1
|
Aboalela MA, Abdelmoneim M, Matsumura S, Eissa IR, Bustos-Villalobos I, Sibal PA, Orikono Y, Takido Y, Naoe Y, Kasuya H. Enhancing mesothelin CAR T cell therapy for pancreatic cancer with an oncolytic herpes virus boosting CAR target antigen expression. Cancer Immunol Immunother 2025; 74:202. [PMID: 40366419 PMCID: PMC12078189 DOI: 10.1007/s00262-025-04039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/27/2025] [Indexed: 05/15/2025]
Abstract
Mesothelin (MSLN) is a prominent target antigen for CAR T cell therapy due to its extensive expression in various solid tumors, including pancreatic cancer. However, the therapeutic efficacy of MSLN-targeted CAR T cell therapy has been limited in clinical trials for pancreatic cancer, often resulting in temporary stable disease as the best response. The heterogeneous expression of MSLN and its loss over time, along with the immunosuppressive tumor microenvironment (TME), are key factors restricting effectiveness. Oncolytic viruses are emerging cancer therapies that replicate in tumor cells and remodel the TME into an immunogenic state. Here, we engineered an oncolytic herpes simplex virus type 1 expressing human MSLN (HSV-MSLN) and evaluated its combination with MSLN-CAR T cells in a murine pancreatic ductal adenocarcinoma model. In vitro, HSV-MSLN effectively induced MSLN expression on murine pancreatic cancer cells, with subsequent cell lysis. In co-culture, HSV-MSLN-infected cancer cells activated MSLN-CAR T cells, which effectively eliminated the infected cells. In vivo, HSV-MSLN delivered MSLN on the tumor cell surface and reprogrammed the TME toward an immunogenic state. The combination therapy significantly enhanced antitumor efficacy, inducing activated, proliferative CD8+ CAR T cells and reducing PD-1+TIM-3+ exhausted endogenous CD8+ T cells and regulatory T cells in tumors. Furthermore, the combination therapy increased migratory XCR1+CD103+ dendritic cells (DCs) in tumors and tumor-draining lymph nodes (TDLNs) while expanding CD44+CD8+ T cells with central and effector memory phenotypes. Taken together, these results demonstrate that HSV-MSLN reprograms immune cells in the TME and TDLNs and synergizes with MSLN-CAR T cells to enhance antitumor responses, leading to a more robust therapeutic effect.
Collapse
Affiliation(s)
- Mona Alhussein Aboalela
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed Abdelmoneim
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan.
| | - Ibrahim Ragab Eissa
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
- Surgical Oncology Division, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Itzel Bustos-Villalobos
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Patricia Angela Sibal
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Yu Orikono
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Yuhei Takido
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan.
| |
Collapse
|
2
|
Li W, Liu N, Chen M, Liu D, Liu S. Metformin as an immunomodulatory agent in enhancing head and neck squamous cell carcinoma therapies. Biochim Biophys Acta Rev Cancer 2025; 1880:189262. [PMID: 39827973 DOI: 10.1016/j.bbcan.2025.189262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a significant clinical challenge due to its aggressive behavior and poor prognosis, making the development of novel therapeutics with enhanced efficacy and minimal side effects critical. Metformin, a widely used antidiabetic agent, has recently emerged as a potential adjunctive therapy for HNSCC, exhibiting both direct anti-tumor and immunomodulatory effects. This review comprehensively explores the multifaceted role of metformin in shaping the tumor immune microenvironment within HNSCC. We emphasize its pivotal role in modulating immune cell populations and its potential for synergistic action with immunotherapeutic strategies. Furthermore, we address the current challenges associated with optimizing dosing regimens, identifying predictive biomarkers, and integrating metformin with immunotherapy. By dissecting these aspects, this review aims to pave the way for the development of personalized HNSCC treatment strategies that fully exploit the therapeutic potential of metformin.
