1
|
Guo B, Pu Y, Zhang R, Huang H, Wu Q, Geng S, Qiao C, Feng Z. Iron-Catalyzed Tunable Alkene Migratory Silylation and Transposition. Org Lett 2025. [PMID: 40340424 DOI: 10.1021/acs.orglett.5c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The example of iron-catalyzed alkenes migratory silylation and transposition has been demonstrated, affording a tunable approach to synthesize thermodynamically stable allylsilanes and internal alkenes with high efficiency and regioselectivity. These reactions showcase several advantageous features, including good functional group tolerance, excellent regioselectivity, a broad substrate scope, scalability to gram-scale synthesis, and late-stage functionalization of bio-relevant molecules. Furthermore, the relay catalytic mechanism of the migratory silylation, involving both iron-silyl and iron-hydride intermediates, provides valuable insights into iron-catalyzed coupling reactions, opening new avenues for the development of novel transformations under iron catalysis.
Collapse
Affiliation(s)
- Bohao Guo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Ruichen Zhang
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Hong Huang
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Qingyun Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Shasha Geng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Chang Qiao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
2
|
Song X, Huang YQ, Zhao B, Wu H, Qi X, Wang J. Proton-Modulated Nickel Hydride Electrocatalysis for the Hydrogenation of Unsaturated Bonds and Olefin Isomerization. J Am Chem Soc 2025. [PMID: 40259619 DOI: 10.1021/jacs.5c03821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Transition-metal hydrides stand as indispensable intermediates in both energy conversion and organic synthesis. Their electrochemical generation represents a compelling sustainable approach, enabling precise control over the reactivity and expanding the scope of electrocatalytic hydrogenation and isomerization. However, a major challenge in Ni-catalyzed electrochemical hydrogenation is the competing hydrogen evolution reaction (HER), which has led to various innovative strategies aimed at circumventing Ni-H formation. Here, we pursued an alternative approach by designing a bifunctional ligand with a pendant amine moiety to promote Ni-H formation. This design enabled selective (semi)hydrogenation of a diverse range of substrates, including terminal and internal alkynes, alkenes, and aldehydes, achieving an unprecedented substrate scope. Remarkably, we also demonstrated tunable positional selectivity for olefin isomerization by employing different types of proton sources. Our hydrogenation and isomerization method also exhibits excellent functional group tolerance, streamlining access to pharmaceuticals and their derivatives. Computational studies revealed the crucial, noninnocent role of the proton source in modulating metal hydride selectivity, either through hydrogen bonding, direct protonation of the pendant amine, or facilitation of protodemetalation.
Collapse
Affiliation(s)
- Xue Song
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuan-Qiong Huang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bodi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hanshuo Wu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jianchun Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Liu T, Deng X, Gao Y, Li H, Du Y, Su W. Ligand-Enabled Nondirected and Regioselective Arylation of Internal Alkenes with Simple Arenes. Angew Chem Int Ed Engl 2025; 64:e202420443. [PMID: 39921548 DOI: 10.1002/anie.202420443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/10/2025]
Abstract
Regioselective functionalization of internal alkenes has become a highly efficient approach for preparing stereochemically defined multi-substituted olefins. Unlike traditional methods that require directing groups, activating groups, or active chemical bonds (e.g., halide, pseudo halide, organometallic reagent, etc.), there remains a strong demand for nondirected and selective functionalization of unactivated alkenes with simple coupling partners, both in academic research or industrial applications. Herein, we report the development of a pyridone-oxazoline (Pyoox) type ligand that combines the features of both pyridone and pyridine-oxazoline in assisting Pd-catalyzed olefination. This ligand enables the activation of simple (hetero) arenes and internal alkenes within a single reaction system. A nondirected and regioselective arylation from simple raw materials has been achieved, providing a straightforward route to various trisubstituted olefins in moderate to excellent yields, with excellent regio-/stereocontrol. Experimental and computational studies on mechanisms offer insight into the distinctive properties and performance of this ligand-promoted catalysis. The synthetic utility of this method is further demonstrated by the simplified synthesis and late-stage diversification of bioactive molecules.
