1
|
Liu W, Zhang Z, Chen X, Mu Y, Zheng D, Huang X, Ma H, Li L. Chemical Profiles and Biological Effects of Polyphenols in Eucalyptus Genus: A Comprehensive Review on Their Applications in Human Health and the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40243000 DOI: 10.1021/acs.jafc.4c13084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The genus Eucalyptus is an important member of the family Myrtaceae. Eucalyptus plants contain unique and diverse phytochemicals, contributing to their remarkable ecological and economic values. Although the chemical components of several Eucalyptus food products (e.g., essential oil, honey, and wax) have been studied, research efforts are directed to other less characterized Eucalyptus phytochemicals, particularly polyphenols. Notably, some Eucalyptus polyphenols, such as formyl phloroglucinol meroterpenoids, have unique chemical structures with promising health-promoting effects. Thus, chemical characterization and biological evaluation of Eucalyptus polyphenols are critical to promoting their applications. Herein, this review provides a comprehensive summary of the phytochemical studies of Eucalyptus polyphenols and their biological activities, including antimicrobial, antiviral, anticancer, antioxidant, and anti-inflammatory effects. Eucalyptus polyphenols' structure-activity relationship is analyzed in the context of the development of their biological applications. In addition, the utilization of polyphenols from Eucalyptus plants in food preservation and production is summarized.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Zhuo Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xin Chen
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
2
|
Shiekh RAE, Atwa AM, Elgindy AM, Mustafa AM, Senna MM, Alkabbani MA, Ibrahim KM. Therapeutic applications of eucalyptus essential oils. Inflammopharmacology 2025; 33:163-182. [PMID: 39499358 PMCID: PMC11799053 DOI: 10.1007/s10787-024-01588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024]
Abstract
Eucalyptus essential oils (EEOs) have gained significant attention recently anticipated to their broad range of prospective benefits in various biological applications. They have been proven to have strong antibacterial properties against a variety of bacteria, fungi, and viruses. This makes them valuable in combating infections and supporting overall hygiene. The active compounds present in these oils can help alleviate inflammation, making them valuable in addressing inflammatory conditions such as arthritis, respiratory ailments, and skin disorders. Respiratory health benefits are another prominent aspect of EEOs. Inhalation of these oils can help promote clear airways, relieve congestion, and ease symptoms of respiratory conditions like coughs, colds, and sinusitis. They are often utilized in inhalation therapies and chest rubs. They can be used topically or in massage oils to alleviate muscle and joint pain. Furthermore, these oils have shown potential in supporting wound healing. Their antimicrobial activity helps prevent infection, while their anti-inflammatory and analgesic properties contribute to reducing inflammation and pain associated with wounds. In aromatherapy, EEOs are renowned for their invigorating and uplifting qualities, promoting mental clarity, relaxation, and stress relief. Overall, EEOs hold great promise in biological applications, offering a natural and versatile approach to promote health and well-being. Continued research and exploration of their therapeutic potential will further unveil their benefits and broaden their applications in various fields.
Collapse
Affiliation(s)
- Riham A El Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq
| | - Ali M Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | | | - Kawther Magdy Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
3
|
Ali DE, El-Shiekh RA, El Sawy MA, Khalifa AA, Elblehi SS, Elsokkary NH, Ali MA. In vivo anti-gastric ulcer activity of 7-O-methyl aromadendrin and sakuranetin via mitigating inflammatory and oxidative stress trails. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118617. [PMID: 39053715 DOI: 10.1016/j.jep.2024.118617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eucalyptus genus has been used for a very long time in conventional treatment as an anti-ulcer remedy. AIM OF THE STUDY The study aimed to explore the gastroprotective potential of 7-O-methyl aromadendrin (7-OMA), and sakuranetin (SKN) in comparison with omeprazole. The study tackled the contribution of their anti-inflammatory, antioxidant, and antiapoptotic capabilities to their anti-gastric ulcer effects. MATERIALS AND METHODS An ethanol-induced gastric ulcer model in rats was adopted and the consequences were confirmed by a molecular docking study. RESULTS The oral pretreatment of rats 1 h before ethanol using omeprazole (20 mg/kg) or 7-OMA (20 or 40 mg/kg) or SKN (20 or 40 mg/kg) exhibited gastroprotective and anti-inflammatory properties to different extents. These amendments witnessed as restorations in the stomach histological architecture in H and E-stained sections, mucus content in periodic acid-Schiff (PAS) stained sections with increased cellular proliferation, as demonstrated by increased immunohistochemical staining of PCNA, and increments in stomach COX-1 activity and eNOS. The highest dose of SKN showed the best corrections to reach 4.8, 1.8, and 2.1 folds increase in PAS, COX-1 and eNOS, respectively as compared to the untreated ethanol-induced gastric ulcer group; effects that were comparable to that of omeprazole. Moreover, reductions in