nomogram combing clinical data and image data for preoperatively predicting the pathological grade of ccRCC, and the area under the curve (AUC) was utilized to assess the predictive performance of the model. RESULTS Multivariate logistic regression analyses revealed that age, systemic immune-inflammation index (SII), and the slope of the spectrum curve in the cortex phase (CP-K) were independent predictors for predicting high-grade ccRCC. The clinical-spectral-CT model exhibited high evaluation efficacy, with an AUC of 0.933 (95% confidence interval [CI]: 0.878-0.998; sensitivity: 0.810; specificity: 0.923). The calibration curve revealed that the predicted probability of the clinical-spectral-CT nomogram could better fit the actual probability, with high calibration. The Hosmer-Lemeshow test showed that the model had a good fitness (χ2 = 5.574, p = 0.695). CONCLUSION The clinical-spectral-CT nomogram has the potential to predict WHO/ISUP grading of ccRCC preoperatively.
Collapse
Affiliation(s)
- Hongyu Zhang
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Fukai Li
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Mengyuan Jing
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Huaze Xi
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yali Zheng
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianli Liu
- Second Clinical School, Lanzhou University, Lanzhou, China.
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
5
|
Wang N, Bing X, Li Y, Yao J, Dai Z, Yu D, Ouyang A. Study of radiomics based on dual-energy CT for nuclear grading and T-staging in renal clear cell carcinoma. Medicine (Baltimore) 2024; 103:e37288. [PMID: 38457546 PMCID: PMC10919525 DOI: 10.1097/md.0000000000037288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/23/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Clear cell renal cell carcinoma (ccRCC) is the most lethal subtype of renal cell carcinoma with a high invasive potential. Radiomics has attracted much attention in predicting the preoperative T-staging and nuclear grade of ccRCC. OBJECTIVE The objective was to evaluate the efficacy of dual-energy computed tomography (DECT) radiomics in predicting ccRCC grade and T-stage while optimizing the models. METHODS 200 ccRCC patients underwent preoperative DECT scanning and were randomized into training and validation cohorts. Radiomics models based on 70 KeV, 100 KeV, 150 KeV, iodine-based material decomposition images (IMDI), virtual noncontrasted images (VNC), mixed energy images (MEI) and MEI + IMDI were established for grading and T-staging. Receiver operating characteristic analysis and decision curve analysis (DCA) were performed. The area under the curve (AUC) values were compared using Delong test. RESULTS For grading, the AUC values of these models ranged from 0.64 to 0.97 during training and from 0.54 to 0.72 during validation. In the validation cohort, the performance of MEI + IMDI model was optimal, with an AUC of 0.72, sensitivity of 0.71, and specificity of 0.70. The AUC value for the 70 KeV model was higher than those for the 100 KeV, 150 KeV, and MEI models. For T-staging, these models achieved AUC values of 0.83 to 1.00 in training and 0.59 to 0.82 in validation. The validation cohort demonstrated AUCs of 0.82 and 0.70, sensitivities of 0.71 and 0.71, and specificities of 0.80 and 0.60 for the MEI + IMDI and IMDI models, respectively. In terms of grading and T-staging, the MEI + IMDI model had the highest AUC in validation, with IMDI coming in second. There were statistically significant differences between the MEI + IMDI model and the 70 KeV, 100 KeV, 150 KeV, MEI, and VNC models in terms of grading (P < .05) and staging (P ≤ .001). DCA showed that both MEI + IDMI and IDMI models outperformed other models in predicting grade and stage of ccRCC. CONCLUSIONS DECT radiomics models were helpful in grading and T-staging of ccRCC. The combined model of MEI + IMDI achieved favorable results.
Collapse
Affiliation(s)
- Ning Wang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, P. R. China
| | - Xue Bing
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, P. R. China
| | - Yuhan Li
- Department of Radiology, Longkou Traditional Chinese Medicine Hospital, Yantai 265700, Shandong Province, P. R. China
| | - Jian Yao
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, P. R. China
| | - Zhengjun Dai
- Scientific Research Department, Huiying Medical Technology Co., Ltd, Beijing 100192, P. R. China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, P. R. China
| | - Aimei Ouyang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, P. R. China
| |
Collapse
|
6
|
Xie X, Liu K, Luo K, Xu Y, Zhang L, Wang M, Shen W, Zhou Z. Value of dual-layer spectral detector computed tomography in the diagnosis of benign/malignant solid solitary pulmonary nodules and establishment of a prediction model. Front Oncol 2023; 13:1147479. [PMID: 37213284 PMCID: PMC10196349 DOI: 10.3389/fonc.2023.1147479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
Objective This study aimed to investigate the role of spectral detector computed tomography (SDCT) quantitative parameters and their derived quantitative parameters combined with lesion morphological information in the differential diagnosis of solid SPNs. Methods This retrospective study included basic clinical data and SDCT images of 132 patients with pathologically confirmed SPNs (102 and 30 patients in the malignant and benign groups, respectively). The morphological signs of SPNs were evaluated and the region of interest (ROI) was delineated from the lesion to extract and calculate the relevant SDCT quantitative parameters, and standardise the process. Differences in qualitative and quantitative parameters between the groups were statistically analysed. A receiver operating characteristic (ROC) curve was constructed to evaluate the efficacy of the corresponding parameters in the diagnosis of benign and malignant SPNs. Statistically significant