Collapse
Affiliation(s)
- Tianming Liu
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao Road West 155, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xi Deng
- College of New Energy and Materials, Ningde Normal University, Ningde, 352100, Fujian, P. R. China
| | - Yue Gao
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao Road West 155, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haofan Li
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao Road West 155, Fuzhou, 350002, Fujian, P. R. China
| | - Yu Du
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao Road West 155, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao Road West 155, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Wang ZC, Gao L, Liu SY, Wang P, Shi SL. Facile Access to Quaternary Carbon Centers via Ni-Catalyzed Arylation of Alkenes with Organoborons. J Am Chem Soc 2025; 147:3023-3031. [PMID: 39815853 DOI: 10.1021/jacs.4c17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Quaternary carbon centers are widespread structural motifs, thus representing extensive interest in organic synthesis. We describe here an efficient nickel-catalyzed intermolecular, Markovnikov-selective arylation of minimally functionalized alkenes with stable organoborons, affording a broad range of cyclic or acyclic quaternary carbon centers under mild conditions. The utilization of the diimine ligand is critical for high reactivity and chemoselectivity. Furthermore, using a bulky chiral diimine as the ligand for the Ni catalyst, quaternary carbon stereocenters can be readily prepared with high levels of enantiocontrol. Mechanism studies suggest that, before protonation, a rare nickel shift from alkyl nickel to aryl nickel might occur.
Collapse
Affiliation(s)
- Zi-Chao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Lei Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Song-Yang Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
5
|
Jing J, Hu Y, Tian Z, Wang Y, Yao L, Qiu L, Ackermann L, Karaghiosoff K, Li J. C-S-Selective Stille-Coupling Enables Stereodefined Alkene Synthesis. Angew Chem Int Ed Engl 2024; 63:e202408211. [PMID: 39076073 DOI: 10.1002/anie.202408211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
A palladium-catalyzed highly C-S-selective Stille cross-coupling between aryl thianthrenium salts and tri- or tetrasubstituted alkenyl stannanes is described. Herein, critical challenges including site- and chemoselectivity control are well addressed through C-H thianthrenation and C-S alkenylation, thereby providing an expedient access to stereodefined tri- and tetrasubstituted alkenes in a stereoretentive fashion. Indeed, the palladium-catalyzed Stille-alkenylation of poly(pseudo)halogenated arenes displays privileged capability to differentiate C-S over C-I, C-Br, C-Cl bonds, as well as oxygen-based triflates (C-OTf), tosylates (C-OTs), carbamates and sulfamates under mild reaction conditions. Sequential and multiple cross-couplings via selective C-X functionalization should be widely applicable for increasing functional molecular complexity. Modular installation of stereospecific alkene motifs into pharmaceuticals illustrated the synthetic application of the present protocol in drug discovery.
Collapse
Affiliation(s)
- Jing Jing
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Ying Hu
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Zhenfeng Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Yicheng Wang
- School of Life Science and Health Engineering, Jiangnan university, 214122, Wuxi, China
| | - Liqin Yao
- Yixing Traditional Chinese Medicine Hospital, 214200, Yixing, China
| | - Lipeng Qiu
- School of Life Science and Health Engineering, Jiangnan university, 214122, Wuxi, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität-Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Konstantin Karaghiosoff
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, Munich, Germany
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| |
Collapse
|
6
|
Lou SJ, Wang P, Wen X, Mishra A, Cong X, Zhuo Q, An K, Nishiura M, Luo Y, Hou Z. ( Z)-Selective Isomerization of 1,1-Disubstituted Alkenes by Scandium-Catalyzed Allylic C-H Activation. J Am Chem Soc 2024; 146:26766-26776. [PMID: 39303300 DOI: 10.1021/jacs.4c06899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The isomerization of 1,1-disubstituted alkenes through 1,3-hydrogen shift is an atom-efficient route for synthesizing trisubstituted alkenes, which are important moieties in many natural products, pharmaceuticals, and organic materials. However, this reaction often encounters regio- and stereoselectivity challenges, typically yielding E/Z-mixtures of the alkene products or thermodynamically favored (E)-alkenes. Herein, we report the (Z)-selective isomerization of 1,1-disubstituted alkenes to trisubstituted (Z)-alkenes via the regio- and stereospecific activation of an allylic C-H bond. The key to the success of this unprecedented transformation is the use of a sterically demanding half-sandwich scandium catalyst in combination with a bulky quinoline compound, 2-tert-butylquinoline. Deuterium-labeling experiments and density functional theory (DFT) calculations have revealed that 2-tert-butylquinoline not only facilitates the C═C bond transposition through hydrogen shuttling but also governs the regio- and stereoselectivity due to the steric hindrance of the tert-butyl group. This protocol enables the synthesis of diverse (Z)-configured acyclic trisubstituted alkenes and endocyclic trisubstituted alkenes from readily accessible 1,1-disubstituted alkenes. It offers an efficient and selective route for preparing a new family of synthetically challenging (Z)-trisubstituted alkenes with broad substrate scope, 100% atom efficiency, high regio- and stereoselectivity, and an unprecedented reaction mechanism.
