1
|
DiPeri TP, Evans KW, Scott S, Zheng X, Varadarajan K, Kwong LN, Kahle M, Tran Cao HS, Tzeng CW, Vu T, Kim S, Su F, Raso MG, Rizvi Y, Zhao M, Wang H, Lee SS, Yap TA, Rodon J, Javle M, Meric-Bernstam F. Utilizing Patient-Derived Xenografts to Model Precision Oncology for Biliary Tract Cancer. Clin Cancer Res 2025; 31:387-402. [PMID: 39513959 PMCID: PMC11739782 DOI: 10.1158/1078-0432.ccr-24-1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Biliary tract cancers, which are rare and aggressive malignancies, are rich in clinically actionable molecular alterations. A major challenge in the field is the paucity of clinically relevant biliary tract cancer models that recapitulate the diverse molecular profiles of these tumors. The purpose of this study was to curate a collection of patient-derived xenograft (PDX) models that reflect the spectrum of genomic alterations present in biliary tract cancers to create a resource for modeling precision oncology. EXPERIMENTAL DESIGN PDXs were derived from biliary tract cancer samples collected from surgical resections or metastatic biopsies. Alterations present in the PDXs were identified by whole-exome sequencing and RNA sequencing. PDXs were treated with approved and investigational agents. Efficacy was assessed by change in tumor volume from baseline. Event-free survival was defined as the time to tumor doubling from baseline. Responses were categorized at day 21: >30% decrease in tumor volume = partial response, >20% increase in tumor volume = progressive disease, and any non-partial response/progressive disease was considered stable disease. RESULTS Genomic sequencing demonstrated key actionable alterations across this cohort, including alterations in FGFR2, isocitrate dehydrogenase I, ERRB2, PIK3CA, PTEN, and KRAS. RNA sequencing demonstrated fusions and expression of antibody-drug conjugate targets, including TROP2, HER2, and Nectin4. Therapeutic matching revealed objective responses to approved and investigational agents that have been shown to have antitumor activity clinically. CONCLUSIONS In this study, we developed a catalog of biliary tract cancer PDXs that underwent comprehensive molecular profiling and therapeutic modeling. To date, this is one of the largest collections of biliary tract cancer PDX models and will facilitate the development of personalized treatments for patients with these aggressive malignancies.
Collapse
Affiliation(s)
- Timothy P. DiPeri
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kurt W. Evans
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen Scott
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kaushik Varadarajan
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lawrence N. Kwong
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Kahle
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hop S. Tran Cao
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ching-Wei Tzeng
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Thuy Vu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunhee Kim
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fei Su
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasmeen Rizvi
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunyoung S. Lee
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy A. Yap
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Alexander S, Aleem U, Jacobs T, Frizziero M, Foy V, Hubner RA, McNamara MG. Antibody-Drug Conjugates and Their Potential in the Treatment of Patients with Biliary Tract Cancer. Cancers (Basel) 2024; 16:3345. [PMID: 39409965 PMCID: PMC11476249 DOI: 10.3390/cancers16193345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Biliary tract cancers (BTCs) are aggressive in nature, often presenting asymptomatically until they are diagnosed at an advanced stage. Surgical resection or liver transplantation are potential curative options. However, a large proportion of patients present with incurable locally advanced or metastatic disease and most of these patients are only eligible for palliative chemotherapy or best supportive care. More recently, targeted therapies have proven beneficial in a molecularly selected subgroup of patients with cholangiocarcinoma who have progressed on previous lines of systemic treatment. However, only a minority of patients with BTCs whose tumours harbour specific molecular alterations can access these therapies. Methods: In relation to ADCs, studies regarding use of antibody-drug conjugates in cancer, particularly in BTCs, were searched in Embase (1974 to 2024) and Ovid MEDLINE(R) (1946 to 2024) to obtain relevant articles. Examples of current clinical trials utilising ADC treatment in BTCs were extracted from the ClinicalTrials.gov trial registry. Conclusions: Overall, this review has highlighted that ADCs have shown encouraging outcomes in cancer therapy, and this should lead to further research including in BTCs, where treatment options are often limited. The promising results observed with ADCs in various cancers underscore their potential as a transformative approach in oncology, warranting continued exploration and development and the need for education on the management of their specific toxicities. By addressing current challenges and optimising ADC design and application, future studies could potentially improve treatment outcomes for patients with BTCs and beyond, potentially in both early and advanced stage settings.
Collapse
Affiliation(s)
- Shaun Alexander
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Umair Aleem
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Timothy Jacobs
- The Library, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Melissa Frizziero
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Victoria Foy
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Mairéad G. McNamara
- Division of Cancer Sciences, School of Medical Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| |
Collapse
|
3
|
Pu X, Li L, Xu F, Wang Z, Fu Y, Wu H, Ren J, Chen J, Sun B. HER2 amplification subtype intrahepatic cholangiocarcinoma exhibits high mutation burden and T cell exhaustion microenvironment. J Cancer Res Clin Oncol 2024; 150:403. [PMID: 39198311 PMCID: PMC11358322 DOI: 10.1007/s00432-024-05894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE This study aimed to establish a uniform standard for the interpretation of HER2 gene and protein statuses in intrahepatic cholangiocarcinoma (ICC). We also intended to explore the clinical pathological characteristics, molecular features, RNA expression and immune microenvironment of HER2-positive ICC. METHODS We analyzed a cohort of 304 ICCs using immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) to identify HER2 status. Comprehensive analyses of the clinicopathological, molecular genetic, and RNA expression characterizations of ICCs with varying HER2 statuses were performed using next-generation sequencing. We further investigated the tumor microenvironment of ICCs with different HER2 statuses using IHC and multiplex immunofluorescence staining. RESULTS HER2/CEP17 ratio of ≥ 2.0 and HER2 copy number ≥ 4.0; or HER2 copy number ≥ 6.0 were setup as FISH positive criteria. Based on this criterion, 13 (4.27%, 13/304) samples were classified as having HER2 amplification. The agreement between FISH and IHC results in ICC was poor. HER2-amplified cases demonstrated a higher tumor mutational burden compared to non-amplified cases. No significant differences were observed in immune markers between the two groups. However, an increased density of CD8 + CTLA4 + and CD8 + FOXP3 + cells was identified in HER2 gene-amplified cases. CONCLUSION FISH proves to be more appropriate as the gold standard for HER2 evaluation in ICC. HER2 gene-amplified ICCs exhibit poorer prognosis, higher mutational burden, and T cell exhaustion and immune suppressed microenvironment.
Collapse
Affiliation(s)
- Xiaohong Pu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Feng Xu
- Department of Medical Imaging, The Affiliated Suqian First People's Hospital of Nanjing Medical University, 223800, Suqian, Jiangsu Province, China
| | - Ziyu Wang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Hongyan Wu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Jun Ren
- Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China.
