1
|
Ruggiero L, Gruber M. Neuromuscular mechanisms for the fast decline in rate of force development with muscle disuse - a narrative review. J Physiol 2024. [PMID: 39467095 DOI: 10.1113/jp285667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The removal of skeletal muscle tension (unloading or disuse) is followed by many changes in the neuromuscular system, including muscle atrophy and loss of isometric maximal strength (measured by maximal force, Fmax). Explosive strength, i.e. the ability to develop the highest force in the shortest possible time, to maximise rate of force development (RFD), is a fundamental neuromuscular capability, often more functionally relevant than maximal muscle strength. In the present review, we discuss data from studies that looked at the effect of muscle unloading on isometric maximal versus explosive strength. We present evidence that muscle unloading yields a greater decline in explosive relative to maximal strength. The longer the unloading duration, the smaller the difference between the decline in the two measures. Potential mechanisms that may explain the greater decline in measures of RFD relative to Fmax after unloading are higher recruitment thresholds and lower firing rates of motor units, slower twitch kinetics, impaired excitation-contraction coupling, and decreased tendon stiffness. Using a Hill-type force model, we showed that this ensemble of adaptations minimises the loss of force production at submaximal contraction intensities, at the expense of a disproportionately lower RFD. With regard to the high functional relevance of RFD on one hand, and the boosted detrimental effects of inactivity on RFD on the other hand, it seems crucial to implement specific exercises targeting explosive strength in populations that experience muscle disuse over a longer time.
Collapse
Affiliation(s)
- Luca Ruggiero
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Ritsche P, Roth R, Bernhard T, Nebiker L, Lichtenstein E, Franchi M, Spörri J, Faude O. Quadriceps Muscle Geometry and Strength Throughout Maturation in National-Level Male Soccer Players: A Cross-Sectional Study. Open Access J Sports Med 2024; 15:159-170. [PMID: 39444458 PMCID: PMC11498040 DOI: 10.2147/oajsm.s482796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose Adolescent soccer players experience distinct physiological changes due to chronological and biological maturation, impacting their soccer performance. Here, we explored age-related variations and associations between quadriceps geometry and strength in male national-level adolescent soccer players. Patients and Methods We used ultrasonography to examine the regional architecture and morphology of the rectus femoris (RF) and vastus lateralis (VL) muscles, and we assessed knee extension strength by isometric and isokinetic dynamometry. Players were categorized into four age groups: under (U) 15 (n=18, age=13.7±0.5 years), U16 (n=15, age=14.7±0.5), U17 (n=19, age=15.7±0.5), U18 (n=18, age=16.7±0.5) and U21 (n=25, age=18.5±0.5). Results The absolute and relative strengths were higher in the U16 compared to U15 by 12-15% and 6-8%, 11-12% and 6-7% in the U17 compared to U16, 5-7% and -1-2% in the U18 compared to U17 and 0-15% and -1-11% in the U21 compared to U18 age groups, respectively. VL architecture did not change relevantly between the age groups. The muscle anatomical cross-sectional area (ACSA) of the VL and RF differed non-uniformly and muscle region-specific by 10-36%, with highest values in the U21 age group. Moderate correlations between the VL architecture and knee extension strength in both legs were observed only in the U16 age group. The quadriceps ACSA showed age-specific correlations with knee extension strength. Conclusion Our findings highlight non-uniform differences in quadriceps muscle morphology and absolute and relative strength among male national-level adolescent soccer players in different age groups. The correlations observed between muscle morphology or architecture and strength were muscle, muscle region, leg and age dependent.