Collapse
Affiliation(s)
- Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Pan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Wen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kun An
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Blaha I, Weber S, Dülger R, Veiros LF, Kirchner K. Alkene Isomerization Catalyzed by a Mn(I) Bisphosphine Borohydride Complex. ACS Catal 2024; 14:13174-13180. [PMID: 39263541 PMCID: PMC11385370 DOI: 10.1021/acscatal.4c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
An additive-free manganese-catalyzed isomerization of terminal alkenes to internal alkenes is described. This reaction is implementing an inexpensive nonprecious metal catalyst. The most efficient catalyst is the borohydride complex cis-[Mn(dippe)(CO)2(κ2-BH4)]. This catalyst operates at room temperature, with a catalyst loading of 2.5 mol %. A variety of terminal alkenes is effectively and selectively transformed into the respective internal E-alkenes. Preliminary results show chain-walking isomerization at an elevated temperature. Mechanistic studies were carried out, including stoichiometric reactions and in situ NMR analysis. These experiments are flanked by computational studies. Based on these, the catalytic process is initiated by the liberation of "BH3" as a THF adduct. The catalytic process is initiated by double bond insertion into an M-H species, leading to an alkyl metal intermediate, followed by β-hydride elimination at the opposite position to afford the isomerization product.
Collapse
Affiliation(s)
- Ines Blaha
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Stefan Weber
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Robin Dülger
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| |
Collapse
|
8
|
Rubel CZ, Ravn AK, Ho HC, Yang S, Li ZQ, Engle KM, Vantourout JC. Stereodivergent, Kinetically Controlled Isomerization of Terminal Alkenes via Nickel Catalysis. Angew Chem Int Ed Engl 2024; 63:e202320081. [PMID: 38494945 DOI: 10.1002/anie.202320081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/19/2024]
Abstract
Because internal alkenes are more challenging synthetic targets than terminal alkenes, metal-catalyzed olefin mono-transposition (i.e., positional isomerization) approaches have emerged to afford valuable E- or Z- internal alkenes from their complementary terminal alkene feedstocks. However, the applicability of these methods has been hampered by lack of generality, commercial availability of precatalysts, and scalability. Here, we report a nickel-catalyzed platform for the stereodivergent E/Z-selective synthesis of internal alkenes at room temperature. Commercial reagents enable this one-carbon transposition of terminal alkenes to valuable E- or Z-internal alkenes via a Ni-H-mediated insertion/elimination mechanism. Though the mechanistic regime is the same in both systems, the underlying pathways that lead to each of the active catalysts are distinct, with the Z-selective catalyst forming from comproportionation of an oxidative addition complex followed by oxidative addition with substrate and the E-selective catalyst forming from protonation of the metal by the trialkylphosphonium salt additive. In each case, ligand sterics and denticity control stereochemistry and prevent over-isomerization.
