1
|
Ravaux J, Bosc O, Fusari CE, Gricourt SM, Itin M, Lestin M, de Mazancourt V. Thermal tolerance and vulnerability to climate warming in the freshwater shrimp Atyaephyra desmarestii and Caridina multidentata. J Therm Biol 2025; 129:104121. [PMID: 40344752 DOI: 10.1016/j.jtherbio.2025.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/13/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
Freshwater shrimp play crucial roles in aquatic ecosystems, yet their vulnerability to climate change remains poorly understood. This study investigates the thermal tolerance and vulnerability to climate warming of two important freshwater shrimp species with contrasting ecological preferences, Atyaephyra desmarestii and Caridina multidentata. Critical thermal maximum (CTMax) was assessed for different acclimation temperatures that cover the current summer range for both species, as well as for populations from different geographical origins for A. desmarestii. Both species demonstrated an excess of thermal tolerance in all conditions, as calculated with the thermal safety margins (TSM). However, the decrease of TSM with increasing acclimation temperatures suggested potential limitations in their ability to cope with future warming, particularly for the southern populations of A. desmarestii. Furthermore, while C. multidentata showed a high tolerance to extreme temperature fluctuations, it may face challenges in maintaining viable populations under projected climate change scenarios. The present study also provides a survey of the thermal limits of Caridea, thereby highlighting the necessity for further research on the thermal tolerance of shrimp to inform effective conservation strategies and mitigate the impacts of climate change.
Collapse
Affiliation(s)
- Juliette Ravaux
- Laboratoire de Biologie des Organismes et Écosystèmes Aquatiques (BOREA), MNHN, CNRS-8067, IRD-207, Sorbonne Université, UCN, UA, Équipe Biodiversité, Plasticité, Adaptation et Conservation, 43 rue Cuvier, 75005, Paris, France.
| | - Olivia Bosc
- Laboratoire de Biologie des Organismes et Écosystèmes Aquatiques (BOREA), MNHN, CNRS-8067, IRD-207, Sorbonne Université, UCN, UA, Équipe Biodiversité, Plasticité, Adaptation et Conservation, 43 rue Cuvier, 75005, Paris, France
| | - Charles-Edouard Fusari
- Établissement public du Palais de la Porte Dorée, Aquarium tropical, 293 avenue Daumesnil, 75012, Paris, France
| | - Sara-Mae Gricourt
- Établissement public du Palais de la Porte Dorée, Aquarium tropical, 293 avenue Daumesnil, 75012, Paris, France
| | - Maria Itin
- Laboratoire de Biologie des Organismes et Écosystèmes Aquatiques (BOREA), MNHN, CNRS-8067, IRD-207, Sorbonne Université, UCN, UA, Équipe Biodiversité, Plasticité, Adaptation et Conservation, 43 rue Cuvier, 75005, Paris, France
| | - Michel Lestin
- Établissement public du Palais de la Porte Dorée, Aquarium tropical, 293 avenue Daumesnil, 75012, Paris, France
| | - Valentin de Mazancourt
- Laboratoire de Biologie des Organismes et Écosystèmes Aquatiques (BOREA), MNHN, CNRS-8067, IRD-207, Sorbonne Université, UCN, UA, Équipe Biodiversité, Plasticité, Adaptation et Conservation, 43 rue Cuvier, 75005, Paris, France
| |
Collapse
|
2
|
Payne ARD, Mannion PD, Lloyd GT, Davis KE. Decoupling speciation and extinction reveals both abiotic and biotic drivers shaped 250 million years of diversity in crocodile-line archosaurs. Nat Ecol Evol 2024; 8:121-132. [PMID: 38049481 PMCID: PMC10781641 DOI: 10.1038/s41559-023-02244-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/26/2023] [Indexed: 12/06/2023]
Abstract
Whereas living representatives of Pseudosuchia, crocodylians, number fewer than 30 species, more than 700 pseudosuchian species are known from their 250-million-year fossil record, displaying far greater ecomorphological diversity than their extant counterparts. With a new time-calibrated tree of >500 species, we use a phylogenetic framework to reveal that pseudosuchian evolutionary history and diversification dynamics were directly shaped by the interplay of abiotic and biotic processes over hundreds of millions of years, supported by information theory analyses. Speciation, but not extinction, is correlated with higher temperatures in terrestrial and marine lineages, with high sea level associated with heightened extinction in non-marine taxa. Low lineage diversity and increased speciation in non-marine species is consistent with opportunities for niche-filling, whereas increased competition may have led to elevated extinction rates. In marine lineages, competition via increased lineage diversity appears to have driven both speciation and extinction. Decoupling speciation and extinction, in combination with ecological partitioning, reveals a more complex picture of pseudosuchian evolution than previously understood. As the number of species threatened with extinction by anthropogenic climate change continues to rise, the fossil record provides a unique window into the drivers that led to clade success and those that may ultimately lead to extinction.