COX-2 activity, and the protein expression of NF-κB, IL-6, TNF-α and NOx, in addition to the gene expression of inducible iNOS were also noted. Moreover, the antioxidant and antiapoptotic capabilities of omeprazole, 7-OMA, and SKN were perceived. SKN (40 mg/kg) succeeded to show the unsurpassed results to reach 293.6%, 237.1%, 274.7%, 248.2%, and 175.4% in total and reduced GSH, catalase, SOD, and Bcl2, respectively, as well as 50.0%, 46.8%, and 52.1 % in oxidized GSSG, TBARS and caspase-3, respectively. The gastroprotective potential of the tested compounds can be assigned to their anti-inflammatory, antioxidant and antiapoptotic properties.7-OMA and SKN were studied using molecular docking into the binding sites of the most significant inflammatory targets, including COX-2, TNF-α, iNOS, and NF-κB. Pharmacokinetic and physicochemical parameters in silico were appropriate. CONCLUSION The prophylactic use of 7-OMA and SKN could be considered as an add-on to recurrent gastric ulcers and might influence its therapeutic approaches.
Collapse
Affiliation(s)
- Dalia E Ali
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Maged A El Sawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Asmaa A Khalifa
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nahed H Elsokkary
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
4
|
El-Shiekh RA, Okba MM, Mandour AA, Kutkat O, Elshimy R, Nagaty HA, Ashour RM. Eucalyptus Oils Phytochemical Composition in Correlation with Their Newly Explored Anti-SARS-CoV-2 Potential: in Vitro and in Silico Approaches. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:410-416. [PMID: 38492174 PMCID: PMC11178612 DOI: 10.1007/s11130-024-01159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the latest arisen contagious respiratory pathogen related to the global outbreak of atypical pneumonia pandemic (COVID-19). The essential oils (EOs) of Eucalyptus camaldulensis, E. ficifolia F. Muell., E. citriodora Hook, E. globulus Labill, E. sideroxylon Cunn. ex Woolls, and E. torquata Luehm. were investigated for its antiviral activity against SARS-CoV-2. The EOs phytochemical composition was determined using GC/MS analysis. Correlation with the explored antiviral activity was also studied using multi-variate data analysis and Pearson's correlation. The antiviral MTT and cytopathic effect inhibition assays revealed very potent and promising anti SARS-CoV-2 potential for E. citriodora EO (IC50 = 0.00019 µg/mL and SI = 26.27). The multivariate analysis revealed α-pinene, α-terpinyl acetate, globulol, γ -terpinene, and pinocarvone were the main biomarkers for E. citriodora oil. Pearson's correlation revealed that globulol is the top positively correlated compound in E. citriodora oil to its newly explored potent anti SARS-CoV-2 potential. A molecular simulation was performed on globulol via docking in the main active sites of both SARS-CoV-2 viral main protease (Mpro) and spike protein (S). In silico predictive ADMET study was also developed to investigate the pharmacokinetic profile and predict globulol toxicity. The obtained in silico, in vitro and Pearson's correlation results were aligned showing promising SARS-CoV-2 inhibitory activity of E. citriodora and globulol. This study is a first record for E. citriodora EO as a novel lead exhibiting potent in vitro, and in silico anti SARS-CoV-2 potential and suggesting its component globulol as a promising candidate for further extensive in silico, in vitro and in vivo anti-COVID studies.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mona M Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Asmaa A Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, 11835, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Rana Elshimy
- Department of Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hany A Nagaty
- School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Rehab M Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
5
|
Wang K, Cui H, Liu K, He Q, Fu X, Li W, Han W. Exploring the anti-gout potential of sunflower receptacles alkaloids: A computational and pharmacological analysis. Comput Biol Med 2024; 172:108252. [PMID: 38493604 DOI: 10.1016/j.compbiomed.2024.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Gout, a painful condition marked by elevated uric acid levels often linked to the diet's high purine and alcohol content, finds a potential treatment target in xanthine oxidase (XO), a crucial enzyme for uric acid production. This study explores the therapeutic properties of alkaloids extracted from sunflower (Helianthus annuus L.) receptacles against gout. By leveraging computational chemistry and introducing a novel R-based clustering algorithm, "TriDimensional Hierarchical Fingerprint Clustering with Tanimoto Representative Selection (3DHFC-TRS)," we assessed 231 alkaloid molecules from sunflower receptacles. Our clustering analysis pinpointed six alkaloids with significant gout-targeting potential, particularly emphasizing the fifth cluster's XO inhibition capabilities. Through molecular docking and the BatchDTA prediction model, we identified three top compounds-2-naphthylalanine, medroxalol, and fenspiride-with the highest XO affinity. Further molecular dynamics simulations assessed their enzyme active site interactions and binding free energies, employing MM-PBSA calculations. This investigation not only highlights the discovery of promising compounds within sunflower receptacle alkaloids via LC-MS but also introduces medroxalol as a novel gout treatment candidate, showcasing the synergy of computational techniques and LC-MS in drug discovery.
