1
|
Riaz R, Ahmed I, Raza A, Khan Y, Ahsan U, El-Sayed Ellakwa D. Response of different infection models in broiler chickens against supplemental Organic acid - A review. Microb Pathog 2025; 204:107527. [PMID: 40185170 DOI: 10.1016/j.micpath.2025.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Antimicrobial resistance in microorganisms has emerged as a significant issue in the domain of animal husbandry, leading to the prohibition of sub-therapeutic antibiotics in feed and necessitating the exploration of alternative growth promoters. Organic acids have garnered considerable attention as prospective substitutes, proffering analogous advantages to antibiotics without exacerbating resistance. Nonetheless, their effectiveness against a spectrum of pathogenic infections remains ambiguous. Consequently, this review scrutinizes the efficacy of organic acids in experimental infection models, encompassing necrotic enteritis (Clostridium perfringens), coccidiosis (Eimeria spp.), Pullorum disease (Salmonella spp.), Campylobacteriosis (Campylobacter jejuni), and Colibacillosis (Escherichia coli). The analysis indicates that organic acids exhibit promising outcomes across various infection models. For instance, in trials concerning necrotic enteritis, organic acid supplementation diminished C. perfringens colonization and enhanced intestinal health. Likewise, in investigations of coccidiosis, organic acids alleviated Eimeria-induced damage and improved growth performance. In the context of infections caused by Salmonella and E. coli, these additives displayed considerable antimicrobial efficacy, leading to diminished pathogen loads and an improvement in various indicators of animal health. The review also delineates several proposed mechanisms through which organic acids exert their effects against these pathogens, encompassing direct antimicrobial actions, modulation of gastrointestinal pH, and the augmentation of the host's immune response. These findings imply that organic acids may represent feasible alternatives to antibiotics within animal feed, potentially addressing the concurrent challenges associated with growth promotion and pathogen management. Nonetheless, additional research is imperative to refine dosages, combinations, and delivery methodologies for optimal effectiveness across diverse species and production systems. This thorough evaluation offers significant insights into the formulation of effective, antibiotic-free approaches in animal nutrition and health management.
Collapse
Affiliation(s)
- Roshan Riaz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Türkiye
| | - Ibrar Ahmed
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Selçuk University, 42130, Konya, Türkiye
| | - Ali Raza
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Türkiye.
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, 25130, Pakistan
| | - Umair Ahsan
- Department of Plant and Animal Production, Burdur Vocational School Food, Agriculture and Livestock, Burdur Mehmet Akif Ersoy University, İstiklal Campus, Burdur, 15030, Turkey
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt.
| |
Collapse
|
2
|
Abay KA, Desalegn G, Weldu Y, Gebrehiwot GT, Gebreyohannes G, Welekidan LN, Desta KH, Asfaw YT, Teka AG, Gebremedhin MT. Prevalence and Antimicrobial Resistance of Campylobacter Species and Associated Factors Among Under-Five Children with Diarrhea at Randomly Selected Public Health Facilities in Mekelle, Tigray, Ethiopia. Infect Drug Resist 2024; 17:495-505. [PMID: 38348229 PMCID: PMC10860571 DOI: 10.2147/idr.s438370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Background Campylobacter species are the most predominant bacterial agents to cause diarrhea in under-five children. It poses a serious challenge to public health worldwide with ongoing acquisition of resistance to different antimicrobials with multiple patterns. Thus, this study aimed to determine the prevalence, and antimicrobial resistance of Campylobacter species, and associated factors among under-five children with diarrhea in selected public health facilities. Methods A cross-sectional study was conducted among under-five children with diarrhea using convenient sampling. Health facilities were selected using a simple random sampling method. The stool samples collected from 214 study participants were transported and processed following standard microbiological protocols. Campylobacter isolates were identified using Gram staining, biochemical test, serological test, and aerobic growth at 25°C. Antimicrobial susceptibility profiles of isolates were performed using the Kirby-Bauer method. Data were analyzed using SPSS ver. 25.0. Association between variables was assessed using Chi-square test and Logistic regression, with P ≤ 0.05. Results The subject's mean age was 31.3 (±3.9) months. Of the 214 samples cultured, 14 (6.5%) of them were positive for Campylobacter species with 95% CI (3.3-10.3). Out of the isolated species, 12 (85.7%) were Campylobacter jejuni /Campylobacter coli and 2 (14.3%) were other Campylobacter species. Bottle feeding and history of direct contact to domestic animals were associated with Campylobacter species (AOR=5.13, CI=1.21-21.6, p=0.026 and AOR=4.93, CI=1.33-18.17, P=0.016), respectively. Campylobacter isolates were highly resistant to ciprofloxacin 5 (35.7%), and tetracycline 3 (21.4%). Conclusion A higher incidence of Campylobacter species was obtained in children who were bottle-fed and who had a history of direct contact with domestic animals. The isolates were highly resistant to ciprofloxacin and tetracycline. These findings indicate that special attention is needed for better management of Campylobacter drug resistance in under-five children. To enhance and support our current findings, further research using molecular techniques is needed to identify the resistant and virulent genes of the bacterial isolates.