Collapse
Affiliation(s)
- Wenting Li
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Nanshu Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Mingwei Chen
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| | - Sai Liu
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| |
Collapse
|
3
|
Sasaki Y, Maeda T, Hojo M, Miura T, Ishikawa K, Funayama E, Okada K, Yamamoto Y. Synergistic anti-tumor effects of oncolytic virus and anti-programmed cell death protein 1 antibody combination therapy: For suppression of lymph node and distant metastasis in a murine melanoma model. Biochem Biophys Res Commun 2024; 740:151011. [PMID: 39571230 DOI: 10.1016/j.bbrc.2024.151011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
It is believed that oncolytic viruses (OVs) exert both direct anti-tumor effects by intratumoral injection as well as indirect anti-tumor effects by activating systemic immunity. In phase III clinical trials, OV and anti-programmed cell death-1 (aPD-1) antibody combination therapy showed no significant differences in overall survival and progression-free survival in patients with unresectable advanced melanoma. In the study, OVs can exert only indirect anti-tumor effects in non-injected, systemic lesions. If the tumor is at a stage where both direct and indirect anti-tumor effects of OVs can be expected, OVs may further enhance the therapeutic effect, in addition to the clinically expected therapeutic effect. Therefore, we investigated whether canerpaturev (C-REV) and aPD-1 antibody combination therapy suppresses tumor progression in a murine melanoma model. Our findings showed that the C-REV and aPD-1 antibody combination therapy suppressed tumor progression in a murine melanoma model. The combination therapy stimulated systemic immunity in lymphoid tissues by activating helper T cells and B cells to enhance adaptive and humoral immunity, as well as by increasing effector/memory T cell fractions. Synergistically enhanced systemic anti-tumor effects suppressed lymph node and lung metastases. These findings suggest that direct anti-tumor effects by infecting and destroying cancer cells from within and indirect anti-tumor effects enhanced by the combination therapy worked simultaneously to suppress tumor progression. Our results may provide evidence to support the usefulness of OV and aPD-1 antibody combination therapy as a neoadjuvant therapy in the surgical treatment of melanoma.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Masahiro Hojo
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Kazufumi Okada
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Japan.
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| |
Collapse
|
4
|
Qi X. Advances in antitumour therapy with oncolytic herpes simplex virus combinations. Discov Oncol 2024; 15:302. [PMID: 39046631 PMCID: PMC11269532 DOI: 10.1007/s12672-024-01165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Oncolytic Virus (OVs) is an emerging approach to tumour immunity that allows the use of natural or genetically modified viruses to specifically infect and lyse tumour cells without damaging normal cells. Oncolytic herpes simplex virus (oHSV) is one of the more widely researched and applied OVs in the field of oncology, which can directly kill tumour cells to promote anti-tumour immune responses. oHSV is one of the few viruses with good antiviral drugs, so oHSV is also more clinically safe. In recent years, in addition to monotherapy of oHSV in tumours, more and more studies have been devoted to exploring the anti-tumour effects of oHSV in combination with other therapeutic approaches. In this article we describe the progress of oHSV combination therapy against tumours in the nervous system, digestive system, reproductive system and other systems.
Collapse
Affiliation(s)
- Xuejiao Qi
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China.