Collapse
Affiliation(s)
- Camille Z Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
| | - Anne K Ravn
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hang Chi Ho
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shenghua Yang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Julien C Vantourout
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332, Stein, Switzerland
| |
Collapse
|
9
|
Isbrandt ES, Chapple DE, Tu NTP, Dimakos V, Beardall AMM, Boyle PD, Rowley CN, Blacquiere JM, Newman SG. Controlling Reactivity and Selectivity in the Mizoroki-Heck Reaction: High Throughput Evaluation of 1,5-Diaza-3,7-diphosphacyclooctane Ligands. J Am Chem Soc 2024; 146:5650-5660. [PMID: 38359357 DOI: 10.1021/jacs.3c14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We report a high throughput evaluation of the Mizoroki-Heck reaction of diverse olefin coupling partners. Comparison of different ligands revealed the 1,5-diaza-3,7-diphosphacyclooctane (P2N2) scaffold to be more broadly applicable than common "gold standard" ligands, demonstrating that this family of readily accessible diphosphines has unrecognized potential in organic synthesis. In particular, two structurally related P2N2 ligands were identified to enable the regiodivergent arylation of styrenes. By simply altering the phosphorus substituent from a phenyl to tert-butyl group, both the linear and branched Mizoroki-Heck products can be obtained in high regioisomeric ratios. Experimental and computational mechanistic studies were performed to further probe the origin of selectivity, which suggests that both ligands coordinate to the metal in a similar manner but that rigid positioning of the phosphorus substituent forces contact with the incoming olefin in a π-π interaction (for P-Ph ligands) or with steric clash (for P-tBu ligands), dictating the regiocontrol.
Collapse
Affiliation(s)
- Eric S Isbrandt
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Devon E Chapple
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Nguyen Thien Phuc Tu
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Victoria Dimakos
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Anne Marie M Beardall
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Paul D Boyle
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Christopher N Rowley
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Johanna M Blacquiere
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
10
|
Lin LQH, Rentería-Gómez Á, Martin RT, Zhang YQ, Ong KZW, Parris AB, Gutierrez O, Koh MJ. Selective 1,2-Hydroarylation(Alkenylation) of gem-Difluoroalkenes to Access (-CF 2 H) Motifs. Angew Chem Int Ed Engl 2024; 63:e202317935. [PMID: 38117662 PMCID: PMC11076007 DOI: 10.1002/anie.202317935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
An emerging class of C-C coupling transformations that furnish drug-like building blocks involves catalytic hydrocarbonation of alkenes. However, despite notable advances in the field, hydrocarbon addition to gem-difluoroalkenes without additional electronic activation remains largely unsuccessful. This owes partly to poor reactivity and the propensity of difluoroalkenes to undergo defluorinative side reactions. Here, we report a nickel catalytic system that promotes efficient 1,2-selective hydroarylation and hydroalkenylation, suppressing defluorination and providing straightforward access to a diverse assortment of prized organofluorides bearing difluoromethyl-substituted carbon centers. In contrast to radical-based pathways and reactions triggered by hydrometallation via a nickel-hydride complex, our experimental and computational studies support a mechanism in which a catalytically active nickel-bromide species promotes selective carbonickelation with difluoroalkenes followed by alkoxide exchange and hydride transfer, effectively overcoming the difluoroalkene's intrinsic electronic bias.
Collapse
Affiliation(s)
- Leroy Qi Hao Lin
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | | | - Robert T Martin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ying-Qi Zhang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Kelvin Zhi Wei Ong
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Adam B Parris
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
11
|
Wang ZC, Zhang JW, Koh MJ, Shi SL. Divergent and Selective Light Alkene Cross-Coupling. Angew Chem Int Ed Engl 2023; 62:e202310203. [PMID: 37786301 DOI: 10.1002/anie.202310203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 10/04/2023]
Abstract
Light olefins are abundantly manufactured in the petroleum industry and thus represent ideal starting materials for modern chemical synthesis. Selective and divergent transformations of feedstock light olefins to value-added chemicals are highly sought-after but remain challenging. Herein we report an exceptionally regioselective carbonickelation of light alkenes followed by in situ trapping with three types of nucleophiles, namely a reductant, base, or Grignard reagent. This protocol enables efficient 1,2-hydrofunctionalization, dicarbofunctionalization, and branched-selective Heck-type cross-coupling of light alkenes with aryl and alkenyl reagents to streamline access to diverse alkyl arenes and complex alkenes. Harnessing bulky N-heterocyclic carbene ligands with acenaphthyl backbones for nickel catalysts is crucial to attain high reactivity and selectivity. This strategy provides a rare, modular, and divergent platform for upgrading feedstock alkenes and is expected to find broad applications in medicinal chemistry and industrial processes.
