1
|
Vanderschoot KA, Bender KJ, De Caro CM, Steineman KA, Neumann EK. Multimodal Mass Spectrometry Imaging in Atlas Building: A Review. Semin Nephrol 2025:151578. [PMID: 40246671 DOI: 10.1016/j.semnephrol.2025.151578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
In the era of precision medicine, scientists are creating atlases of the human body to map cells at the molecular level, providing insight into what fundamentally makes each cell different. In these atlas efforts, multimodal imaging techniques that include mass spectrometry imaging (MSI) have revolutionized the way biomolecules, such as lipids, peptides, proteins, and small metabolites, are visualized in the native spatial context of biological tissue. As such, MSI has become a fundamental arm of major cell atlasing efforts, as it can analyze the spatial distribution of hundreds of molecules in diverse sample types. These rich molecular data are then correlated with orthogonal assays, including histologic staining, proteomics, and transcriptomics, to analyze molecular classes that are not traditionally detected by MSI. Additional computational methods enable further examination of the correlations between biomolecular classes and creation of visualizations that serve as a powerful resource for researchers and clinicians trying to understand human health and disease. In this review, we examine modern multimodal imaging methods and how they contribute to precision medicine and the understanding of fundamental disease mechanisms. Semin Nephrol 36:x-xx © 20XX Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
| | - Kayle J Bender
- Chemistry Department, University of California at Davis, Davis, CA
| | | | | | | |
Collapse
|
2
|
da Silva CE, Ciriaco YDS, Ribeiro GM, Vidal LA, Cintra VAS, dos Reis ST. Epidemiological profile of kidney cancer in Brazil: a multiregional ecological study. J Bras Nefrol 2025; 47:e20240180. [PMID: 40096414 PMCID: PMC11913370 DOI: 10.1590/2175-8239-jbn-2024-0180en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/10/2025] [Indexed: 03/19/2025] Open
Abstract
INTRODUCTION Renal neoplasia is a complex and heterogeneous disease, characterized by high morbidity and mortality. OBJECTIVE To analyze the temporal trend of hospitalization rates (HRs) for renal neoplasia in Brazil, segmented by region, states (UFs, Unidades da Federação in Portuguese), and population characteristics, from 2013 to 2023. METHODS Ecological study using data from the Hospital Information System, by analyzing Hospital Admission Authorizations, covering the period from 2013 to 2023. The annual trend of HRs was analyzed using generalized linear regression with the Prais-Winsten method by calculating the Annual Percentage Change (APC), considering sex, age, race/color, and region/state (UF). A significance level of 5% was adopted for the analyses. RESULTS A total of 31,388 hospitalizations for renal neoplasia were recorded in Brazil during the period, showing a significant upward trend in HRs (APC: 9.12; 95%CI: 5.30; 13.1; p < 0.001). The increase was observed in both sexes and in all regions. Among the states, most showed stationary trends. The highest average HRs were identified among young elderly individuals (3.31/100,000) and long-lived elderly individuals (2.51/100,000). CONCLUSION HRIs due to renal neoplasia in Brazil showed a significant upward trend between 2013 and 2023, with regional variations, a predominance in males, and a higher incidence in the over-60 age group.
Collapse
Affiliation(s)
| | | | | | | | | | - Sabrina Thalita dos Reis
- Faculdade de Medicina Atenas Passos, Passos, MG, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Laboratório de Investigação Médica 55, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Wang R, Zhong L, Zhu P, Pan X, Chen L, Zhou J, Ding Y. MRI-based radiomics machine learning model to differentiate non-clear cell renal cell carcinoma from benign renal tumors. Eur J Radiol Open 2024; 13:100608. [PMID: 39525508 PMCID: PMC11550165 DOI: 10.1016/j.ejro.2024.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose We aim to develop an MRI-based radiomics model to improve the accuracy of differentiating non-ccRCC from benign renal tumors preoperatively. Methods The retrospective study included 195 patients with pathologically confirmed renal tumors (134 non-ccRCCs and 61 benign renal tumors) who underwent preoperative renal mass protocol MRI examinations. The patients were divided into a training set (n = 136) and test set (n = 59). Simple t-test and the Least Absolute Shrink and Selection Operator (LASSO) were used to select the most valuable features and the rad-scores of them were calculated. The clinicoradiologic models, single-sequence radiomics models, multi-sequence radiomics models and combined models for differentiation were constructed with 2 classifiers (support vector machine (SVM), logistic regression (LR)) in the training set and used for differentiation in the test set. Ten-fold cross validation was applied to obtain the optimal hyperparameters of the models. The performances of the models were evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). Delong's test was performed to compare the performances of models. Results After univariate and multivariate logistic regression analysis, the independent risk factors to differentiate non-ccRCC from benign renal tumors were selected as follows: age, tumor region, hemorrhage, pseudocapsule and enhancement degree. Among the 14 machine learning classification models constructed, the combined model with LR has the highest efficiency in differentiating non-ccRCC from benign renal tumors. The AUC in the training set is 0.964, and the accuracy is 0.919. The AUC in the test set is 0.936, and the accuracy is 0.864. Conclusion The MRI-based radiomics machine learning is feasible to differentiate non-ccRCC from benign renal tumors, which could improve the accuracy of clinical diagnosis.