Collapse
Affiliation(s)
- Kaiyu Wang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Huizi Cui
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Qizheng He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China
| | - Wannan Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, Qianjin road 2699, China.
| |
Collapse
|
6
|
Saber MM, Radi MH, El-Shiekh RA, Abdel-Sattar E, El-Halawany AM. Euphorbia grantii Oliv. standardized extract and its fraction ameliorate doxorubicin-induced cardiomyopathy in Ehrlich carcinoma bearing mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117566. [PMID: 38081395 DOI: 10.1016/j.jep.2023.117566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia plants have long been used as traditional medicine in China, Europe, America, Turkey, India, Africa, Iran, and Pakistan because of its high medicinal value and health advantages especially as a remedy for several types of cancer. AIM OF THE STUDY Doxorubicin (DOX) is one of the most frequently prescribed drugs in cancer chemotherapy, with dose-limiting cardiotoxicity. The development of medicinal approaches to attenuate drug's toxicity represents an area of great concern in cancer research. Because research on this topic is still disputed and limited, we aim to investigate the potential of supplementation with Euphorbia grantii Oliv. on DOX-induced cardiomyopathy in Ehrlich carcinoma bearing mice. MATERIALS AND METHODS The high-performance thin layer chromatography (HPTLC) analysis of total methanolic extract (TE), and its bioactive dichloromethane fraction (DCMF) was applied for the determination of friedelin. Male BALB/c mice were used to keep the Ehrlich ascites tumor cells. The experiment was performed for a 2-weeks period. RESULTS A good linearity relationship was found to be with correlation coefficient (r2) value of 0.9924 for the isolated friedelin. Limit of detection (LOD) and limit of quantitation (LOQ) was found to be 0.00179, and 0.000537 ng/band respectively for friedelin. The amount of friedelin in the TE and DCMF were determined by using calibration curve of standard as 106.32 ± 5.69 μg, and 159.2 ± 4.24 μg friedelin/mg extract, respectively. DOX-induced cardiomyopathy by decreasing the ejection fraction (EF) compared to the Ehrlich and negative control groups. It resulted in a decrease in the EF by 30 and 39% compared to the other groups. High and low doses of the TE and DCMF did not result in significantly different ejection fractions compared to the Ehrlich group. Co-administration of DCMF with DOX ameliorated the alteration in the serum CKMB and LDH levels. As revealed from histopathological study, DOX impairs viability of cardiac myocytes and DCMF could effectively and extensively counteract this action of DOX and potentially protect the heart from severe toxicity of DOX. CONCLUSIONS Finally, our results indicated that Euphorbia grantii Oliv. would be the best option to reduce DOX adverse effects.