Collapse
Affiliation(s)
- Alexander R D Payne
- Department of Biology, University of York, York, UK
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
| | - Philip D Mannion
- Department of Earth Sciences, University College London, London, UK
| | | | - Katie E Davis
- Department of Biology, University of York, York, UK.
| |
Collapse
|
3
|
Schultz ET, Boush LP. Introduction to "HaloDaSH: The deep and shallow history of aquatic life's passages between marine and freshwater habitats". Integr Comp Biol 2022; 62:288-296. [PMID: 35687014 DOI: 10.1093/icb/icac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
This series of papers highlights research into how biological exchanges between salty and freshwater habitats have transformed the biosphere. Life in the ocean and in freshwaters have long been intertwined; multiple major branches of the tree of life originated in the oceans and then adapted to and diversified in freshwaters. Similar exchanges continue to this day, including some species that continually migrate between marine and fresh waters. The series addresses key themes of transitions, transformations, and current threats with a series of questions: When did major colonizations of fresh waters happen? What physiographic changes facilitated transitions? What organismal characteristics facilitate colonization? Once a lineage has colonized freshwater, how frequently is there a return to the sea? Have transitions impelled diversification? How do organisms adapt physiologically to changes in halohabitat, and are such adaptive changes predictable? How do marine and freshwater taxa differ in morphology? How are present-day global changes in the environment influencing halohabitat and how are organisms contending with them? The purpose of the symposium and the papers in this volume is to integrate findings at multiple levels of biological organization and from disparate fields, across biological and geoscience disciplines.
Collapse
Affiliation(s)
- Eric T Schultz
- Department of Ecology and Evolutionary Biology, U-3043, University of Connecticut, Storrs CT 06269-3043
| | - Lisa Park Boush
- Department of Geosciences, University of Connecticut, Storrs CT
| |
Collapse
|
4
|
Davis KE, De Grave S, Delmer C, Payne ARD, Mitchell S, Wills MA. Ecological Transitions and the Shape of the Decapod Tree of Life. Integr Comp Biol 2022; 62:332-344. [PMID: 35612997 DOI: 10.1093/icb/icac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
Understanding the processes that shaped the distribution of species richness across the Tree of Life is a central macroevolutionary research agenda. Major ecological innovations, including transitions between habitats, may help to explain the striking asymmetries of diversity that are often observed between sister clades. Here, we test the impact of such transitions on speciation rates across decapod crustaceans, modelling diversification dynamics within a phylogenetic framework. Our results show that, while terrestrial lineages have higher speciation rates than either marine or freshwater lineages, there is no difference between mean speciation rates in marine and freshwater lineages across Decapoda. Partitioning our data by infraorder reveals that those clades with habitat heterogeneity have higher speciation rates in freshwater and terrestrial lineages, with freshwater rates up to 1.5 times faster than marine rates, and terrestrial rates approximately four times faster. This averaging out of marine and freshwater speciation rates results from the varying contributions of different clades to average speciation rates. However, with the exception of Caridea, we find no evidence for any causal relationship between habitat and speciation rate. Our results demonstrate that while statistical generalisations about ecological traits and evolutionary rates are valuable, there are many exceptions. Hence, while freshwater and terrestrial lineages typically speciate faster than their marine relatives, there are many atypically slow freshwater lineages and fast marine lineages across Decapoda. Future work on diversification patterns will benefit from the inclusion of fossil data, as well as additional ecological factors.