Collapse
Affiliation(s)
- Ruiting Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Lianting Zhong
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
| | - Pingyi Zhu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Xianpan Pan
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Lei Chen
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
- Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, Fujian, China
- Fujian Province Key Clinical Specialty for Medical Imaging, Xiamen, Fujian, China
| | - Yuqin Ding
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
4
|
Rowe SP, Islam MZ, Viglianti B, Solnes LB, Baraban E, Gorin MA, Oldan JD. Molecular imaging for non-invasive risk stratification of renal masses. Diagn Interv Imaging 2024; 105:305-310. [PMID: 39054210 DOI: 10.1016/j.diii.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Anatomic imaging with contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) has long been the mainstay of renal mass characterization. However, those modalities are often unable to adequately characterize indeterminate, solid, enhancing renal masses - with some exceptions, such as the development of the clear-cell likelihood score on multi-parametric MRI. As such, molecular imaging approaches have gained traction as an alternative to anatomic imaging. Mitochondrial imaging with 99mTc-sestamibi single-photon emission computed tomography/CT is a cost-effective means of non-invasively identifying oncocytomas and other indolent renal masses. On the other end of the spectrum, carbonic anhydrase IX agents, most notably the monoclonal antibody girentuximab - which can be labeled with positron emission tomography radionuclides such as zirconium-89 - are effective at identifying renal masses that are likely to be aggressive clear cell renal cell carcinomas. Renal mass biopsy, which has a relatively high non-diagnostic rate and does not definitively characterize many oncocytic neoplasms, nonetheless may play an important role in any algorithm targeted to renal mass risk stratification. The combination of molecular imaging and biopsy in selected patients with other advanced imaging methods, such as artificial intelligence/machine learning and the abstraction of radiomics features, offers the optimal way forward for maximization of the information to be gained from risk stratification of indeterminate renal masses. With the proper application of those methods, inappropriately aggressive therapy for benign and indolent renal masses may be curtailed.
Collapse
Affiliation(s)
- Steven P Rowe
- Molecular Imaging and Therapeutics, University of North Carolina, Chapel Hill, NC 27516, USA.
| | - Md Zobaer Islam
- Molecular Imaging and Therapeutics, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Benjamin Viglianti
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lilja B Solnes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ezra Baraban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael A Gorin
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jorge D Oldan
- Molecular Imaging and Therapeutics, University of North Carolina, Chapel Hill, NC 27516, USA
| |
Collapse
|
5
|
Kapetanou E, Malamas S, Leventis D, Karantanas AH, Klontzas ME. Developing a Radiomics Atlas Dataset of normal Abdominal and Pelvic computed Tomography (RADAPT). JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1273-1281. [PMID: 38383807 PMCID: PMC11300734 DOI: 10.1007/s10278-024-01028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Atlases of normal genomics, transcriptomics, proteomics, and metabolomics have been published in an attempt to understand the biological phenotype in health and disease and to set the basis of comprehensive comparative omics studies. No such atlas exists for radiomics data. The purpose of this study was to systematically create a radiomics dataset of normal abdominal and pelvic radiomics that can be used for model development and validation. Young adults without any previously known disease, aged > 17 and ≤ 36 years old, were retrospectively included. All patients had undergone CT scanning for emergency indications. In case abnormal findings were identified, the relevant anatomical structures were excluded. Deep learning was used to automatically segment the majority of visible anatomical structures with the TotalSegmentator model as applied in 3DSlicer. Radiomics features including first order, texture, wavelet, and Laplacian of Gaussian transformed features were extracted with PyRadiomics. A Github repository was created to host the resulting dataset. Radiomics data were extracted from a total of 531 patients with a mean age of 26.8 ± 5.19 years, including 250 female and 281 male patients. A maximum of 53 anatomical structures were segmented and used for subsequent radiomics data extraction. Radiomics features were derived from a total of 526 non-contrast and 400 contrast-enhanced (portal venous) series. The dataset is publicly available for model development and validation purposes.