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China.
| | - Beicheng Sun
- Medical School, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
4
|
Belli C, Boscolo Bielo L, Repetto M, Crimini E, Scalia R, Diana A, Orefice J, Ascione L, Pellizzari G, Fusco N, Barberis M, Daniele B, Guerini-Rocco E, Curigliano G. Deleterious alterations in homologous recombination repair genes and efficacy of platinum-based chemotherapy in biliary tract cancers. Oncologist 2024; 29:707-715. [PMID: 38823036 PMCID: PMC11299956 DOI: 10.1093/oncolo/oyae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Platinum-based chemotherapy represents the standard first-line treatment for biliary tract cancers (BTC). Deficits in genes involved in the homologous recombination (HR) and DNA damage response (DDR) may confer higher sensitivity to platinum agents. METHODS We retrospectively included patients affected by BTC from 2 Italian institutions. Inclusion criteria consist of the receipt of platinum-based chemotherapy in the metastatic setting and the availability of comprehensive genomic profiling using next-generation sequencing (NGS). Patients were included in the HRD-like group if demonstrated oncogenic or likely oncogenic alterations in HR-/DDR-genes. Clinical endpoints were compared between the HRD-like group and the non-HRD-like group. RESULTS Seventy-four patients were included, of whom 25 (33%) in the HRD-like group and 49 (66%) in the non-HRD group. With a median follow-up of 26.04 months (interquartile-range [IQR] 9.41-29.27) in the HRD-like group and of 22.48 months (IQR 16.86-40.53) in the non-HRD group, no PFS difference emerged, with a mPFS of 5.18 months in the HRD-like group compared to 6.04 months in the non-HRD group (hazard ratio [HR], 1.017, 95% CI 0.58-1.78; P = .95). No differences were observed in DCR (64% [95 CI 45%-83%] vs 73% [95 CI 61%-86%]; P = .4), and CBR (45% [95% CI 28%-73%] vs 50% [95% CI, 37%-68%]; P = .9) between the HRD-like group and non-HRD groups, respectively. Median OS did not statistically differ between the HRD-like group and non-HRD group (26.7 vs 18.0 months, respectively; HR, 0.670, 0.33 to 1.37, P = .27). CONCLUSION HR-/DDR-genes, when assessed with regular tumor-only NGS panels, provide limited clinical validity to identify patients with BTC more likely to benefit from platinum-based chemotherapy.
Collapse
Affiliation(s)
- Carmen Belli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| | - Matteo Repetto
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
- Early Drug Development Service, Memorial Sloan-Kettering Cancer Center, New York 10065, United States
| | - Edoardo Crimini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| | - Raimondo Scalia
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
| | - Anna Diana
- Medical Oncology Unit, Ospedale del Mare, Naples 80147, Italy
| | - Jessica Orefice
- Medical Oncology Unit, Ospedale del Mare, Naples 80147, Italy
| | - Liliana Ascione
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| | - Gloria Pellizzari
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, Naples 80147, Italy
| | - Elena Guerini-Rocco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| |
Collapse
|
5
|
Demir T, Moloney C, Mahalingam D. Emerging targeted therapies and strategies to overcome resistance in biliary tract cancers. Crit Rev Oncol Hematol 2024; 199:104388. [PMID: 38754771 DOI: 10.1016/j.critrevonc.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/14/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
In the last decade, targeted therapies have shown rapid advancement in biliary tract cancer (BTC). Today, many targeted agents are available and under investigation for patients with BTC. More recently, immune checkpoint inhibitors (ICI) such as durvalumab and pembrolizumab in combination with gemcitabine plus cisplatin (gem/cis) have resulted in improved overall survival and progression-free survival in the first-line setting. However, the efficacy benefit of these novel therapeutics is often short-lived, with literature outlining concerns about both primary and secondary resistance to these agents. Investigators also need to consider toxicity profiles that can emerge using this strategy. There have been efforts to reduce evolving resistance through combinatory approaches, both pre-clinically and in early clinical settings. This review summarizes the emerging targeted therapies in BTC, evolving biomarkers of resistance, strategies to overcome them, and an analysis of ongoing clinical trials of patients with advanced BTC.
Collapse
Affiliation(s)
- Tarik Demir
- Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine1, Chicago, IL 60611, USA.
| | - Carolyn Moloney
- Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine1, Chicago, IL 60611, USA
| | - Devalingam Mahalingam
- Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine1, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Chen J, Amoozgar Z, Liu X, Aoki S, Liu Z, Shin SM, Matsui A, Hernandez A, Pu Z, Halvorsen S, Lei PJ, Datta M, Zhu L, Ruan Z, Shi L, Staiculescu D, Inoue K, Munn LL, Fukumura D, Huang P, Sassi S, Bardeesy N, Ho WJ, Jain RK, Duda DG. Reprogramming the Intrahepatic Cholangiocarcinoma Immune Microenvironment by Chemotherapy and CTLA-4 Blockade Enhances Anti-PD-1 Therapy. Cancer Immunol Res 2024; 12:400-412. [PMID: 38260999 PMCID: PMC10985468 DOI: 10.1158/2326-6066.cir-23-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/05/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Adding blockade of the anti-programmed cell death protein (PD)-1 pathway to gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers but with low response rates. Here, we studied the effects of anti-cytotoxic T lymphocyte antigen (CTLA)-4 when combined with anti-PD-1 and gemcitabine/cisplatin in orthotopic murine models of ICC. This combination therapy led to substantial survival benefits and reduction of morbidity in two aggressive ICC models that were resistant to immunotherapy alone. Gemcitabine/cisplatin treatment increased tumor-infiltrating lymphocytes and normalized the ICC vessels and, when combined with dual CTLA-4/PD-1 blockade, increased the number of activated CD8+Cxcr3+IFNγ+ T cells. CD8+ T cells were necessary for the therapeutic benefit because the efficacy was compromised when CD8+ T cells were depleted. Expression of Cxcr3 on CD8+ T cells is necessary and sufficient because CD8+ T cells from Cxcr3+/+ but not Cxcr3-/- mice rescued efficacy in T cell‒deficient mice. Finally, rational scheduling of anti-CTLA-4 "priming" with chemotherapy followed by anti-PD-1 therapy achieved equivalent efficacy with reduced overall drug exposure. These data suggest that this combination approach should be clinically tested to overcome resistance to current therapies in ICC patients.