Collapse
Affiliation(s)
- Zi-Chao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Jia-Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
12
|
Karl TM, Bouayad-Gervais S, Hueffel JA, Sperger T, Wellig S, Kaldas SJ, Dabranskaya U, Ward JS, Rissanen K, Tizzard GJ, Schoenebeck F. Machine Learning-Guided Development of Trialkylphosphine Ni (I) Dimers and Applications in Site-Selective Catalysis. J Am Chem Soc 2023. [PMID: 37411044 DOI: 10.1021/jacs.3c03403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Owing to the unknown correlation of a metal's ligand and its resulting preferred speciation in terms of oxidation state, geometry, and nuclearity, a rational design of multinuclear catalysts remains challenging. With the goal to accelerate the identification of suitable ligands that form trialkylphosphine-derived dihalogen-bridged Ni(I) dimers, we herein employed an assumption-based machine learning approach. The workflow offers guidance in ligand space for a desired speciation without (or only minimal) prior experimental data points. We experimentally verified the predictions and synthesized numerous novel Ni(I) dimers as well as explored their potential in catalysis. We demonstrate C-I selective arylations of polyhalogenated arenes bearing competing C-Br and C-Cl sites in under 5 min at room temperature using 0.2 mol % of the newly developed dimer, [Ni(I)(μ-Br)PAd2(n-Bu)]2, which is so far unmet with alternative dinuclear or mononuclear Ni or Pd catalysts.
Collapse
Affiliation(s)
- Teresa M Karl
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Samir Bouayad-Gervais
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Julian A Hueffel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Sebastian Wellig
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Sherif J Kaldas
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, FIN40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, FIN40014 Jyväskylä, Finland
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, SO17 1BJ Southhampton, U.K
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
13
|
Sanz-Navarro S, Ballesteros-Soberanas J, Martínez-Castelló A, Doménech-Carbó A, Hernández-Garrido JC, Cerón-Carrasco JP, Mon M, Leyva-Pérez A. Evidence for Ruthenium(II) Peralkene Complexes as Catalytic Species during the Isomerization of Terminal Alkenes in Solution. Inorg Chem 2023. [PMID: 37393543 DOI: 10.1021/acs.inorgchem.3c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The isomerization (chain-walking) reaction of terminal to internal alkenes is catalyzed by part-per-million amounts of practically any Ru source when the reaction is carried out with a neat terminal alkene. Here, we provide evidence that the soluble starting Ru sources evolve to catalytically active peralkene Ru(II) species under reaction conditions. These species may also explain the isomerization products found during other Ru-catalyzed alkene processes, i.e., alkene metathesis reactions. A Finke-Watzky mechanism for catalyst formation is consistent with the evidence obtained.
Collapse
Affiliation(s)
- Sergio Sanz-Navarro
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Jordi Ballesteros-Soberanas
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | | | - Antonio Doménech-Carbó
- Departament de Química Analítica, Universitat de Valencia, Dr Moliner, 50, Burjassot, 46100 Valencia, Spain
| | - Juan Carlos Hernández-Garrido
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Puerto Real, Puerto Real 11510, Cádiz, Spain
| | - Jose Pedro Cerón-Carrasco
- Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, Base Aérea de San Javier, C/Coronel López Peña S/N, Santiago de La Ribera, 30720 Murcia, Spain
| | - Marta Mon
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
14
|
Zhang Z, Chen Y, Gu X, Ho CY. (NHC)Ni(II)-Directed Insertions and Higher Substituted Olefin Synthesis from Simple Olefins. Acc Chem Res 2023; 56:1070-1086. [PMID: 37036948 DOI: 10.1021/acs.accounts.3c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