Collapse
Affiliation(s)
- Elisavet Kapetanou
- Biomedical Engineering Graduate Programme, School of Medicine, University of Crete, Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Greece
| | - Stylianos Malamas
- Department of Computer Science-University of Crete, Heraklion, Greece
| | - Dimitrios Leventis
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Greece
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Greece
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece
| | - Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Greece.
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.
| |
Collapse
|
6
|
Yang Y, Wang J, Ren Q, Yu R, Yuan Z, Jiang Q, Guan S, Tang X, Duan T, Meng X. Multimodal data integration using machine learning to predict the risk of clear cell renal cancer metastasis: a retrospective multicentre study. Abdom Radiol (NY) 2024; 49:2311-2324. [PMID: 38879708 DOI: 10.1007/s00261-024-04418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE To develop and validate a predictive combined model for metastasis in patients with clear cell renal cell carcinoma (ccRCC) by integrating multimodal data. MATERIALS AND METHODS In this retrospective study, the clinical and imaging data (CT and ultrasound) of patients with ccRCC confirmed by pathology from three tertiary hospitals in different regions were collected from January 2013 to January 2023. We developed three models, including a clinical model, a radiomics model, and a combined model. The performance of the model was determined based on its discriminative power and clinical utility. The evaluation indicators included area under the receiver operating characteristic curve (AUC) value, accuracy, sensitivity, specificity, negative predictive value, positive predictive value and decision curve analysis (DCA) curve. RESULTS A total of 251 patients were evaluated. Patients (n = 166) from Shandong University Qilu Hospital (Jinan) were divided into the training cohort, of which 50 patients developed metastases; patients (n = 37) from Shandong University Qilu Hospital (Qingdao) were used as internal testing, of which 15 patients developed metastases; patients (n = 48) from Changzhou Second People's Hospital were used as external testing, of which 13 patients developed metastases. In the training set, the combined model showed the highest performance (AUC, 0.924) in predicting lymph node metastasis (LNM), while the clinical and radiomics models both had AUCs of 0.845 and 0.870, respectively. In the internal testing, the combined model had the highest performance (AUC, 0.877) for predicting LNM, while the AUCs of the clinical and radiomics models were 0.726 and 0.836, respectively. In the external testing, the combined model had the highest performance (AUC, 0.849) for predicting LNM, while the AUCs of the clinical and radiomics models were 0.708 and 0.804, respectively. The DCA curve showed that the combined model had a significant prediction probability in predicting the risk of LNM in ccRCC patients compared with the clinical model or the radiomics model. CONCLUSION The combined model was superior to the clinical and radiomics models in predicting LNM in ccRCC patients.
Collapse
Affiliation(s)
- YouChang Yang
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - JiaJia Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - QingGuo Ren
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Rong Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ZiYi Yuan
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - QingJun Jiang
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Shuai Guan
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - XiaoQiang Tang
- Department of Radiology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - TongTong Duan
- Department of Ultrasound, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - XiangShui Meng
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
| |
Collapse
|
7
|
Trovato P, Simonetti I, Morrone A, Fusco R, Setola SV, Giacobbe G, Brunese MC, Pecchi A, Triggiani S, Pellegrino G, Petralia G, Sica G, Petrillo A, Granata V. Scientific Status Quo of Small Renal Lesions: Diagnostic Assessment and Radiomics. J Clin Med 2024; 13:547. [PMID: 38256682 PMCID: PMC10816509 DOI: 10.3390/jcm13020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Background: Small renal masses (SRMs) are defined as contrast-enhanced renal lesions less than or equal to 4 cm in maximal diameter, which can be compatible with stage T1a renal cell carcinomas (RCCs). Currently, 50-61% of all renal tumors are found incidentally. Methods: The characteristics of the lesion influence the choice of the type of management, which include several methods SRM of management, including nephrectomy, partial nephrectomy, ablation, observation, and also stereotactic body radiotherapy. Typical imaging methods available for differentiating benign from malignant renal lesions include ultrasound (US), contrast-enhanced ultrasound (CEUS), computed tomography (CT), and magnetic resonance imaging (MRI). Results: Although ultrasound is the first imaging technique used to detect small renal lesions, it has several limitations. CT is the main and most widely used imaging technique for SRM characterization. The main advantages of MRI compared to CT are the better contrast resolution and tissue characterization, the use of functional imaging sequences, the possibility of performing the examination in patients allergic to iodine-containing contrast medium, and the absence of exposure to ionizing radiation. For a correct evaluation during imaging follow-up, it is necessary to use a reliable method for the assessment of renal lesions, represented by the Bosniak classification system. This classification was initially developed based on contrast-enhanced CT imaging findings, and the 2019 revision proposed the inclusion of MRI features; however, the latest classification has not yet received widespread validation. Conclusions: The use of radiomics in the evaluation of renal masses is an emerging and increasingly central field with several applications such as characterizing renal masses, distinguishing RCC subtypes, monitoring response to targeted therapeutic agents, and prognosis in a metastatic context.