Collapse
Affiliation(s)
- Jiang Chen
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Immuno-oncology Research and Development, Sanofi, Cambridge, Massachusetts
| | - Xin Liu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuichi Aoki
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Tohoku Graduate School of Medicine, Sendai, Japan
| | - Zelong Liu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sarah M. Shin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Aya Matsui
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Kanazawa University Institute of Medical, Pharmaceutical and Health Sciences Faculty of Medicine, Kanazawa, Japan
| | - Alexei Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Zhangya Pu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Xiangya Hospital, Central South University, Changsha, China
| | - Stefan Halvorsen
- Center of Computational and Integrative Biology (CCIB), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pin-Ji Lei
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Meenal Datta
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Aerospace and Mechanical Engineering, College of Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Lingling Zhu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- West China Hospital of Sichuan University, Chengdu, China
| | - Zhiping Ruan
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Jiaotong University, Xi'an, China
| | - Lei Shi
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Daniel Staiculescu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Koetsu Inoue
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Tohoku Graduate School of Medicine, Sendai, Japan
| | - Lance L. Munn
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dai Fukumura
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Peigen Huang
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Slim Sassi
- Center of Computational and Integrative Biology (CCIB), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Orthopedics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nabeel Bardeesy
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rakesh K. Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dan G. Duda
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Smith JT, Sama S, Florou V, Nevala-Plagemann C, Garrido-Laguna I. Durable response to first-line PARP inhibition in BRCA-mutated metastatic cholangiocarcinoma: case report. J Gastrointest Oncol 2023; 14:2637-2643. [PMID: 38196540 PMCID: PMC10772693 DOI: 10.21037/jgo-23-425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/05/2023] [Indexed: 01/11/2024] Open
Abstract
Background Cholangiocarcinoma (CCA) is an increasingly prevalent malignancy worldwide, with poor outcomes even when diagnosed at an early stage. While recent trials have shown benefit from the addition of immunotherapy to standard-of-care chemotherapy, the improvement in overall survival is modest. Multiple novel therapies for advanced CCA targeting actionable genetic alterations have been approved in recent years; BRCA1/2 mutations are identified in up to 5% of CCA patients and may be an additional target for novel treatment approaches. While BRCA mutations have been shown in clinical trials to predict response to poly(ADP-ribose) polymerase (PARP) inhibitors in several solid tumors including breast, ovarian, prostate, and pancreas, no similar large-scale trials have been published in CCA to date. We report here a durable response to PARP inhibitor monotherapy in BRCA-mutated extrahepatic CCA; to our knowledge, this is the second report of first-line PARP inhibitor monotherapy and the first reported use of the second-generation PARP inhibitor talazoparib in this setting. Case Description We report the case of a 79-year-old man with metastatic extrahepatic CCA harboring a somatic BRCA1 mutation who declined chemotherapy and was instead treated in the first-line metastatic setting with the PARP inhibitor talazoparib; he experienced a complete radiographic response six months into treatment and has remained on talazoparib for over three years without evidence of disease recurrence. Conclusions This case adds to a growing list of retrospective studies supporting the clinical activity of PARP inhibitors in BRCA-mutated extrahepatic CCA. However, prospective data are clearly needed prior to adoption of this strategy in clinical practice. Fortunately, multiple trials investigating novel combination therapies utilizing PARP inhibitors in CCA are underway.
Collapse
Affiliation(s)
- Jarrod T. Smith
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Shashank Sama
- Department of Internal Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vaia Florou
- Department of Internal Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christopher Nevala-Plagemann
- Department of Internal Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ignacio Garrido-Laguna
- Department of Internal Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Taghizadeh H, Schmalfuss T, Maj-Hes A, Singer J, Prager GW. Austrian tricentric real-life analysis of molecular profiles of metastatic biliary tract cancer patients. Front Oncol 2023; 13:1143825. [PMID: 37234989 PMCID: PMC10206115 DOI: 10.3389/fonc.2023.1143825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Metastatic biliary tract cancer (BTC) is a rare and aggressive entity associated with poor prognosis. It represents a major challenge for adequate treatment strategies. In recent years, BTC has become a model for precision medicine in gastrointestinal oncology. Therefore, the analysis of the individual molecular profile in BTC patients may lead to targeted therapies for the benefit of patients. Methods In this Austrian, tricentric, real-world, retrospective analysis, we investigated patients diagnosed with metastatic BTC who underwent molecular profiling between 2013 and 2022. Results In total, 92 patients were identified in this tricentric analysis and 205 molecular aberrations, including 198 mutations affecting 89 different genes in 61 patients were found. The predominant mutations were in KRAS (n=17; 22.4%), TP53 (n=17; 22.4%), PIK3CA (n=7; 9.2%), FGFR2 (n=7; 9.2%), DNMT3A (n=7; 9.2%), IDH1 (n=7; 9.2%), IDH2 (n=6; 7.9%), CDKN2A (n=6; 7.9%), BAP1 (n=4; 5.3%), NF1 (n=4; 5.3%), and NF2 (n=4; 5.3%). Three patients had HER2 amplification. MSI-H status and FGFR2 fusion genes were each observed in two different patients. One patient had a BRAF V600E mutation. Eventually, 10 patients received targeted therapy, of whom one-half derived clinical benefit. Conclusions Molecular profiling of BTC patients is implementable in routine clinical practice and should be regularly employed to detect and exploit molecular vulnerabilities.
Collapse
Affiliation(s)
- Hossein Taghizadeh
- Division of Oncology, Department of Internal Medicine I, University Hospital St. Pölten, St. Pölten, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Karl Landsteiner Institute for Oncology and Nephrology, St. Pölten, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Theresa Schmalfuss
- Division of Oncology, Department of Internal Medicine I, University Hospital St. Pölten, St. Pölten, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Agnieszka Maj-Hes
- Medical University Vienna, Department of Medicine I, Division of Oncology, Vienna, Austria
- Department of Pulmonology, Klinik Penzing, Vienna, Austria
| | - Josef Singer
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Division of Oncology, Department of Internal Medicine II, University Hospital Krems, Krems, Austria
| | - Gerald W. Prager
- Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
- Medical University Vienna, Department of Medicine I, Division of Oncology, Vienna, Austria
| |
Collapse
|
9
|
Xu Y, Zheng H, Nilcham P, Bucur O, Vogt F, Slabu I, Liehn EA, Rusu M. Vitamin C Regulates the Profibrotic Activity of Fibroblasts in In Vitro Replica Settings of Myocardial Infarction. Int J Mol Sci 2023; 24:8379. [PMID: 37176085 PMCID: PMC10179686 DOI: 10.3390/ijms24098379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Extracellular collagen remodeling is one of the central mechanisms responsible for the structural and compositional coherence of myocardium in patients undergoing myocardial infarction (MI). Activated primary cardiac fibroblasts following myocardial infarction are extensively investigated to establish anti-fibrotic therapies to improve left ventricular remodeling. To systematically assess vitamin C functions as a potential modulator involved in collagen fibrillogenesis in an in vitro model mimicking heart tissue healing after MI. Mouse primary cardiac fibroblasts were isolated from wild-type C57BL/6 mice and cultured under normal and profibrotic (hypoxic + transforming growth factor beta 1) conditions on freshly prepared coatings mimicking extracellular matrix (ECM) remodeling during healing after an MI. At 10 μg/mL, vitamin C reprogramed the respiratory mitochondrial metabolism, which is effectively associated with a more increased accumulation of intracellular reactive oxygen species (iROS) than the number of those generated by mitochondrial reactive oxygen species (mROS). The mRNA/protein expression of subtypes I, III collagen, and fibroblasts differentiations markers were upregulated over time, particularly in the presence of vitamin C. The collagen substrate potentiated the modulator role of vitamin C in reinforcing the structure of types I and III collagen synthesis by reducing collagen V expression in a timely manner, which is important in the initiation of fibrillogenesis. Altogether, our study evidenced the synergistic function of vitamin C at an optimum dose on maintaining the equilibrium functionality of radical scavenger and gene transcription, which are important in the initial phases after healing after an MI, while modulating the synthesis of de novo collagen fibrils, which is important in the final stage of tissue healing.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany (P.N.)
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Huabo Zheng
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany (P.N.)
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Pakhwan Nilcham
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany (P.N.)
| | - Octavian Bucur
- “Victor Babes” National Institute of Pathology, Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania
- Viron Molecular Medicine Institute, 1 Boston Place, Ste 2600, Boston, MA 02108, USA
| | - Felix Vogt
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany (P.N.)
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Elisa Anamaria Liehn
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany (P.N.)
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- “Victor Babes” National Institute of Pathology, Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania
- National Heart Center Singapore, 5 Hospital Dr., Singapore 169609, Singapore
| | - Mihaela Rusu
- Department of Cardiology, Angiology and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany (P.N.)