| |
Collapse
|
5
|
Zheng R, Liu X, Zhang Y, Liu Y, Wang Y, Guo S, Jin X, Zhang J, Guan Y, Liu Y. Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application. Front Immunol 2024; 15:1383978. [PMID: 38756774 PMCID: PMC11096556 DOI: 10.3389/fimmu.2024.1383978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaobin Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yongxian Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yaping Wang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Shutong Guo
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaoyan Jin
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Jing Zhang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yuehong Guan
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yusi Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| |
Collapse
|
6
|
De Jesús-González LA, del Ángel RM, Palacios-Rápalo SN, Cordero-Rivera CD, Rodríguez-Carlos A, Trujillo-Paez JV, Farfan-Morales CN, Osuna-Ramos JF, Reyes-Ruiz JM, Rivas-Santiago B, León-Juárez M, García-Herrera AC, Ramos-Cortes AC, López-Gándara EA, Martínez-Rodríguez E. A Dual Pharmacological Strategy against COVID-19: The Therapeutic Potential of Metformin and Atorvastatin. Microorganisms 2024; 12:383. [PMID: 38399787 PMCID: PMC10893401 DOI: 10.3390/microorganisms12020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Metformin (MET) and atorvastatin (ATO) are promising treatments for COVID-19. This review explores the potential of MET and ATO, commonly prescribed for diabetes and dyslipidemia, respectively, as versatile medicines against SARS-CoV-2. Due to their immunomodulatory and antiviral capabilities, as well as their cost-effectiveness and ubiquitous availability, they are highly suitable options for treating the virus. MET's effect extends beyond managing blood sugar, impacting pathways that can potentially decrease the severity and fatality rates linked with COVID-19. It can partially block mitochondrial complex I and stimulate AMPK, which indicates that it can be used more widely in managing viral infections. ATO, however, impacts cholesterol metabolism, a crucial element of the viral replicative cycle, and demonstrates anti-inflammatory characteristics that could modulate intense immune reactions in individuals with COVID-19. Retrospective investigations and clinical trials show decreased hospitalizations, severity, and mortality rates in patients receiving these medications. Nevertheless, the journey from observing something to applying it in a therapeutic setting is intricate, and the inherent diversity of the data necessitates carefully executed, forward-looking clinical trials. This review highlights the requirement for efficacious, easily obtainable, and secure COVID-19 therapeutics and identifies MET and ATO as promising treatments in this worldwide health emergency.
Collapse
Affiliation(s)
- Luis Adrián De Jesús-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.)
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.)
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.)
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.)
| | - Adrián Rodríguez-Carlos
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Juan Valentin Trujillo-Paez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Carlos Noe Farfan-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Unidad Cuajimalpa, Ciudad de México 05348, Mexico;
| | | | - José Manuel Reyes-Ruiz
- División de Investigación en Salud, Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico;
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana (UV), Veracruz 91700, Mexico
| | - Bruno Rivas-Santiago
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Moisés León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico;
| | - Ana Cristina García-Herrera
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Adriana Clara Ramos-Cortes
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Erika Alejandra López-Gándara
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Estefanía Martínez-Rodríguez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| |
Collapse
|
7
|
Gupta J, Jalil AT, Abd Alzahraa ZH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Najafi M. The Metformin Immunoregulatory Actions in Tumor Suppression and Normal Tissues Protection. Curr Med Chem 2024; 31:5370-5396. [PMID: 37403391 DOI: 10.2174/0929867331666230703143907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
The immune system is the key player in a wide range of responses in normal tissues and tumors to anticancer therapy. Inflammatory and fibrotic responses in normal tissues are the main limitations of chemotherapy, radiotherapy, and also some newer anticancer drugs such as immune checkpoint inhibitors (ICIs). Immune system responses within solid tumors including anti-tumor and tumor-promoting responses can suppress or help tumor growth. Thus, modulation of immune cells and their secretions such as cytokines, growth factors and epigenetic modulators, pro-apoptosis molecules, and some other molecules can be suggested to alleviate side effects in normal tissues and drug-resistance mechanisms in the tumor. Metformin as an anti-diabetes drug has shown intriguing properties such as anti-inflammation, anti-fibrosis, and anticancer effects. Some investigations have uncovered