Collapse
Affiliation(s)
- Katie E Davis
- University of York, Department of Biology York, North Yorkshire, UK
| | - Sammy De Grave
- Oxford University Museum of Natural History, Oxford, Oxfordshire, UK
| | - Cyrille Delmer
- University of Bath, Department of Biology & Biochemistry, Bath, Bath and North East Somerset, UK
| | - Alexander R D Payne
- University of York, Leverhulme Centre for Anthropocene Biodiversity, York, North Yorkshire, UK
| | - Steve Mitchell
- University of Bath, Department of Biology & Biochemistry, Bath, Bath and North East Somerset, UK
| | - Matthew A Wills
- University of Bath, Department of Biology & Biochemistry, Bath, Bath and North East Somerset, UK
| |
Collapse
|
5
|
Evolution of protective symbiosis in palaemonid shrimps (Decapoda: Caridea) with emphases on host spectrum and morphological adaptations. Mol Phylogenet Evol 2021; 162:107201. [PMID: 33984469 DOI: 10.1016/j.ympev.2021.107201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022]
Abstract
Palaemonidae is the most speciose caridean shrimp family, with its huge biodiversity partially generated via symbiosis with various marine invertebrates. Previous studies have provided insights into the evolution of protective symbiosis in this family with evidence for frequent inter-phyla host switches, but the comprehensiveness of evolutionary pathways is hampered by the resolution of the previous phylogenetic trees as well as the taxon coverage. Furthermore, several critical issues related to the evolution of a symbiotic lifestyle, including the change in host spectrum and corresponding morphological adaptations, remain largely unresolved. We therefore performed a much extended phylogenetic comparative study on Palaemonidae, rooted in a comprehensive phylogeny reconstructed by a supermatrix-supertree approach based on a total of three mitochondrial and five nuclear markers. Ancestral state reconstruction of host associations revealed at least three independent evolutions into symbiosis, with potentially a drive to seek protection fuelling incipient symbiosis. Yet, most of the observed symbiotic species diversity was radiated from a single cnidarian associate. The evolution of mandibles and ambulatory dactyli suggests a general lack of correlation with host affiliation (except sponge endosymbionts), implying limited morphological adaptations following host switching, despite being putatively a major adaptive consequence of symbiosis. Our analyses of host spectrum, in terms of basic and taxonomic specificity, revealed no apparent phylogenetic signal but instead resolved a dynamic pattern attributable to frequent host switching. Uncoupling between host spectrum and the degree of morphological specialisation is the norm in palaemonids, suggesting that morphological characters are not fully in tune with host spectrum, in addition to host affiliation. This study demonstrates the complexity in the evolution of symbiosis, pointing to the presence of cryptic adaptations determining host spectrum and governing host switch diversification, and provides a clear direction for the evolutionary study of symbiosis in other marine symbiotic groups involving host switching.
Collapse
|
6
|
Li T, Liu D, Yang Y, Guo J, Feng Y, Zhang X, Cheng S, Feng J. Phylogenetic supertree reveals detailed evolution of SARS-CoV-2. Sci Rep 2020; 10:22366. [PMID: 33353955 PMCID: PMC7755913 DOI: 10.1038/s41598-020-79484-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Corona Virus Disease 2019 (COVID-19) caused by the emerged coronavirus SARS-CoV-2 is spreading globally. The origin of SARS-Cov-2 and its evolutionary relationship is still ambiguous. Several reports attempted to figure out this critical issue by genome-based phylogenetic analysis, yet limited progress was obtained, principally owing to the disability of these methods to reasonably integrate phylogenetic information from all genes of SARS-CoV-2. Supertree method based on multiple trees can produce the overall reasonable phylogenetic tree. However, the supertree method has been barely used for phylogenetic analysis of viruses. Here we applied the matrix representation with parsimony (MRP) pseudo-sequence supertree analysis to study the origin and evolution of SARS-CoV-2. Compared with other phylogenetic analysis methods, the supertree method showed more resolution power for phylogenetic analysis of coronaviruses. In particular, the MRP pseudo-sequence supertree analysis firmly disputes bat coronavirus RaTG13 be the last common ancestor of SARS-CoV-2, which was implied by other phylogenetic tree analysis based on viral genome sequences. Furthermore, the discovery of evolution and mutation in SARS-CoV-2 was achieved by MRP pseudo-sequence supertree analysis. Taken together, the MRP pseudo-sequence supertree provided more information on the SARS-CoV-2 evolution inference relative to the normal phylogenetic tree based on full-length genomic sequences.