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
10
|
Ayasun R, Ozer M, Sahin I. The Role of HER2 Status in the Biliary Tract Cancers. Cancers (Basel) 2023; 15:2628. [PMID: 37174094 PMCID: PMC10177412 DOI: 10.3390/cancers15092628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Despite recent advances, biliary tract cancer (BTC) is traditionally known as being hard to treat with a poor prognosis. Recent state-of-the-art genomic technologies such as next-generation sequencing (NGS) revolutionized cancer management and shed light on the genomic landscape of BTCs. There are ongoing clinical trials to assess the efficacy of HER2-blocking antibodies or drug conjugates in BTCs with HER2 amplifications. However, HER2 amplifications may not be the sole eligibility factor for these clinical trials. In this review, we aimed to comprehensively examine the role of somatic HER2 alterations and amplifications in patient stratification and provide an overview of the current state of ongoing clinical trials.
Collapse
Affiliation(s)
- Ruveyda Ayasun
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA;
| | - Muhammet Ozer
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02132, USA;
| | - Ilyas Sahin
- Division of Hematology/Oncology, Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL 32608, USA
| |
Collapse
|
11
|
Chen J, Amoozgar Z, Liu X, Aoki S, Liu Z, Shin S, Matsui A, Pu Z, Lei PJ, Datta M, Zhu L, Ruan Z, Shi L, Staiculescu D, Inoue K, Munn LL, Fukumura D, Huang P, Bardeesy N, Ho WJ, Jain RK, Duda DG. Reprogramming Intrahepatic Cholangiocarcinoma Immune Microenvironment by Chemotherapy and CTLA-4 Blockade Enhances Anti-PD1 Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525680. [PMID: 36747853 PMCID: PMC9901023 DOI: 10.1101/2023.01.26.525680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Anti-PD-L1 immunotherapy combined with gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers, but responses are seen only in a minority of patients. Here, we studied the roles of anti-PD1 and anti-CTLA-4 immune checkpoint blockade (ICB) therapies when combined with gemcitabine/cisplatin and the mechanisms of treatment benefit in orthotopic murine ICC models. We evaluated the effects of the combined treatments on ICC vasculature and immune microenvironment using flow cytometry analysis, immunofluorescence, imaging mass cytometry, RNA-sequencing, qPCR, and in vivo T-cell depletion and CD8+ T-cell transfer using orthotopic ICC models and transgenic mice. Combining gemcitabine/cisplatin with anti-PD1 and anti-CTLA-4 antibodies led to substantial survival benefits and reduction of morbidity in two aggressive ICC models, which were ICB-resistant. Gemcitabine/cisplatin treatment increased the frequency of tumor-infiltrating lymphocytes and normalized the ICC vessels, and when combined with dual CTLA-4/PD1 blockade, increased the number of activated CD8+Cxcr3+IFN-γ+ T-cells. Depletion of CD8+ but not CD4+ T-cells compromised efficacy. Conversely, CD8+ T-cell transfer from Cxcr3-/- versus Cxcr3+/+ mice into Rag1-/- immunodeficient mice restored the anti-tumor effect of gemcitabine/cisplatin/ICB combination therapy. Finally, rational scheduling of the ICBs (anti-CTLA-4 "priming") with chemotherapy and anti-PD1 therapy achieved equivalent efficacy with continuous dosing while reducing overall drug exposure. In summary, gemcitabine/cisplatin chemotherapy normalizes vessel structure, increases activated T-cell infiltration, and enhances anti-PD1/CTLA-4 immunotherapy efficacy in aggressive murine ICC. This combination approach should be clinically tested to overcome resistance to current therapies in ICC patients.
Collapse
Affiliation(s)
- Jiang Chen
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Zohreh Amoozgar
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Xin Liu
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School; 185 Cambridge Street, Simches Building, CPZN-4216, Boston, MA 02114, USA
| | - Shuichi Aoki
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Zelong Liu
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Sarah Shin
- Department of Medicine, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, 401 N. Broadway, Baltimore, MD 21231, USA
| | - Aya Matsui
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Zhangya Pu
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Pin-Ji Lei
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Meenal Datta
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Lingling Zhu
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Zhiping Ruan
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Lei Shi
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School; 185 Cambridge Street, Simches Building, CPZN-4216, Boston, MA 02114, USA
| | - Daniel Staiculescu
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Koetsu Inoue
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Lance L. Munn
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Dai Fukumura
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Peigen Huang
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Nabeel Bardeesy
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School; 185 Cambridge Street, Simches Building, CPZN-4216, Boston, MA 02114, USA
| | - Won Jin Ho
- Department of Medicine, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, 401 N. Broadway, Baltimore, MD 21231, USA
| | - Rakesh. K. Jain
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| | - Dan G. Duda
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School; 100 Blossom Street, Cox-734, MA 02114, USA
| |
Collapse
|
12
|
Uson Junior PLS, Araujo RLC. Immunotherapy in biliary tract cancers: Current evidence and future perspectives. World J Gastrointest Oncol 2022; 14:1446-1455. [PMID: 36160750 PMCID: PMC9412936 DOI: 10.4251/wjgo.v14.i8.1446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/30/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Bile duct tumors are comprised of tumors that originate from both intrahepatic and extrahepatic bile ducts and gallbladder tumors. These are aggressive tumors and chemotherapy is still the main treatment for advanced-stage disease and most of these cases have a poor overall survival. Strategies are aimed at treatments with better outcomes and less toxicity which makes immunotherapy an area of significant importance. Recent Food and Drug Administration approvals of immune checkpoint inhibitors (ICI) for agnostic tumors based on biomarkers such as microsatellite instability-high and tumor mutation burden-high are important steps in the treatment of patients with advanced bile duct tumors. Despite limited responses with isolated checkpoint inhibitors in later lines of systemic treatment in advanced disease, drug combination strategies have been demonstrating encouraging results to enhance ICI efficacy.
Collapse
Affiliation(s)
| | - Raphael LC Araujo
- Department of Surgery, Universidade Federal de São Paulo, São Paulo 04039-002, Brazil
- Department of Oncology, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| |
Collapse
|
13
|
Kumar-Sinha C, Sahai V. T-Cell Subsets as Potential Biomarkers for Hepatobiliary Cancers and Selection of Immunotherapy Regimens as a Treatment Strategy. J Natl Compr Canc Netw 2022; 20:203-214. [PMID: 35130506 DOI: 10.6004/jnccn.2021.7097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
Patients with advanced hepatocellular or biliary cancers have a dismal prognosis with limited efficacy from standard systemic therapies. The benefit of precision medicine has so far been limited to a subset of biliary cancers, including FGFR rearrangements; hotspot mutations in IDH1/2, BRAF, and BRCA1/2; and other rare alterations. In contrast, hepatocellular carcinoma, an inflammation-driven cancer with an immune-infiltrated microenvironment, provides a promising opportunity for immunotherapy, compared with the highly desmoplastic immune desert or excluded stromal microenvironment in biliary cancers. The immune contexture in hepatobiliary cancers is mostly immunosuppressive, protumorigenic, and exhausted, which together with low tumor mutation burden and decreased neoantigens provides challenges for immunotherapy. A better understanding of the spatiotemporal profile of T cells within the tumor microenvironment and the dynamic interplay of immune modulators in the context of standard or experimental therapies is crucial to define additional markers of response and design evidence-based combinatorial regimens. This review considers recent literature in this area and highlights promising leads and emerging trends.