Collapse
Affiliation(s)
- Paul Ritsche
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Ralf Roth
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | | | - Lukas Nebiker
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Eric Lichtenstein
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Martino Franchi
- Human Neuromuscular Physiology Lab, Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Jörg Spörri
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- University Centre for Prevention and Sports Medicine, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Oliver Faude
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Van Hooren B, Aagaard P, Monte A, Blazevich AJ. The role of pennation angle and architectural gearing to rate of force development in dynamic and isometric muscle contractions. Scand J Med Sci Sports 2024; 34:e14639. [PMID: 38686976 DOI: 10.1111/sms.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Associations between muscle architecture and rate of force development (RFD) have been largely studied during fixed-end (isometric) contractions. Fixed-end contractions may, however, limit muscle shape changes and thus alter the relationship between muscle architecture an RFD. AIM We compared the correlation between muscle architecture and architectural gearing and knee extensor RFD when assessed during dynamic versus fixed-end contractions. METHODS Twenty-two recreationally active male runners performed dynamic knee extensions at constant acceleration (2000°s-2) and isometric contractions at a fixed knee joint angle (fixed-end contractions). Torque, RFD, vastus lateralis muscle thickness, and fascicle dynamics were compared during 0-75 and 75-150 ms after contraction onset. RESULTS Resting fascicle angle was moderately and positively correlated with RFD during fixed-end contractions (r = 0.42 and 0.46 from 0-75 and 75-150 ms, respectively; p < 0.05), while more strongly (p < 0.05) correlated with RFD during dynamic contractions (r = 0.69 and 0.73 at 0-75 and 75-150 ms, respectively; p < 0.05). Resting fascicle angle was (very) strongly correlated with architectural gearing (r = 0.51 and 0.73 at 0-75 ms and 0.50 and 0.70 at 75-150 ms; p < 0.05), with gearing in turn also being moderately to strongly correlated with RFD in both contraction conditions (r = 0.38-0.68). CONCLUSION Resting fascicle angle was positively correlated with RFD, with a stronger relationship observed in dynamic than isometric contraction conditions. The stronger relationships observed during dynamic muscle actions likely result from different restrictions on the acute changes in muscle shape and architectural gearing imposed by isometric versus dynamic muscle contractions.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
4
|
Zhang C, Deng L, Zhang X, Wu K, Zhan J, Fu W, Jin J. Effects of 12-week gait retraining on plantar flexion torque, architecture, and behavior of the medial gastrocnemius in vivo. Front Bioeng Biotechnol 2024; 12:1352334. [PMID: 38572360 PMCID: PMC10987777 DOI: 10.3389/fbioe.2024.1352334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Objective This study aims to explore the effects of 12-week gait retraining (GR) on plantar flexion torque, architecture, and behavior of the medial gastrocnemius (MG) during maximal voluntary isometric contraction (MVIC). Methods Thirty healthy male rearfoot strikers were randomly assigned to the GR group (n = 15) and the control (CON) group (n = 15). The GR group was instructed to wear minimalist shoes and run with a forefoot strike pattern for the 12-week GR (3 times per week), whereas the CON group wore their own running shoes and ran with their original foot strike pattern. Participants were required to share screenshots of running tracks each time to ensure training supervision. The architecture and behavior of MG, as well as ankle torque data, were collected before and after the intervention. The architecture of MG, including fascicle length (FL), pennation angle, and muscle thickness, was obtained by measuring muscle morphology at rest using an ultrasound device. Ankle torque data during plantar flexion MVIC were obtained using a dynamometer, from which peak torque and early rate of torque development (RTD50) were calculated. The fascicle behavior of MG was simultaneously captured using an ultrasound device to calculate fascicle shortening, fascicle rotation, and maximal fascicle shortening velocity (Vmax). Results After 12-week GR, 1) the RTD50 increased significantly in the GR group (p = 0.038), 2) normalized FL increased significantly in the GR group (p = 0.003), and 3) Vmax increased significantly in the GR group (p = 0.018). Conclusion Compared to running training, GR significantly enhanced the rapid strength development capacity and contraction velocity of the MG. This indicates the potential of GR as a strategy to improve muscle function and mechanical efficiency, particularly in enhancing the ability of MG to generate and transmit force as well as the rapid contraction capability. Further research is necessary to explore the effects of GR on MG behavior during running in vivo.