Collapse
Affiliation(s)
- Tingting Li
- Institute of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dongxia Liu
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yadi Yang
- Institute of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiali Guo
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Yujie Feng
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Xinmo Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Shilong Cheng
- The First Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Jie Feng
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Hongjamrassilp W, Maiphrom W, Blumstein DT. Why do shrimps leave the water? Mechanisms and functions of parading behaviour in freshwater shrimps. J Zool (1987) 2020. [DOI: 10.1111/jzo.12841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- W. Hongjamrassilp
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles CA USA
| | - W. Maiphrom
- Ubon Ratchathani Wildlife and Nature Education Center Nam Yuen Ubon Ratchathani Thailand
| | - D. T. Blumstein
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles CA USA
| |
Collapse
|
8
|
Zeng Y, Wiens JJ. Species interactions have predictable impacts on diversification. Ecol Lett 2020; 24:239-248. [PMID: 33146947 DOI: 10.1111/ele.13635] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
A fundamental goal of ecology is to reveal generalities in the myriad types of interactions among species, such as competition, mutualism and predation. Another goal is to explain the enormous differences in species richness among groups of organisms. Here, we show how these two goals are intertwined: we find that different types of species interactions have predictable impacts on rates of species diversification, which underlie richness patterns. On the basis of a systematic review, we show that interactions with positive fitness effects for individuals of a clade (e.g. insect pollination for plants) generally increase that clade's diversification rates. Conversely, we find that interactions with negative fitness effects (e.g. predation for prey, competition) generally decrease diversification rates. The sampled clades incorporate all animals and land plants, encompassing 90% of all described species across life. Overall, we show that different types of local-scale species interactions can predictably impact large-scale patterns of diversification and richness.
Collapse
Affiliation(s)
- Yichao Zeng
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721-0088, USA
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721-0088, USA
| |
Collapse
|
9
|
Wolfe JM, Breinholt JW, Crandall KA, Lemmon AR, Lemmon EM, Timm LE, Siddall ME, Bracken-Grissom HD. A phylogenomic framework, evolutionary timeline and genomic resources for comparative studies of decapod crustaceans. Proc Biol Sci 2020; 286:20190079. [PMID: 31014217 DOI: 10.1098/rspb.2019.0079] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Comprising over 15 000 living species, decapods (crabs, shrimp and lobsters) are the most instantly recognizable crustaceans, representing a considerable global food source. Although decapod systematics have received much study, limitations of morphological and Sanger sequence data have yet to produce a consensus for higher-level relationships. Here, we introduce a new anchored hybrid enrichment kit for decapod phylogenetics designed from genomic and transcriptomic sequences that we used to capture new high-throughput sequence data from 94 species, including 58 of 179 extant decapod families, and 11 of 12 major lineages. The enrichment kit yields 410 loci (greater than 86 000 bp) conserved across all lineages of Decapoda, more clade-specific molecular data than any prior study. Phylogenomic analyses recover a robust decapod tree of life strongly supporting the monophyly of all infraorders, and monophyly of each of the reptant, 'lobster' and 'crab' groups, with some results supporting pleocyemate monophyly. We show that crown decapods diverged in the Late Ordovician and most crown lineages diverged in the Triassic-Jurassic, highlighting a cryptic Palaeozoic history, and post-extinction diversification. New insights into decapod relationships provide a phylogenomic window into morphology and behaviour, and a basis to rapidly and cheaply expand sampling in this economically and ecologically significant invertebrate clade.