Collapse
Affiliation(s)
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, and.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Arora M, Bogenberger JM, Abdelrahman AM, Yonkus J, Alva-Ruiz R, Leiting JL, Chen X, Serrano Uson Junior PL, Dumbauld CR, Baker AT, Gamb SI, Egan JB, Zhou Y, Nagalo BM, Meurice N, Eskelinen EL, Salomao MA, Kosiorek HE, Braggio E, Barrett MT, Buetow KH, Sonbol MB, Mansfield AS, Roberts LR, Bekaii-Saab TS, Ahn DH, Truty MJ, Borad MJ. Synergistic combination of cytotoxic chemotherapy and cyclin-dependent kinase 4/6 inhibitors in biliary tract cancers. Hepatology 2022; 75:43-58. [PMID: 34407567 DOI: 10.1002/hep.32102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Biliary tract cancers (BTCs) are uncommon, but highly lethal, gastrointestinal malignancies. Gemcitabine/cisplatin is a standard-of-care systemic therapy, but has a modest impact on survival and harbors toxicities, including myelosuppression, nephropathy, neuropathy, and ototoxicity. Whereas BTCs are characterized by aberrations activating the cyclinD1/cyclin-dependent kinase (CDK)4/6/CDK inhibitor 2a/retinoblastoma pathway, clinical use of CDK4/6 inhibitors as monotherapy is limited by lack of validated biomarkers, diffident preclinical efficacy, and development of acquired drug resistance. Emerging studies have explored therapeutic strategies to enhance the antitumor efficacy of CDK4/6 inhibitors by the combination with chemotherapy regimens, but their mechanism of action remains elusive. APPROACH AND RESULTS Here, we report in vitro and in vivo synergy in BTC models, showing enhanced efficacy, reduced toxicity, and better survival with a combination comprising gemcitabine/cisplatin and CDK4/6 inhibitors. Furthermore, we demonstrated that abemaciclib monotherapy had only modest efficacy attributable to autophagy-induced resistance. Notably, triplet therapy was able to potentiate efficacy through elimination of the autophagic flux. Correspondingly, abemaciclib potentiated ribonucleotide reductase catalytic subunit M1 reduction, resulting in sensitization to gemcitabine. CONCLUSIONS As such, these data provide robust preclinical mechanistic evidence of synergy between gemcitabine/cisplatin and CDK4/6 inhibitors and delineate a path forward for translation of these findings to preliminary clinical studies in advanced BTC patients.
Collapse
Affiliation(s)
- Mansi Arora
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | - James M Bogenberger
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Jennifer Yonkus
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Xianfeng Chen
- Department of Informatics, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Chelsae R Dumbauld
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Alexander T Baker
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott I Gamb
- Microscopy and Cell Analysis Core, Mayo Clinic, Rochester, Minnesota, USA
| | - Jan B Egan
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yumei Zhou
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bolni Marius Nagalo
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathalie Meurice
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | | | - Marcela A Salomao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Heidi E Kosiorek
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona, USA
| | - Esteban Braggio
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Michael T Barrett
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | - Kenneth H Buetow
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Mohamad B Sonbol
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Aaron S Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lewis R Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tanios S Bekaii-Saab
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | - Daniel H Ahn
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mitesh J Borad
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Uson Junior PLS, Borad MJ. Precision approaches for cholangiocarcinoma: Progress in clinical trials and beyond. Expert Opin Investig Drugs 2021; 31:125-131. [PMID: 34904492 DOI: 10.1080/13543784.2022.2017882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Although a relatively uncommon tumor, the incidence of intrahepatic cholangiocarcinoma is rising globally. Unfortunately, most patients are diagnosed with locally advanced or metastatic disease with poor prognosis. Strategies targeting genomic alterations and incorporation of precision medicine will represent a new therapeutic avenue for these patients. AREAS COVERED In this review article we addressed clinical trials in cholangiocarcinoma with FGFR, IDH, BRAF and ErbB2 targeted therapies. We also reviewed mechanisms of resistance to precision medicine and possible future strategies to overcome clonal evolution. Articles selected for this review were based on reported studies indexed in PubMed (2010-2021). EXPERT OPINION Pemigatinib, infigratinib and futibatinib could eventually be incorporated in the landscape of first-line systemic treatment for advanced cholangiocarcinoma with FGFR2 fusions or rearrangements after the ongoing phase III trials. Circulating tumor DNA could be used as a dynamic tool for evaluating mechanisms of resistance and prediction of response in patients treated with directed therapy.
Collapse
Affiliation(s)
- Pedro Luiz Serrano Uson Junior
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA.,Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Mitesh J Borad
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Medicine, Rochester, MN, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
16
|
Azizi AA, Lamarca A, McNamara MG, Valle JW. Chemotherapy for advanced gallbladder cancer (GBC): A systematic review and meta-analysis. Crit Rev Oncol Hematol 2021; 163:103328. [DOI: 10.1016/j.critrevonc.2021.103328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 02/24/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
|
17
|
Lee SH, Simoneau EB, Karpinets T, Futreal PA, Zhang J, Javle M, Zhang J, Vauthey JN, Lee JS, Estrella JS, Chun YS. Genomic profiling of multifocal intrahepatic cholangiocarcinoma reveals intraindividual concordance of genetic alterations. Carcinogenesis 2021; 42:436-441. [PMID: 33200197 DOI: 10.1093/carcin/bgaa124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/24/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
In multifocal intrahepatic cholangiocarcinoma (IHC), intrahepatic metastases (IM) represent a contraindication to surgical resection, whereas satellite nodules (SN) do not. However, no consensus criteria exist to distinguish IM from SN. The purpose of this study was to determine genetic alterations and clonal relationships in surgically resected multifocal IHC. Next-generation sequencing of 34 spatially separated IHC tumors was performed using a targeted panel of 201 cancer-associated genes. Proposed definitions in the literature were applied of SN located in the same liver segment and ≤2 cm from the primary tumor; and IM located in a different liver segment and/or >2 cm from the primary tumor. Somatic point mutations concordant across tumors from individual patients included BAP1, SMARCA4 and IDH1. Small insertions and deletions (indels) present at the same genome positions among all tumors from individuals included indels in DNA repair genes, CHEK1, ERCC5, ATR and MSH6. Copy number alterations were also similar between all tumors in each patient. In this cohort of multifocal IHC, genomic profiles were concordant across all tumors in each patient, suggesting a common progenitor cell origin, regardless of the location of tumors in the liver. The decision to perform surgery should not be based upon a perceived distinction between IM and SN.
Collapse
Affiliation(s)
- Sung Hwan Lee
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | | | | | | | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, Houston, TX, USA
| | | | | | - Ju-Seog Lee
- Department of Systems Biology, Houston, TX, USA
| | - Jeannelyn S Estrella
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
18
|
Kim HG, Sung JY, Na K, Kim SW. Low H3K9me3 Expression Is Associated With Poor Prognosis in Patients With Distal Common Bile Duct Cancer. In Vivo 2021; 34:3619-3626. [PMID: 33144476 DOI: 10.21873/invivo.12207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Histone modification is associated with tumorigenesis and cancer progression. Recent studies have revealed the prognostic value of histone modification; however, its prognostic role in distal bile duct cancer remains unclear. PATIENTS AND METHODS We analyzed the expression of H3K9me3, H4K20me3, and H3K36me3 and its correlation with survival outcomes in resected samples from 88 patients with distal bile duct cancer. RESULTS Low expression rates of H3K9me3, H4K20me3, and H3K36me3 were significantly associated with poor overall survival (p=0.003, 0.008, and 0.047, respectively) and event-free survival (p=0.03 for H3K9m3). Additionally, low-expression of H3K9me3 was an independent poor prognostic indicator (p<0.001; HR=7.85; 95% CI=2.693-22.883). CONCLUSION H3K9me3 was an independent poor prognostic factor in distal common bile duct cancer. Our results suggest that histone markers are potential prognostic markers and provide better management for patients at risk for an aggressive course of disease.