clinical data, CT signs and SDCT quantitative parameters were analysed using multivariate logistic regression to determine the independent risk factors for predicting benign and malignant SPNs, and the best multi-parameter regression model was established. Inter-observer repeatability was assessed using the intraclass correlation coefficient (ICC) and Bland-Altman plots. Results Malignant SPNs differed from benign SPNs in terms of size, lesion morphology, short spicule sign, and vascular enrichment sign (P< 0.05). The SDCT quantitative parameters and their derived quantitative parameters of malignant SPNs (SAR40keV, SAR70keV, Δ40keV, Δ70keV, CER40keV, CER70keV, NEF40keV, NEF70keV, λ, NIC, NZeff) were significantly higher than those of benign SPNs (P< 0.05). In the subgroup analysis, most parameters could distinguish between benign and adenocarcinoma groups (SAR40keV, SAR70keV, Δ40keV, Δ70keV, CER40keV, CER70keV, NEF40keV, NEF70keV, λ, NIC, and NZeff), and between benign and squamous cell carcinoma groups (SAR40keV, SAR70keV, Δ40keV, Δ70keV, NEF40keV, NEF70keV, λ, and NIC). However, there were no significant differences between the parameters in the adenocarcinoma and squamous cell carcinoma groups. ROC curve analysis indicated that NIC, NEF70keV, and NEF40keV had higher diagnostic efficacy for differentiating benign and malignant SPNs (area under the curve [AUC]:0.869, 0.854, and 0.853, respectively), and NIC was the highest. Multivariate logistic regression analysis showed that size (OR=1.138, 95% CI 1.022-1.267, P=0.019), Δ70keV (OR=1.060, 95% CI 1.002-1.122, P=0.043), and NIC (OR=7.758, 95% CI 1.966-30.612, P=0.003) were independent risk factors for the prediction of benign and malignant SPNs. ROC curve analysis showed that the AUC of size, Δ70keV, NIC, and a combination of the three for differential diagnosis of benign and malignant SPNs were 0.636, 0.846, 0.869, and 0.903, respectively. The AUC for the combined parameters was the largest, and the sensitivity, specificity, and accuracy were 88.2%, 83.3% and 86.4%, respectively. The SDCT quantitative parameters and their derived quantitative parameters in this study exhibited satisfactory inter-observer repeatability (ICC: 0.811-0.997). Conclusion SDCT quantitative parameters and their derivatives can be helpful in the differential diagnosis of benign and malignant solid SPNs. The quantitative parameter, NIC, is superior to the other relevant quantitative parameters and when NIC is combined with lesion size and Δ70keV value for comprehensive diagnosis, the efficacy could be further improved.
Collapse
Affiliation(s)
- Xiaodong Xie
- Department of Radiology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Kaifang Liu
- Department of Radiology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Kai Luo
- Department of Radiology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Lei Zhang
- Department of Radiology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Meiqin Wang
- Department of Radiology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wenrong Shen
- Department of Radiology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Ghetti C, Ortenzia O, Bertolini M, Sceni G, Sverzellati N, Silva M, Maddalo M. Lung dual energy CT: Impact of different technological solutions on quantitative analysis. Eur J Radiol 2023; 163:110812. [PMID: 37068414 DOI: 10.1016/j.ejrad.2023.110812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE To evaluated the accuracy of spectral parameters quantification of four different CT scanners in dual energy examinations of the lung using a dedicated phantom. METHOD Measurements were made with different technologies of the same vendor: one dual source CT scanner (DSCT), one TwinBeam (i.e. split filter) and two sequential acquisition single source scanners (SSCT). Angular separation of Calcium and Iodine signals were calculated from scatter plots of low-kVp versus high-kVp HUs. Electron density (ρe), effective atomic number (Zeff) and Iodine concentration (Iconc) were measured using Syngo.via software. Accuracy (A) of ρe, Zeff and Iconc was evaluated as the absolute percentage difference (D%) between reference values and measured ones, while precision (P) was evaluated as the variability σ obtained by repeating the measurement with different acquisition/reconstruction settings. RESULTS Angular separation was significantly larger for DSCT (α = 9.7°) and for sequential SSCT (α = 9.9°) systems. TwinBeam was less performing in material separation (α = 5.0°). The lowest average A was observed for TwinBeam (Aρe = [4.7 ± 1.0], AZ = [9.1 ± 3.1], AIconc = [19.4 ± 4.4]), while the best average A was obtained for Flash (Aρe = [1.8 ± 0.4], AZ = [3.5 ± 0.7], AIconc = [7.3 ± 1.8]). TwinBeam presented inferior average P (Pρe = [0.6 ± 0.1], PZ = [1.1 ± 0.2], PIconc = [10.9 ± 4.9]), while other technologies demonstrate a comparable average. CONCLUSIONS Different technologies performed material separation and spectral parameter quantification with different degrees of accuracy and precision. DSCT performed better while TwinBeam demonstrated not excellent performance. Iodine concentration measurements exhibited high variability due to low Iodine absolute content in lung nodules, thus limiting its clinical usefulness in pulmonary applications.
Collapse
Affiliation(s)
- Caterina Ghetti
- Medical Physics Unit - University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Ornella Ortenzia
- Medical Physics Unit - University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Marco Bertolini
- Medical Physics Unit - AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Giada Sceni
- Medical Physics Unit - AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Nicola Sverzellati
- Unit of Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Mario Silva
- Unit of Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Michele Maddalo
- Medical Physics Unit - University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|