ConspectusWell-controlled olefin insertion is critical for achieving catalytic and productive bulk and fine-chemical synthesis. Developing efficient and selective methods for meeting diverse insertion demands is extremely noteworthy, as it supports numerous transformations. The challenges are related to improving catalyst performance and selectivity control and uniting previously unreactive substrate pairs to achieve higher molecular structural complexity and utility. Nickel catalysts have received persistent attention in higher substituted olefin synthesis and polymerization, and numerous new strategies have been established to fulfill the ever-changing demands. This Account focuses on the recent progress based on N-heterocyclic carbene (NHC) ligands and nickel catalysts in our laboratory in using simple terminal olefins as olefin donors or acceptors.It begins with a brief history of olefin codimerization and the major advances in hydrovinylation achieved by other research groups using ethylene as an olefin donor. It then describes problems related to the reductive elimination that can occur when both the hydrometalated alkene and NHC are on the catalyst. It emphasizes the impact of NHC catalyst generation methods on the competing reactivity. Next, it explains the principal challenges and great opportunities in using our method (with α-olefins as olefin donors and alkenyl sources) to replace intermolecular reductive hydroalkenylation reactions (which require rare and more expensive alkenyl halides and boronic acids as reactants, alongside a stoichiometric amount of metallic reagents). The Account then illustrates the potential uses of our method for solving challenging organic synthesis problems using tailor-made (NHC)Ni(II) catalysts to allow redox-neutral catalytic cycles based on high chemo- and regioselective cross-insertion controls. It shows that upon optimal steric and electronic cooperation between the NHC, olefin donor, and olefin acceptor, regiodivergent insertion and convergent synthesis can be achieved easily.In the course of our work, we uncovered several unique insights into regulating (anti-)Markovnikov hydronickelation, carbonickelation, hydrocarbonation, ring closure, 1,3-allyl shift, isomerization, and catalyst regeneration under green, neutral, and mild-temperature conditions. These insights are also outlined here, along with theoretical calculations that offer additional understandings of the insertion reactivity and selectivity differences observed between the NHC and the highly related phosphorus-based Ni(II) hydride-catalyzed cross-hydroalkenylation and cycloisomerization systems.Compared to traditional olefin and cyclic structure synthesis technology, such as olefin cross-metathesis, enyne cyclization, and cross-coupling reactions, the new catalyst systems often offer previously inaccessible product structural characteristics, substrate scope, and outcomes. In particular, the method is effective for the catalytic synthesis of unsymmetrical and functionalized 1,1-disubstituted olefins (a.k.a. gem-olefins), 1,4-dienes (a.k.a. skipped dienes), conjugated dienes, endo- and exocyclic olefins, fused and spiro rings, and aromatic products. These syntheses are variously achieved by cross-hydroalkenylation, insertion-induced rearrangement, cycloadditions, and other approaches inspired by our investigations and detailed in this Account. Cross-hydroalkenylation can be achieved with high enantioselectivity by application of carefully designed and structurally flexible C1 and C2 chiral NHC ligands, yielding a pool of chiral branched alkenes and 1,4-dienes directly from simple chemical feedstocks used in industry. This Account will draw further attention to green alkenylation and the related development of redox-neutral catalytic cycles.
Collapse
Affiliation(s)
- Zhifeng Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiao Gu
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chun-Yu Ho
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
15
|
Kustiana BA, Elsherbeni SA, Linford‐Wood TG, Melen RL, Grayson MN, Morrill LC. B(C 6 F 5 ) 3 -Catalyzed E-Selective Isomerization of Alkenes. Chemistry 2022; 28:e202202454. [PMID: 35943082 PMCID: PMC9804281 DOI: 10.1002/chem.202202454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/05/2023]
Abstract
Herein, we report the B(C6 F5 )3 -catalyzed E-selective isomerization of alkenes. The transition-metal-free method is applicable across a diverse array of readily accessible substrates, giving access to a broad range of synthetically useful products containing versatile stereodefined internal alkenes. The reaction mechanism was investigated by using synthetic and computational methods.