Collapse
Affiliation(s)
- Kebede Araya Abay
- Department of Microbiology and Immunology, Dr. Tewelde Legesse College of Health Sciences, Mekelle, Tigray, Ethiopia
| | - Girmay Desalegn
- Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Yemane Weldu
- Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Gebrecherkos Teame Gebrehiwot
- Department of Biomedical Research and Technology Transfer, Tigray Health Research Institute, Mekelle, Tigray, Ethiopia
| | - Gebreselema Gebreyohannes
- Department of Biological and Chemical Engineering, Mekelle Institute of Technology, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Letemicheal Negash Welekidan
- Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kibra Hailu Desta
- Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Yohanns Tekle Asfaw
- Department of Veterinary Medicine, College of Animal Health, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Ataklti Gessese Teka
- Department of Biomedical Research and Technology Transfer, Tigray Health Research Institute, Mekelle, Tigray, Ethiopia
| | - Mulugeta Tilahun Gebremedhin
- Department of Biomedical Research and Technology Transfer, Tigray Health Research Institute, Mekelle, Tigray, Ethiopia
| |
Collapse
|
3
|
El-Saadony MT, Saad AM, Yang T, Salem HM, Korma SA, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Selim S, Al Jaouni SK, Zaghloul RA, Abd El-Hack ME, El-Tarabily KA, Ibrahim SA. Avian campylobacteriosis, prevalence, sources, hazards, antibiotic resistance, poultry meat contamination, and control measures: a comprehensive review. Poult Sci 2023; 102:102786. [PMID: 37454641 PMCID: PMC10371856 DOI: 10.1016/j.psj.2023.102786] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023] Open
Abstract
Avian campylobacteriosis is a vandal infection that poses human health hazards. Campylobacter is usually colonized in the avian gut revealing mild signs in the infected birds, but retail chicken carcasses have high contamination levels of Campylobacter spp. Consequently, the contaminated avian products constitute the main source of human infection with campylobacteriosis and result in severe clinical symptoms such as diarrhea, abdominal pain, spasm, and deaths in sensitive cases. Thus, the current review aims to shed light on the prevalence of Campylobacter in broiler chickens, Campylobacter colonization, bird immunity against Campylobacter, sources of poultry infection, antibiotic resistance, poultry meat contamination, human health hazard, and the use of standard antimicrobial technology during the chicken processing of possible control strategies to overcome such problems.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia, 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, 27411-1064
| |
Collapse
|
4
|
Rapid Oxford Nanopore Technologies MinION Sequencing Workflow for Campylobacter jejuni Identification in Broilers on Site—A Proof-of-Concept Study. Animals (Basel) 2022; 12:ani12162065. [PMID: 36009653 PMCID: PMC9405271 DOI: 10.3390/ani12162065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/04/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Campylobacter is recognised as one of the most important foodborne bacteria, with a worldwide health and socioeconomic impact. This bacterium is one of the most important zoonotic players in poultry, where efficient and fast detection methods are required. Current official culture methods for Campylobacter enumeration in poultry usually include >44 h of culture and >72 h for identification, thus requiring at least five working shifts (ISO/TS 10272-2:2017). Here, we have assembled a portable sequencing kit composed of the Bento Lab and the MinION and developed a workflow for on-site farm use that is able to detect and report the presence of Campylobacter from caecal samples in less than five hours from sampling time, as well as the relationship of Campylobacter with other caecal microbes. Beyond that, our workflow may offer a cost-effective and practical method of microbiologically monitoring poultry at the farm. These results would demonstrate the possibility of carrying out rapid on-site screening to monitor the health status of the poultry farm/flock during the production chain.
Collapse
|