that metformin can ameliorate radiation/chemotherapy toxicity in normal cells and tissues through the modulation of several targets in cells and tissues. These effects of metformin may ameliorate severe inflammatory responses and fibrosis after exposure to ionizing radiation or following treatment with highly toxic chemotherapy drugs. Metformin can suppress the activity of immunosuppressive cells in the tumor through the phosphorylation of AMP-activated protein kinase (AMPK). In addition, metformin may stimulate antigen presentation and maturation of anticancer immune cells, which lead to the induction of anticancer immunity in the tumor. This review aims to explain the detailed mechanisms of normal tissue sparing and tumor suppression during cancer therapy using adjuvant metformin with an emphasis on immune system responses.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Ding J, Zheng Y, Zhu F, Wang M, Fang L, Li H, Tian H, Liu Y, Wang G, Zheng J, Chai D. Adenovirus-assembled DC vaccine induces dual-targeting CTLs for tumor antigen and adenovirus to eradicate tumors. Int Immunopharmacol 2023; 123:110722. [PMID: 37573687 DOI: 10.1016/j.intimp.2023.110722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
The dendritic cell (DC) vaccine is a promising cancerimmunotherapy strategy, but its efficacy in treating the solid tumor is limited. To overcome this limitation, an oncolytic adenovirus (OAV-IL-12) was developed to enhance antigen targeting ability of adenovirus-assembled DC vaccine (DCs-CD137L/CAIX) for renal carcinoma treatment. Peritumoral administration of OAV-IL-12 increased the number of tumor-infiltrating DCs and their subsets (CD8+DCs and CD103+DCs). Combining OAV-IL-12 with DCs-CD137L/CAIX significantly inhibited the growth of subcutaneous tumors by inducing potent cytotoxic T lymphocyte (CTL) effect and improving the immune infiltration in tumor lesions. Interestingly, this treatment also reduced tumor growth distal to the OAV-IL-12 injecting side via eliciting a systemic CTL response. Furthermore, OAV-IL-12 potentiated DCs-CD137L/CAIX treatment induced dual CTL responses against both CAIX and adenovirus antigens. The therapeutic benefits of this treatment approach mainly relied on multifunctional CD8+T cell immune responses, as indicated by the depletion assay. Moreover, OAV-IL-12 potentiated DCs-CD137L/CAIX treatment generated a long-lasting protective effect against tumors by inducing memory CD8+T cell immune responses. These results suggest that the effective tumor targeting of the adenovirus-based DC vaccine, boosted by OAV-IL-12, is a promising treatment approach for renal carcinoma and other solid tumors.
Collapse
Affiliation(s)
- Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fei Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hui Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yong Liu
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
9
|
Abdelmoneim M, Aboalela MA, Naoe Y, Matsumura S, Eissa IR, Bustos-Villalobos I, Sibal PA, Takido Y, Kodera Y, Kasuya H. The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:13353. [PMID: 37686159 PMCID: PMC10487782 DOI: 10.3390/ijms241713353] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in the fate of cancer cells, and tumor-infiltrating immune cells have emerged as key players in shaping this complex milieu. Cancer is one of the leading causes of death in the world. The most common standard treatments for cancer are surgery, radiation therapy, and chemotherapeutic drugs. In the last decade, immunotherapy has had a potential effect on the treatment of cancer patients with poor prognoses. One of the immune therapeutic targeted approaches that shows anticancer efficacy is a type 2 diabetes medication, metformin. Beyond its glycemic control properties, studies have revealed intriguing immunomodulatory properties of metformin. Meanwhile, several studies focus on the impact of metformin on tumor-infiltrating immune cells in various tumor models. In several tumor models, metformin can modulate tumor-infiltrated effector immune cells, CD8+, CD4+ T cells, and natural killer (NK) cells, as well as suppressor immune cells, T regulatory cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs). In this review, we discuss the role of metformin in modulating tumor-infiltrating immune cells in different preclinical models and clinical trials. Both preclinical and clinical studies suggest that metformin holds promise as adjunctive therapy in cancer treatment by modulating the immune response within the tumor microenvironment. Nonetheless, both the tumor type and the combined therapy have an impact on the specific targets of metformin in the TME. Further investigations are warranted to elucidate the precise mechanisms underlying the immunomodulatory effects of metformin and to optimize its clinical application in cancer patients.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Mona Alhussein Aboalela
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Ibrahim Ragab Eissa
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Itzel Bustos-Villalobos
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Patricia Angela Sibal
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yuhei Takido
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| |
Collapse
|