Collapse
Affiliation(s)
- Han Gyeol Kim
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Ji-Youn Sung
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Kiyong Na
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - So-Woon Kim
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
DiPeri TP, Javle MM, Meric-Bernstam F. Next generation sequencing for biliary tract cancers. Expert Rev Gastroenterol Hepatol 2021; 15:471-474. [PMID: 33641586 PMCID: PMC8172427 DOI: 10.1080/17474124.2021.1896967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Timothy P. DiPeri
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX
| | - Milind M. Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX
| | - Funda Meric-Bernstam
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX
| |
Collapse
|
20
|
Uson Junior PLS, Arora M, Bogenberger JM, Borad MJ. Recent advances in understanding cholangiocarcinoma. Fac Rev 2021; 9:15. [PMID: 33659947 PMCID: PMC7886064 DOI: 10.12703/b/9-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The definition of cholangiocarcinoma (CCA) encompasses all tumors originating in the epithelium of the bile ducts, including the intrahepatic bile ducts (ICCA) and extrahepatic bile ducts (ECCA). The incidence of ICCA and ECCA has increased in the last few decades, and molecular advances in both entities have brought understanding of their differences and allowed treatment advances aimed at personalized therapy. In this review, we discuss recent progress in the molecular landscape of CCAs, emerging treatment biomarker-guided strategies, and future insights into the management of advanced disease.
Collapse
Affiliation(s)
- Pedro Luiz Serrano Uson Junior
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, Arizona, USA
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Mansi Arora
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, Arizona, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - James M Bogenberger
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, Arizona, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mitesh J Borad
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, Arizona, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
21
|
Okamura R, Kurzrock R, Mallory RJ, Fanta PT, Burgoyne AM, Clary BM, Kato S, Sicklick JK. Comprehensive genomic landscape and precision therapeutic approach in biliary tract cancers. Int J Cancer 2021; 148:702-712. [PMID: 32700810 PMCID: PMC7739197 DOI: 10.1002/ijc.33230] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Biliary tract cancers have dismal prognoses even when cytotoxic chemotherapy is administered. There is an unmet need to develop precision treatment approaches using comprehensive genomic profiling. A total of 121 patients with biliary tract cancers were analyzed for circulating-tumor DNA (ctDNA) and/or tissue-based tumor DNA (tissue-DNA) using clinical-grade next-generation sequencing: 71 patients (59%) had ctDNA; 90 (74%), tissue-DNA; and 40 (33%), both. Efficacy of targeted therapeutic approaches was assessed based upon ctDNA and tissue-DNA. At least one characterized alteration was detected in 76% of patients (54/71) for ctDNA [median, 2 (range, 0-9)] and 100% (90/90) for tissue-DNA [median, 4 (range, 1-9)]. Most common alterations occurred in TP53 (38%), KRAS (28%), and PIK3CA (14%) for ctDNA vs TP53 (44%), CDKN2A/B (33%) and KRAS (29%) for tissue-DNA. In 40 patients who had both ctDNA and tissue-DNA sequencing, overall concordance was higher between ctDNA and metastatic site tissue-DNA than between ctDNA and primary tumor DNA (78% vs 65% for TP53, 100% vs 74% for KRAS and 100% vs 87% for PIK3CA [But not statistical significance]). Among 80 patients who received systemic treatment, the molecularly matched therapeutic regimens based on genomic profiling showed a significantly longer progression-free survival (hazard ratio [95%confidence interval], 0.60 [0.37-0.99]. P = .047 [multivariate]) and higher disease control rate (61% vs 35%, P = .04) than unmatched regimens. Evaluation of ctDNA and tissue-DNA is feasible in biliary tract cancers.
Collapse
Affiliation(s)
- Ryosuke Okamura
- Center for Personalized Cancer TherapyUC San Diego Moores Cancer CenterLa JollaCaliforniaUSA
- Division of Hematology‐OncologyUC San Diego Moores Cancer CenterLa JollaCaliforniaUSA
| | - Razelle Kurzrock
- Center for Personalized Cancer TherapyUC San Diego Moores Cancer CenterLa JollaCaliforniaUSA
- Division of Hematology‐OncologyUC San Diego Moores Cancer CenterLa JollaCaliforniaUSA
| | - Robert J. Mallory
- Division of Surgical Oncology, Department of SurgeryUC San Diego Moores Cancer CenterLa JollaCaliforniaUSA
| | - Paul T. Fanta
- Division of Hematology‐OncologyUC San Diego Moores Cancer CenterLa JollaCaliforniaUSA
| | - Adam M. Burgoyne
- Division of Hematology‐OncologyUC San Diego Moores Cancer CenterLa JollaCaliforniaUSA
| | - Bryan M. Clary
- Division of Surgical Oncology, Department of SurgeryUC San Diego Moores Cancer CenterLa JollaCaliforniaUSA
| | - Shumei Kato
- Center for Personalized Cancer TherapyUC San Diego Moores Cancer CenterLa JollaCaliforniaUSA
- Division of Hematology‐OncologyUC San Diego Moores Cancer CenterLa JollaCaliforniaUSA
| | - Jason K. Sicklick
- Center for Personalized Cancer TherapyUC San Diego Moores Cancer CenterLa JollaCaliforniaUSA
- Division of Surgical Oncology, Department of SurgeryUC San Diego Moores Cancer CenterLa JollaCaliforniaUSA
| |
Collapse
|
22
|
Sabbatino F, Liguori L, Malapelle U, Schiavi F, Tortora V, Conti V, Filippelli A, Tortora G, Ferrone CR, Pepe S. Case Report: BAP1 Mutation and RAD21 Amplification as Predictive Biomarkers to PARP Inhibitor in Metastatic Intrahepatic Cholangiocarcinoma. Front Oncol 2020; 10:567289. [PMID: 33330039 PMCID: PMC7728995 DOI: 10.3389/fonc.2020.567289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Intrahepatic cholangiocarcinoma (ICC) is a rare hepatobiliary cancer characterized by a poor prognosis and a limited response to conventional therapies. Currently chemotherapy is the only therapeutic option for patients with Stage IV ICC. Due to the poor response rate, there is an urgent need to identify novel molecular targets to develop novel effective therapies. Precision oncology tests utilizing targeted next-generation sequencing (NGS) platforms have rapidly entered into clinical practice. Profiling the genome and transcriptome of cancer to identify potentially targetable oncogenic pathways may guide the clinical care of the patient. Case presentation We present a 56-year-old male patient affected with metastatic ICC, whose cancer underwent several precision oncology tests by different NGS platforms. A novel BAP1 mutation (splice site c.581-17_585del22) and a RAD21 amplification were identified by a commercial available platform on a metastatic lesion. No germline BAP1 mutations were identified. Several lines of evidences indicate that PARP inhibitor administration might be an effective treatment in presence of BAP1 and/or RAD21 alterations since both BAP1 and RAD21 are involved in the DNA repair pathway, BAP1 interacts with BRCA1 and BRCA1-mediated DNA repair pathway alterations enhance the sensitivity to PARP inhibitor administration. In this case, after failing conventional therapies, patient was treated with PARP inhibitor olaparib. The patient had a partial response according to RECIST criteria with an overall survival of 37.2 months from the time of diagnosis of his ICC. Following 11.0 months on olaparib treatment, sustained stable disease control is ongoing. The patient is still being treated with olaparib and no significant toxicity has been reported. Conclusion These findings have clinical relevance since we have shown PARP inhibitor as a potential treatment for ICC patients harboring BAP1 deletion and RAD21 amplification. We have also highlighted the utility of NGS platforms to identify targetable mutations within a cancer.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.,Oncology Unit, University Hospital San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Francesca Schiavi
- Familial Cancer Clinic and Oncoendocrinology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Vincenzo Tortora
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.,Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.,Clinical Pharmacology and Pharmacogenetics Unit, University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Salerno, Italy
| | - Giampaolo Tortora
- Oncologia Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.,Oncology Unit, University Hospital San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| |
Collapse
|
23
|
Ilut S, Vacaras V, Rosu P, Muntiu A, Dina C. Paraparesis and Disseminated Osteolytic Lesions Revealing Cholangiocarcinoma: A Case Report. J Med Life 2020; 13:265-268. [PMID: 32742524 PMCID: PMC7384446 DOI: 10.25122/jml-2020-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bone metastases in cholangiocarcinoma are uncommon. We report the case of a patient with disseminated osteolytic lesions who was admitted to the Neurology Department for progressive paraparesis. On the computed tomography examination, specific features for cholangiocarcinoma were described, confirmed later by the histopathological aspect of the bone lesions.