Collapse
Affiliation(s)
- Joanna M Wolfe
- 1 Division of Invertebrate Zoology and Sackler Institute of Comparative Genomics, American Museum of Natural History , New York, NY 10024 , USA.,2 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, MA 02139 , USA.,3 Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University , Cambridge, MA 02138 , USA
| | - Jesse W Breinholt
- 4 Florida Museum of Natural History, University of Florida , Gainesville, FL 32611 , USA.,5 RAPiD Genomics , Gainesville, FL 32601 , USA
| | - Keith A Crandall
- 6 Computational Biology Institute, The George Washington University , Ashburn, VA 20147 , USA.,7 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution , Washington, DC 20012 , USA
| | - Alan R Lemmon
- 8 Department of Scientific Computing, Florida State University , Dirac Science Library, Tallahassee, FL 32306 , USA
| | - Emily Moriarty Lemmon
- 9 Department of Biological Science, Florida State University , Tallahassee, FL 32306 , USA
| | - Laura E Timm
- 10 Department of Biological Sciences, Florida International University , North Miami, FL 33181 , USA
| | - Mark E Siddall
- 1 Division of Invertebrate Zoology and Sackler Institute of Comparative Genomics, American Museum of Natural History , New York, NY 10024 , USA
| | - Heather D Bracken-Grissom
- 10 Department of Biological Sciences, Florida International University , North Miami, FL 33181 , USA
| |
Collapse
|
10
|
Strausfeld NJ, Wolff GH, Sayre ME. Mushroom body evolution demonstrates homology and divergence across Pancrustacea. eLife 2020; 9:e52411. [PMID: 32124731 PMCID: PMC7054004 DOI: 10.7554/elife.52411] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Descriptions of crustacean brains have focused mainly on three highly derived lineages of malacostracans: the reptantian infraorders represented by spiny lobsters, lobsters, and crayfish. Those descriptions advocate the view that dome- or cap-like neuropils, referred to as 'hemiellipsoid bodies,' are the ground pattern organization of centers that are comparable to insect mushroom bodies in processing olfactory information. Here we challenge the doctrine that hemiellipsoid bodies are a derived trait of crustaceans, whereas mushroom bodies are a derived trait of hexapods. We demonstrate that mushroom bodies typify lineages that arose before Reptantia and exist in Reptantia thereby indicating that the mushroom body, not the hemiellipsoid body, provides the ground pattern for both crustaceans and hexapods. We show that evolved variations of the mushroom body ground pattern are, in some lineages, defined by extreme diminution or loss and, in others, by the incorporation of mushroom body circuits into lobeless centers. Such transformations are ascribed to modifications of the columnar organization of mushroom body lobes that, as shown in Drosophila and other hexapods, contain networks essential for learning and memory.
Collapse
Affiliation(s)
- Nicholas James Strausfeld
- Department of Neuroscience, School of Mind, Brain and BehaviorUniversity of ArizonaTucsonUnited States
| | | | | |
Collapse
|
11
|
Phylogenetic supertree and functional trait database for all extant parrots. Data Brief 2019; 24:103882. [PMID: 31193185 PMCID: PMC6520560 DOI: 10.1016/j.dib.2019.103882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 11/22/2022] Open
Abstract
We present a complete dataset from the literature on functional traits including morphological measurements, dietary information, foraging strategy, and foraging location for all 398 extant species of parrots. The morphological measurements include: mass, total length, wing chord, culmen length, tarsus length, and tail length. The diet data describe whether each species is known to consume particular food items (e.g. nectar, berries, and carrion), foraging strategy data describes how each species captures or accesses food, and foraging location data describe the habitat from which each species finds food (e.g. ground, canopy, and subcanopy). We also present a time-calibrated phylogenetic supertree that contains all 398 extant species as well as 15 extinct species (413 total species). These data are hosted on the Figshare data depository (https://figshare.com/s/6cdf8cf00793deab7ba6).