Collapse
Affiliation(s)
- Chuyi Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Liqin Deng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xini Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Kaicheng Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jianglong Zhan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weijie Fu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jing Jin
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Oranchuk DJ, Hopkins WG, Cronin JB, Storey AG, Nelson AR. The effects of regional quadriceps architecture on angle-specific rapid force expression. Appl Physiol Nutr Metab 2023; 48:829-840. [PMID: 37390497 DOI: 10.1139/apnm-2023-0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Evaluating anatomical contributions to performance can increase understanding of muscle mechanics and guide physical preparation. While the impact of anatomy on muscular performance is well studied, the effects of regional quadriceps architecture on rapid torque or force expression are less clear. Regional (proximal, middle, and distal) quadriceps (vastus lateralis, rectus femoris, and vastus intermedius) thickness (MT), pennation angle (PA), and fascicle length (FL) of 24 males (48 limbs) were assessed via ultrasonography. Participants performed maximal isometric knee extensions at 40°, 70°, and 100° of knee flexion to evaluate rate of force development from 0 to 200 ms (RFD0-200). Measurements were repeated on three occasions with the greatest RFD0-200 and mean muscle architecture measures used for analysis. Linear regression models predicting angle-specific RFD0-200 from regional anatomy provided adjusted correlations (√adjR2) with bootstrapped compatibility limits. Mid-rectus femoris MT (√adjR2 = 0.41-0.51) and proximal vastus lateralis FL (√adjR2 = 0.42-0.48) were the best single predictors of RFD0-200, and the only measures to reach precision with 99% compatibility limits. Small simple correlations were found across all regions and joint angles between RFD0-200 and vastus lateralis MT (√adjR2 = 0.28 ± 0.13; mean ± SD), vastus lateralis FL (√adjR2 = 0.33 ± 0.10), rectus femoris MT (√adjR2 = 0.38 ± 0.10), and lateral vastus intermedius MT (√adjR2 = 0.24 ± 0.10). Between-correlation comparisons are reported within the article. Researchers should measure mid-region rectus femoris MT and vastus lateralis FL to efficiently and robustly evaluate potential anatomical contributions to rapid knee extension force changes, with distal and proximal measurements providing little additional value. However, correlations were generally small to moderate, suggesting that neurological factors may be critical in rapid force expression.
Collapse
Affiliation(s)
- Dustin J Oranchuk
- Sports Performance Research Institute New Zealand, Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Muscle Morphology, Mechanics, and Performance Laboratory, Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, US
| | - William G Hopkins
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - John B Cronin
- Sports Performance Research Institute New Zealand, Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Adam G Storey
- Sports Performance Research Institute New Zealand, Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - André R Nelson
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
6
|
Pinto MD, Nosaka K, Wakeling JM, Blazevich AJ. Human in vivo medial gastrocnemius gear during active and passive muscle lengthening: effect of inconsistent methods and nomenclature on data interpretation. Biol Open 2023; 12:bio060023. [PMID: 37584384 PMCID: PMC10497039 DOI: 10.1242/bio.060023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023] Open
Abstract
'Muscle gear' is calculated as the ratio of fascicle-to-muscle length change, strain, or velocity. Inconsistencies in nomenclature and definitions of gear exist across disciplines partly due to differences in fascicle [curved (Lf) versus linear (Lf,straight)] and muscle [whole-muscle belly (Lb) versus belly segment (Lb,segment)] length calculation methods. We tested whether these differences affect gear magnitude during passive and active muscle lengthening of human medial gastrocnemius of young men (n=13, 26.3±5.0 years) using an isokinetic dynamometer. Lb, Lb,segment, Lf and Lf,straight were measured from motion analysis and ultrasound imaging data. Downshifts in belly gear but not belly segment gear occurred with muscle lengthening only during active lengthening. Muscle gear was unaffected by fascicle length measurement method (P=0.18) but differed when calculated as changes in Lb or Lb,segment (P<0.01) in a length-dependent manner. Caution is therefore advised for the use and interpretation of different muscle gear calculation methods and nomenclatures in animal and human comparative physiology.
Collapse
Affiliation(s)
- Matheus Daros Pinto
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - James M. Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Anthony J. Blazevich
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|