Collapse
Affiliation(s)
- Betty A. Kustiana
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| | - Salma A. Elsherbeni
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| | | | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| | | | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| |
Collapse
|
16
|
Qin G, Wang R, Cheng Z, Zhang Y, Wang B, Xia Y, Jin W, Liu C. Electrooxidative trifunctionalization of alkenes with N-chlorosuccinimide and ArSSAr/ArSH to α,β-dichloride arylsulfoxides. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
17
|
Wang K, Yu Q, Mao W, Zheng Y, Xu J, Wang Y. Copper-catalyzed radical trans-selective hydroboration of ynamides with N-heterocyclic carbene boranes. iScience 2022; 25:104977. [PMID: 36065185 PMCID: PMC9440302 DOI: 10.1016/j.isci.2022.104977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Vinylboron compounds are important compounds in organic chemistry and biology. In this communication, we developed a copper(I)-catalyzed, highly regio- and stereoselective radical trans-hydroboration of ynamides with N-heterocyclic carbene (NHC)-ligated borane is reported, which leads to a series of trans-boryl enmides that can be conveniently transformed into various multi-substituted enamides. Further investigation showcased that our method is robust and scalable. The mechanism of this unique reaction is studied and discussed. A Cu-catalyzed highly regio- and stereoselective radical trans-hydroboration of ynamides Good to excellent yields, good functional group tolerance Further investigation showcased that our method is robust and scalable
Collapse
Affiliation(s)
- Kefeng Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingzhen Yu
- Clinical Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen 518055, China
| | - Wenli Mao
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxin Zheng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
- Corresponding author
| | - Yukun Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen 518055, China
- Corresponding author
| |
Collapse
|
18
|
Tricoire M, Wang D, Rajeshkumar T, Maron L, Danoun G, Nocton G. Electron Shuttle in N-Heteroaromatic Ni Catalysts for Alkene Isomerization. JACS AU 2022; 2:1881-1888. [PMID: 36032537 PMCID: PMC9400170 DOI: 10.1021/jacsau.2c00251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Simple N-heteroaromatic Ni(II) precatalysts, (L)NiMe2 (L = bipy, bipym), were used for alkene isomerization. With an original reduction method using a simple borane (HB(Cat)), a low-valent Ni center was formed readily and showed good conversion when a reducing divalent lanthanide fragment, Cp*2Yb, was coordinated to the (bipym)NiMe2 complex, a performance not achieved by the monometallic (bipy)NiMe2 analogue. Experimental mechanistic investigations and computational studies revealed that the redox non-innocence of the L ligand triggered an electron shuttle process, allowing the elusive formation of Ni(I) species that were central to the isomerization process. Additionally, the reaction occurred with a preference for mono-isomerization rather than chain-walking isomerization. The presence of the low-valent ytterbium fragment, which contributed to the formation of the electron shuttle, strongly stabilized the catalysts, allowing catalytic loading as low as 0.5%. A series of alkenes with various architectures have been tested. The possibility to easily tune the various components of the heterobimetallic catalyst reported here, the ligand L and the divalent lanthanide fragment, opens perspectives for further applications in catalysis induced by Ni(I) species.
Collapse
Affiliation(s)
- Maxime Tricoire
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Ding Wang
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Thayalan Rajeshkumar
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077 Toulouse
cedex 4, France
| | - Laurent Maron
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077 Toulouse
cedex 4, France
| | - Grégory Danoun
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Grégory Nocton
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| |
Collapse
|
19
|
Song J, Chen Z, Cai X, Zhou X, Zhan G, Li R, Wei P, Yan N, Xi S, Loh KP. Promoting Dinuclear-Type Catalysis in Cu 1 -C 3 N 4 Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204638. [PMID: 35748197 DOI: 10.1002/adma.202204638] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Reducing particle size in supported metal catalysts to single-atom level isolates the active metal sites and maximizes the atomic utilization efficiency. However, the large inter-atom distance, particularly in low-loading single-atom catalyst (SAC), is not favorable for a complex reaction where two (or more) reactants have to be activated. A key question is how to control the inter-atom distances to promote dinuclear-type coactivation at the adjacent metal sites. Here, it is reported that reducing the average inter-atom distance of copper SACs supported on carbon nitride (C3 N4 ) to 0.74 ± 0.13 nm allows these catalysts to exhibit a dinuclear-type catalytic mechanism in the nitrile-azide cycloaddition. Operando X-ray absorption fine structure study reveals a dynamic ligand exchange process between nitrile and azide, followed by their coactivation on dinuclear Cu SAC sites to form the tetrazole product. This work highlights that reducing the nearest-neighbor distance of SAC allows the mechanistic pathway to diversify from single-site to multisite catalysis.