Collapse
Affiliation(s)
- Silvina Ilut
- Department of Clinical Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Neurology II Department, County Emergency Hospital, Cluj-Napoca, Romania
| | - Vitalie Vacaras
- Department of Clinical Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Neurology II Department, County Emergency Hospital, Cluj-Napoca, Romania
| | - Paula Rosu
- Department of Clinical Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Neurology II Department, County Emergency Hospital, Cluj-Napoca, Romania
| | - Aurora Muntiu
- Department of Clinical Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Neurology II Department, County Emergency Hospital, Cluj-Napoca, Romania
| | - Constantin Dina
- Department of Radiology "Ovidius" University, Faculty of Medicine, Constanta, Romania
| |
Collapse
|
24
|
Rizzo A, Ricci AD, Tavolari S, Brandi G. Circulating Tumor DNA in Biliary Tract Cancer: Current Evidence and Future Perspectives. Cancer Genomics Proteomics 2020; 17:441-452. [PMID: 32859625 PMCID: PMC7472453 DOI: 10.21873/cgp.20203] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Peripheral blood of cancer patients "physiologically" presents cells and cellular components deriving from primary or metastatic sites, including circulating tumor cells (CTCs), circulating free DNA (cfDNA) and exosomes containing proteins, lipids and nucleic acids. The term circulating tumor DNA (ctDNA) indicates the part of cfDNA which derives from primary tumors and/or metastatic sites, carrying tumor-specific genetic or epigenetic alterations. Analysis of ctDNA has enormous potential applications in all stages of cancer management, including earlier diagnosis of cancer, identification of driver alterations, monitoring of treatment response and detection of resistance mechanisms. Thus, ctDNA has the potential to profoundly change current clinical practice, by moving from tissue to peripheral blood as a source of information. Herein, we review current literature regarding the potential role for ctDNA in biliary tract cancer (BTC) patients, with a particular focus on state-of-the-art techniques and future perspectives of this highly aggressive disease.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Angela Dalia Ricci
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Simona Tavolari
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
25
|
Nam AR, Jin MH, Bang JH, Oh KS, Seo HR, Oh DY, Bang YJ. Inhibition of ATR Increases the Sensitivity to WEE1 Inhibitor in Biliary Tract Cancer. Cancer Res Treat 2020; 52:945-956. [PMID: 32311864 PMCID: PMC7373879 DOI: 10.4143/crt.2020.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Currently, the DNA damage response (DDR) pathway represents a key target for new cancer drug development. Advanced biliary tract cancer (BTC) has a poor prognosis because of the lack of efficacious treatment options. Although DNA repair pathway alterations have been reported in many patients with BTC, little is known regarding the effects of DDR-targeted agents against BTC. MATERIALS AND METHODS In this study, nine BTC cell lines were exposed to the WEE1 inhibitor (AZD1775). In vitro, MTT assay, colony-forming assay, cell cycle analysis, phospho-histone H3 staining assay, Transwell migration assay, and western blot were performed. Then, to enhance the antitumor effect of AZD1775, the combination treatment of WEE1 inhibitor and ataxia telangiectasia mutated and Rad3 related (ATR) inhibitor (AZD6738) was conducted using MTT assay and comet assay. Finally, HuCCT-1 and SNU2670 xenograft models were established to confirm the anti-tumor effect of AZD1775 alone. Furthermore, the combination treatment was also evaluated in SNU2670 xenograft models. RESULTS AZD1775 blocked the phosphorylation of CDC2 and CDC25C in all cell lines, but significantly increased apoptosis and S phase arrest in sensitive cells. However, increased p-ATR and phosphorylated ataxia telangiectasia mutated levels were observed in less sensitive cells. In addition, in vitro and in vivo data illustrated that AZD1775 combined with AZD6738 exerted more potent anti-tumor effects than either drug alone. Although WEE1 inhibition has promising anti-tumor effects in some BTC cells, the addition of ATR inhibitors could enhance its efficacy. CONCLUSION Taken together, this study supports further clinical development of DDR-targeted strategies as monotherapy or combination regimens for BTC.
Collapse
Affiliation(s)
- Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mei-Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung-Seok Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Rim Seo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
26
|
Arora M, Bogenberger JM, Abdelrahman A, Leiting JL, Chen X, Egan JB, Kasimsetty A, Lenkiewicz E, Malasi S, Uson PLS, Nagalo BM, Zhou Y, Salomao MA, Kosiorek HE, Braggio E, Barrett MT, Truty MJ, Borad MJ. Evaluation of NUC-1031: a first-in-class ProTide in biliary tract cancer. Cancer Chemother Pharmacol 2020; 85:1063-1078. [PMID: 32440762 DOI: 10.1007/s00280-020-04079-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE NUC1031 is a first-in-class ProTide, that is a gemcitabine pro-drug designed to overcome putative mechanisms of resistance, including decreased expression of hENT/hCNT transporters, absence of activating enzymes such as deoxycytidine kinase (dCK) and presence of degrading enzymes such as cytidine deaminase (CDA). We undertook comprehensive pre-clinical evaluation of NUC1031 in biliary tract cancer (BTC) models, given that gemcitabine/cisplatin is a standard first-line therapy in advanced BTC. METHODS Here, we compared the in vitro activity of NUC1031 in comparison to gemcitabine, validate putative mechanism(s) of action, assessed potential biomarkers of sensitivity or resistance, and performed combination studies with cisplatin. We also evaluated the in vivo efficacy of NUC1031 and gemcitabine using a CDA-high cholangiocarcinoma patient-derived xenograft (PDX) model. RESULTS In a panel of BTC cell lines (N = 10), NUC1031 had less potency than gemcitabine in multiple cellular assays. NUC1031 did not demonstrate evidence of greater synergy over gemcitabine in combination with cisplatin. Surprisingly, efficacy of both gemcitabine and NUC1031 was not found to be correlated with hENT/hCTN, dCK or CDA transcript levels. Gemcitabine and NUC1031 showed equivalent efficacy in a CDA-high PDX model in vivo contradicting the primary rationale of NUC1031 design. CONCLUSION NUC1031 did not exhibit evidence of superior activity over gemcitabine, as a single-agent, or in combination with cisplatin, in either our in vivo or in vitro BTC models. Given that the largest Phase 3 study (ClinicalTrials.gov: NCT0314666) to date in BTC is underway (N = 828) comparing NUC1031/cisplatin to gemcitabine/cisplatin, our results suggest that a more conservative clinical evaluation path would be more appropriate.