Collapse
|
12
|
de Mazancourt V, Klotz W, Marquet G, Mos B, Rogers DC, Keith P. The complex study of complexes: The first well-supported phylogeny of two species complexes within genus Caridina (Decapoda: Caridea: Atyidae) sheds light on evolution, biogeography, and habitat. Mol Phylogenet Evol 2018; 131:164-180. [PMID: 30423441 DOI: 10.1016/j.ympev.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 02/02/2023]
Abstract
Atyid shrimps, a key component of tropical freshwater ecosystems, face multiple anthropogenic threats and thus need special attention. With more than 300 described species, the genus Caridina is the most speciose of all the Caridea infra-order. Caridina spp. occupy diverse habitats in tropical freshwaters of the Indo-West Pacific region. Several species complexes have been recognized, based on common morphological features, but little is known about how well these morphological characteristics align with phylogenetic characteristics. Furthermore, no phylogeny of the genus Caridina published so far has provided well-resolved and supported relationships among different species, thus impeding the possibility of proposing evolutionary hypotheses. In this study we used next generation sequencing (NGS) to provide new insights into the phylogenetic relationships among the genus Caridina, focusing on two complexes: 'Caridina nilotica' and 'Caridina weberi'. We collected 92 specimens belonging to these two groups from most of their known geographical range, representing 50 species, for which we sequenced seven mitochondrial genes and two nuclear markers using ion torrent NGS. We performed a phylogenetic analysis, which yielded the first well-supported tree for the genus Caridina. On this tree were mapped the geographic ranges and the habitats used by the different species, and a time calibration was tested. We found the driving factors that most likely account for separation of clades are differences in habitat and to a lesser extent geography. This work provides new insights into the taxonomy of this group and identifies opportunities for further studies in order to fill knowledge gaps that currently impede the management and conservation of atyid species.
Collapse
Affiliation(s)
- Valentin de Mazancourt
- Muséum national d'Histoire naturelle, Département Adaptations du Vivant, UMR 7208, CP026, 57, rue Cuvier, F-75231 Paris, Cedex 05, France.
| | | | - Gerard Marquet
- Muséum national d'Histoire naturelle, Département Adaptations du Vivant, UMR 7208, CP026, 57, rue Cuvier, F-75231 Paris, Cedex 05, France
| | - Benjamin Mos
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia
| | - D Christopher Rogers
- Kansas Biological Survey and the Natural History Museum (Biodiversity Institute), Kansas University, Higuchi Hall, 2101 Constant Avenue, Lawrence, KS 66047-3759, USA
| | - Philippe Keith
- Muséum national d'Histoire naturelle, Département Adaptations du Vivant, UMR 7208, CP026, 57, rue Cuvier, F-75231 Paris, Cedex 05, France
| |
Collapse
|
13
|
Elevated atmospheric CO 2 promoted speciation in mosquitoes (Diptera, Culicidae). Commun Biol 2018; 1:182. [PMID: 30417119 PMCID: PMC6218564 DOI: 10.1038/s42003-018-0191-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/11/2018] [Indexed: 11/18/2022] Open
Abstract
Mosquitoes are of great medical significance as vectors of deadly diseases. Despite this, little is known about their evolutionary history or how their present day diversity has been shaped. Within a phylogenetic framework, here we show a strong correlation between climate change and mosquito speciation rates: the first time to our knowledge such an effect has been demonstrated for insects. Information theory reveals that although climate change is correlated with mosquito evolution there are other important factors at play. We identify one such driver to be the rise of mammals, which are predominant hosts of Culicidae. Regardless of the precise mechanism, we demonstrate a strong historical association. This finding, taken in combination with projected rises in atmospheric CO2 from anthropogenic activity, has important implications for culicid vector distributions and abundance, and consequently for human health. Chufei Tang and Katie E. Davis et al. show that an elevated atmospheric CO2 promotes the speciation rates of mosquitoes. They demonstrate that climate change can expedite the evolution of mammalian disease vectors, potentially increasing vector−pathogen interactions and affecting human health.
Collapse
|