Collapse
Affiliation(s)
- Mona M Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | | | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| | - Ali M El-Halawany
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| |
Collapse
|
7
|
Mohamed SM, Shalaby MA, El-Shiekh RA, Bakr AF, Kamel S, Emam SR, El-Banna HA. Maca roots: A potential therapeutic in the management of metabolic disorders through the modulation of metabolic biochemical markers in rats fed high-fat high-carbohydrate diet. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117533. [PMID: 38056538 DOI: 10.1016/j.jep.2023.117533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maca root (Lepidium meyenii Walp.) is a Peruvian plant of the Brassicaceae family. Maca roots are popular food supplements used to treat a variety of ailments described traditionally as enhancing metabolic and health conditions. AIM OF THE STUDY Metabolic syndrome (MetS) has been the real scourge globally, affecting more than one-fourth of the global population. MetS causes the development of multi-organ illnesses, including altered blood cholesterol and sugar levels, oxidative stress, and hypertension. This study evaluated maca root total methanolic extract (MTE) as a potential nutraceutical to manage the complications of MetS. MATERIALS AND METHODS After the first 4 weeks of a high-fat high-carbohydrate diet (HFCD), streptozotocin (STZ) was injected in Wistar rats to induce the MetS model. Animals were treated orally with MTE at 100 mg/kg and 300 mg/kg for 4 weeks compared to metformin at 200 mg/kg after confirmation of diabetes. RESULTS One month of MTE supplementation in HFCD-fed rats remarkably decreased the elevation of blood glucose and lipids, improved liver function and insulin resistance, additionally it successfully restored the state of inflammatory and oxidative stress. The extract was standardized to contain total phenolics equal to 24.45 ± 0.96 μg Gallic acid/mg extract. CONCLUSIONS Our findings suggest that MTE improves MetS by reducing hyperglycemia, hyperlipidemia, inflammation, and oxidative stress. While also improving beta cell secretory functions, implying that MTE could be used as a balancing drug in the prevention and treatment of metabolic abnormalities linked to type 2 diabetes.
Collapse
Affiliation(s)
- Salma Mostafa Mohamed
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Mostafa Abbas Shalaby
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Alaa F Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Shimaa R Emam
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Hossny A El-Banna
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| |
Collapse
|
8
|
Abdel-Baki PM, El-Sherei MM, Khaleel AE, Abdel-Sattar E, Salem MA, Okba MM. Correlation between secondary metabolites of Iris confusa Sealy and Iris pseudacorus L. and their newly explored antiprotozoal potentials. BMC Complement Med Ther 2023; 23:465. [PMID: 38104072 PMCID: PMC10725014 DOI: 10.1186/s12906-023-04294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND In the last few decades, the use of plant extracts and their phytochemicals as candidates for the management of parasitic diseases has increased tremendously. Irises are aromatic and medicinal plants that have long been employed in the treatment of different infectious diseases by traditional healers in many cultures. This study aims to explore the potential of three common Iris species (I. confusa Sealy, I. pseudacorus L. and I. germanica L.) against infectious diseases. Their in vitro antiprotozoal potency against Plasmodium falciparum, Trypanosoma brucei brucei, T. b. rhodesiense, T. cruzi and Leishmania infantum beside their cytotoxicity on MRC-5 fibroblasts and primary peritoneal murine macrophages were examined. METHODS The secondary metabolites of the tested extracts were characterized by UPLC-HRMS/MS and Pearsons correlation was used to correlate them with the antiprotozoal activity. RESULTS Overall, the non-polar fractions (NPF) showed a significant antiprotozoal activity (score: sc 2 to 5) in contrast to the polar fractions (PF). I. confusa NPF was the most active extract against P. falciparum [IC50 of 1.08 μg/mL, selectivity index (S.I. 26.11) and sc 5] and L. infantum (IC50 of 12.7 μg/mL, S.I. 2.22 and sc 2). I. pseudacorus NPF was the most potent fraction against T. b. rhodesiense (IC50 of 8.17 μg/mL, S.I. 3.67 and sc 3). Monogalactosyldiacylglycerol glycolipid (18:3/18:3), triaceylglycerol (18:2/18:2/18:3), oleic acid, and triterpenoid irridals (spirioiridoconfal C and iso-iridobelamal A) were the top positively correlated metabolites with antiplasmodium and antileishmanial activities of I. confusa NPF. Tumulosic acid, ceramide sphingolipids, corosolic, maslinic, moreollic acids, pheophytin a, triaceylglycerols, mono- and digalactosyldiacylglycerols, phosphatidylglycerol (22:6/18:3), phosphatidylcholines (18:1/18:2), and triterpenoid irridal iso-iridobelamal A, were highly correlated to I. pseudacorus NPF anti- T. b. rhodesiense activity. The ADME study revealed proper drug likeness properties for certain highly corelated secondary metabolites. CONCLUSION This study is the sole map correlating I. confusa and I. pseudacorus secondary metabolites to their newly explored antiprotozoal activity.
Collapse
Affiliation(s)
- Passent M Abdel-Baki
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt.
| | - Moshera M El-Sherei
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| | - Amal E Khaleel
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin Elkom, 32511, Menoufia, Egypt
| | - Mona M Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr-El-Ainy Street, Cairo, 11562, Egypt
| |
Collapse
|