Collapse
Affiliation(s)
- Piero Trovato
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Igino Simonetti
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Alessio Morrone
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Sergio Venanzio Setola
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy;
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy;
| | - Annarita Pecchi
- Department of Radiology, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Sonia Triggiani
- Postgraduate School of Radiodiagnostics, University of Milan, 20122 Milan, Italy; (S.T.); (G.P.)
| | - Giuseppe Pellegrino
- Postgraduate School of Radiodiagnostics, University of Milan, 20122 Milan, Italy; (S.T.); (G.P.)
| | - Giuseppe Petralia
- Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| |
Collapse
|
8
|
Maddalo M, Bertolotti L, Mazzilli A, Flore AGM, Perotta R, Pagnini F, Ziglioli F, Maestroni U, Martini C, Caruso D, Ghetti C, De Filippo M. Small Renal Masses: Developing a Robust Radiomic Signature. Cancers (Basel) 2023; 15:4565. [PMID: 37760532 PMCID: PMC10527518 DOI: 10.3390/cancers15184565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background and (2) Methods: In this retrospective, observational, monocentric study, we selected a cohort of eighty-five patients (age range 38-87 years old, 51 men), enrolled between January 2014 and December 2020, with a newly diagnosed renal mass smaller than 4 cm (SRM) that later underwent nephrectomy surgery (partial or total) or tumorectomy with an associated histopatological study of the lesion. The radiomic features (RFs) of eighty-five SRMs were extracted from abdominal CTs bought in the portal venous phase using three different CT scanners. Lesions were manually segmented by an abdominal radiologist. Image analysis was performed with the Pyradiomic library of 3D-Slicer. A total of 108 RFs were included for each volume. A machine learning model based on radiomic features was developed to distinguish between benign and malignant small renal masses. The pipeline included redundant RFs elimination, RFs standardization, dataset balancing, exclusion of non-reproducible RFs, feature selection (FS), model training, model tuning and validation of unseen data. (3) Results: The study population was composed of fifty-one RCCs and thirty-four benign lesions (twenty-five oncocytomas, seven lipid-poor angiomyolipomas and two renal leiomyomas). The final radiomic signature included 10 RFs. The average performance of the model on unseen data was 0.79 ± 0.12 for ROC-AUC, 0.73 ± 0.12 for accuracy, 0.78 ± 0.19 for sensitivity and 0.63 ± 0.15 for specificity. (4) Conclusions: Using a robust pipeline, we found that the developed RFs signature is capable of distinguishing RCCs from benign renal tumors.
Collapse
Affiliation(s)
- Michele Maddalo
- Medical Physics Unit, University Hospital of Parma, 43126 Parma, Italy; (M.M.); (A.M.); (C.G.)
| | - Lorenzo Bertolotti
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (L.B.); (R.P.); (C.M.)
| | - Aldo Mazzilli
- Medical Physics Unit, University Hospital of Parma, 43126 Parma, Italy; (M.M.); (A.M.); (C.G.)
| | | | - Rocco Perotta
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (L.B.); (R.P.); (C.M.)
| | - Francesco Pagnini
- Diagnostic Department, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy;
| | - Francesco Ziglioli
- Department of Urology, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy; (F.Z.); (U.M.)
| | - Umberto Maestroni
- Department of Urology, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy; (F.Z.); (U.M.)
| | - Chiara Martini
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (L.B.); (R.P.); (C.M.)
- Diagnostic Department, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy;
| | - Damiano Caruso
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza-University of Rome, 00100 Rome, Italy
| | - Caterina Ghetti
- Medical Physics Unit, University Hospital of Parma, 43126 Parma, Italy; (M.M.); (A.M.); (C.G.)
| | - Massimo De Filippo
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (L.B.); (R.P.); (C.M.)
- Diagnostic Department, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy;
| |
Collapse
|