Collapse
Affiliation(s)
- Mansi Arora
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | - James M Bogenberger
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | | | | | - Xianfeng Chen
- Department of Informatics, Mayo Clinic, Scottsdale, AZ, USA
| | - Jan B Egan
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Aradhana Kasimsetty
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Elzbieta Lenkiewicz
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Smriti Malasi
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Pedro Luiz Serrano Uson
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Bolni Marius Nagalo
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | - Yumei Zhou
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | - Marcela A Salomao
- Department of Lab Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Heidi E Kosiorek
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Esteban Braggio
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
- Department of Cancer Biology, Mayo Clinic, Rochester, MN, USA
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA
| | - Michael T Barrett
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Cancer Cell, Gene and Virus Therapy Lab, Mayo Clinic Cancer Center, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85254, USA.
| |
Collapse
|
27
|
Rassy E, Pavlidis N. Progress in refining the clinical management of cancer of unknown primary in the molecular era. Nat Rev Clin Oncol 2020; 17:541-554. [PMID: 32350398 DOI: 10.1038/s41571-020-0359-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
Cancer of unknown primary (CUP) is an enigmatic disease entity encompassing heterogeneous malignancies without a detectable primary tumour, despite a thorough diagnostic workup. A minority of patients with CUP (15-20%) can be assigned a putative primary tissue of origin according to clinical and histopathological findings and typically have a more favourable prognosis with the use of corresponding tumour type-specific therapies. Thus, the majority of patients with CUP have disease that cannot be assigned to a culprit primary tumour, are treated with empirical chemotherapy and have a poor prognosis. In the molecular era, the use of (epi)genomic or transcriptomic CUP classifiers and DNA or RNA sequencing offers two, sometimes overlapping, therapeutic strategies: tumour type-specific therapy and biomarker-guided therapy. Published data reveal that the accuracy of site-of-origin predictions made using CUP classifiers ranges between 54% and 98% when compared with the assignment made according to the recommended clinicopathological criteria. These advances have led to promising results in non-randomized prospective studies evaluating the efficacy of tumour type-specific therapy; however, the favourable outcomes were not confirmed in randomized controlled studies comparing this approach with standard empirical chemotherapy. Currently, the evidence supporting the use of biomarker-guided therapies is limited to case reports and small case series. In this Review, we discuss the clinical management of CUP in the era of precision medicine. We focus on the advances in understanding the biology of CUP, the implications for the diagnosis and classification of CUP according to the tissue of origin and the shift away from empirical therapy towards tailored therapy.
Collapse
Affiliation(s)
- Elie Rassy
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, Paris, France.
| | | |
Collapse
|
28
|
Iyer P, Chen MH, Goyal L, Denlinger CS. Targets for therapy in biliary tract cancers: the new horizon of personalized medicine. Chin Clin Oncol 2020; 9:7. [PMID: 32146818 PMCID: PMC8650725 DOI: 10.21037/cco.2019.12.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
Biliary tract cancers (BTCs) are a set of molecularly distinct and heterogeneous diseases. While cytotoxic chemotherapy remains the current standard of care for treatment-naïve and treatment-refractory unresectable disease, recently identified mutations driving oncologic development offer opportunities for targeted therapy. Currently, alterations in the fibroblast growth factor receptor (FGFR), isocitrate dehydrogenase (IDH), v-Raf murine sarcoma viral oncogene homolog B (BRAF), DNA damage repair, and HER2 pathways have demonstrated promising new therapeutic avenues, among others, and various studies have demonstrated clinical activity with targeted tyrosine kinase inhibitors and/or antibodies. In this review, we will discuss the currently identified targets for therapy in BTCs and review currently available data regarding clinical development of treatment options in these molecularly distinct subsets.
Collapse
Affiliation(s)
- Pritish Iyer
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Ming-Huang Chen
- Department of Oncology, Taipei Veteran's General Hospital, Taipei
| | - Lipika Goyal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Crystal S Denlinger
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Chen WX, Li GX, Hu ZN, Zhu P, Zhang BX, Ding ZY. Significant response to anti-PD-1 based immunotherapy plus lenvatinib for recurrent intrahepatic cholangiocarcinoma with bone metastasis: A case report and literature review. Medicine (Baltimore) 2019; 98:e17832. [PMID: 31702638 PMCID: PMC6855517 DOI: 10.1097/md.0000000000017832] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The prognosis for recurrent intrahepatic cholangiocarcinoma with bone metastasis remains dismal and its treatment poses a challenge for oncologists. To date, only 2 cases were reported in which pembrolizumab, an agent against programmed cell death protein-1 (PD-1), combined with chemotherapy led to a complete response. The safety and efficacy of nivolumab-based immunotherapy combined with lenvatinibin intrahepatic cholangiocarcinoma is unknown. PATIENT CONCERNS A 40-year-old female was identified as having a lesion of 7.0 cm in diameter in the right lobe of the liver. In addition, calculi in the main and left hepatic bile ducts as well as the gallbladder were found. DIAGNOSIS Based on the results of imaging studies and tumor biomarker level, the patient was initially diagnosed as having intrahepatic cholangiocellular carcinoma and cholelithiasis, after which surgery was performed. The pathological examination confirmed that the tumor was cholangiocarcinoma. Adjuvant chemotherapy was administered after surgery. However, the patient developed recurrent lesions at the 5th month after surgery, and the cholangiocarcinoma expanded to the right thoracic vertebral pedicle (T7-8) at the 6th month. INTERVENTIONS The patient underwent percutaneous microwave ablation after recurrence in the liver was identified. After that, the patient received nivolumab plus lenvatinib. OUTCOMES The lesions in the liver decreased in size and disappeared after treatment with nivolumab plus lenvatinib. Additionally, the metastases in the right thoracic vertebral pedicle were stable after 9 months of therapy. LESSONS Immunotherapy has revolutionized the treatment of non-small-cell lung cancer, melanoma, and advanced renal cell carcinoma. In this case, the patient achieved an excellent radiological and symptomatic response after receiving nivolumab plus lenvatinib combination therapy. Patients suffering from cholangiocarcinoma with dMMR status and a high tumor mutation burden (TMB) may have a consistent eutherapeutic effect with anti-PD-1-directed treatment.
Collapse
|