Collapse
Affiliation(s)
- Jingting Song
- Joint School of NUS and TJU, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhongxin Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiangbin Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xin Zhou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Gaolei Zhan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Runlai Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Pingping Wei
- Joint School of NUS and TJU, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Ning Yan
- Joint School of NUS and TJU, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Kian Ping Loh
- Joint School of NUS and TJU, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
20
|
Zhao J, Xu G, Wang X, Liu J, Ren X, Hong X, Lu Z. Cobalt-Catalyzed Migration Isomerization of Dienes. Org Lett 2022; 24:4592-4597. [PMID: 35727697 DOI: 10.1021/acs.orglett.2c01701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cobalt-catalyzed multipositional isomerization of conjugated dienes has been reported for the first time using an 8-oxazoline iminoquinoline ligand. This reaction is operationally simple and atom-economical using readily available starting materials with an E/Z mixture to access disubstituted 1,3-dienes with excellent yields and good E,E stereoselectivity. The mechanism via alkene insertion of cobalt hydride species and β-H elimination of a π-allyl cobalt intermediate is proposed on the basis of deuterium labeling and control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Jiajin Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Guoxiong Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.,Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street NO. 2, Beijing 100190, P.R. China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xue Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiren Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.,Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street NO. 2, Beijing 100190, P.R. China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiang Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.,Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street NO. 2, Beijing 100190, P.R. China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
Zhao Y, Liu C, Lin LQH, Chan ASC, Koh MJ. Stereoselective Synthesis of Trisubstituted Alkenes by Nickel‐Catalyzed Benzylation and Alkene Isomerization. Angew Chem Int Ed Engl 2022; 61:e202202674. [DOI: 10.1002/anie.202202674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yunlong Zhao
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Republic of Singapore
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Chen‐Fei Liu
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Republic of Singapore
| | - Leroy Qi Hao Lin
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Republic of Singapore
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Ming Joo Koh
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Republic of Singapore
| |
Collapse
|
22
|
Zhao Y, Liu CF, Lin LQH, Chan ASC, Koh MJ. Stereoselective Synthesis of Trisubstituted Alkenes by Nickel‐Catalyzed Benzylation and Alkene Isomerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yunlong Zhao
- National University of Singapore Chemistry SINGAPORE
| | - Chen-Fei Liu
- National University of Singapore Chemistry SINGAPORE
| | | | | | - Ming Joo Koh
- National University of Singapore Chemistry S9-14-01D, 4 Science Drive 2 117544 Singapore SINGAPORE
| |
Collapse
|
23
|
Kawamura KE, Chang ASM, Martin DJ, Smith HM, Morris PT, Cook AK. Modular Ni(0)/Silane Catalytic System for the Isomerization of Alkenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kiana E. Kawamura
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Alison Sy-min Chang
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Daryl J. Martin
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Haley M. Smith
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Parker T. Morris
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Amanda K. Cook
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| |
Collapse
|
24
|
Liu W, Zheng Y, Mao Y, Chen J, Ren X, Cheng Z, Lu Z. Desymmetrizing Isomerization of Alkene via Thiazolinyl Iminoquinoline Cobalt Catalysis. Org Lett 2022; 24:1158-1163. [PMID: 35089045 DOI: 10.1021/acs.orglett.1c04237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a cobalt-catalyzed desymmetrizing isomerization of exo-cyclic alkenes to generate chiral 1-methylcyclohexene derivatives with good yields and enantioselectivities. A novel chiral thiazolinyl iminoquinoline ligand and its cobalt complex were designed and synthesized to control the establishment of tertiary or quaternary carbon centers at a remote position. This protocol is operationally simple, and a model for the stereochemical outcome has been proposed.
Collapse
Affiliation(s)
- Wenbo Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yushan Zheng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yihui Mao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jieping Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiang Ren
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhaoyang Cheng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhan Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
25
|
Suresh P, Prasanna Kumari S, Krishna Reddy SM, Anthony SP, Thamotharan S, Selva Ganesan S. Radical directed regioselective functionalization of diverse alkene derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj02824g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Regioselective vicinal difunctionalization of diverse alkene derivatives was successfully carried out using readily available carboxylic acids.
Collapse
Affiliation(s)
- Pavithira Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Subramaniyan Prasanna Kumari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | | | - Savarimuthu Philip Anthony
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Subramaniapillai Selva Ganesan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
26
|
Wang H, Liu CF, Tan TD, Khoo KRB, Koh MJ. N-Heterocyclic Carbene–Nickel-Catalyzed Regioselective Diarylation of Aliphatic-1,3-Dienes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hongyu Wang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore 117544, Republic of Singapore
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chen-Fei Liu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore 117544, Republic of Singapore
| | - Tong-De Tan
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore 117544, Republic of Singapore
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Kyna Ru Bin Khoo
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore 117544, Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore 117544, Republic of Singapore
| |
Collapse
|