1
|
Tang XL, Zhang XG, Zhang YT, Ye XM, Zheng RC, Zheng YG. Switching Nitrilase With Enantioselective Hydration Activity for Efficient Synthesis of Chiral 2,2-Dimethylcyclopropanecarboxamide. Biotechnol Bioeng 2025. [PMID: 40309749 DOI: 10.1002/bit.29015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
Chiral 2,2-dimethylcyclopropanecarboxamides serve as important pharmaceutical intermediates. However, enantioselective synthesis of 2,2-dimethylcyclopropanecarboxamides is difficult due to the unique bond angle and rigid planar structure of the dimethylcyclopropane skeleton. Although nitrile hydratases are attractive for amide biosynthesis, their practical applications are restricted because of narrow substrate spectrum and poor enantioselectivity. The catalytic promiscuity of nitrilases has brought an opportunity to engineer them with specific hydration activity and strict enantioselectivity. Through regulation of the characteristic distances affecting reaction specificity, as well as the key interface structure regions, a nitrilase BaNIT was switched into a novel "nitrile hydratase-like" enzyme with enhanced hydration activity and enantioselectivity toward 2,2-dimethylcyclopropanecarbonitrile. It represented a paradigmatic example for chiral amide synthesis via nitrilase. Compared to the wild type, the proportion of amide synthesized by the mutant increased from 11.2% to 98.8% with enantiomeric ratio (E) value increased from 10.8 to 291. Moreover, in-depth structural-functional analyses provided valuable insights into the molecular mechanisms underlying the enhanced catalytic performance, laying a solid foundation for the rational design of nitrilases with tailored properties for their broader applications.
Collapse
Affiliation(s)
- Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xu-Gang Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ye-Tao Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xian-Ming Ye
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Bian SQ, Wang ZK, Gong JS, Su C, Li H, Xu ZH, Shi JS. Protein Engineering of Substrate Specificity toward Nitrilases: Strategies and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1775-1789. [PMID: 39791507 DOI: 10.1021/acs.jafc.4c09599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nitrilase is extensively applied across diverse sectors owing to its unique catalytic properties. Nevertheless, in industrial production, nitrilases often face issues such as low catalytic efficiency, limited substrate range, suboptimal selectivity, and side reaction products, which have garnered heightened attention. With the widespread recognition that the structure of enzymes has a direct impact on their catalytic properties, an increasing number of researchers are beginning to optimize the functional characteristics of nitrilases by modifying their structures, in order to meet specific industrial or biotechnology application needs. Particularly in the artificial intelligence era, the innovative application of computer-aided design in enzyme engineering offers remarkable opportunities to tailor nitrilases for the widespread production of high-value products. In this discussion, we will briefly examine the structural mechanism of nitrilase. An overview of the protein engineering strategies of substrate preference, regioselectivity and stereoselectivity are explored combined with some representative examples recently in terms of the substrate specificity of enzyme. The future research trends in this field are also prospected.
Collapse
Affiliation(s)
- Shi-Qian Bian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zi-Kai Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| |
Collapse
|
3
|
Shan Z, Rivero-Gamez A, Lyumkis D, Horton NC. Two-metal ion mechanism of DNA cleavage by activated, filamentous SgrAI. J Biol Chem 2024; 300:107576. [PMID: 39009341 PMCID: PMC11367474 DOI: 10.1016/j.jbc.2024.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Enzymes that form filamentous assemblies with modulated enzymatic activities have gained increasing attention in recent years. SgrAI is a sequence specific type II restriction endonuclease that forms polymeric filaments with accelerated DNA cleavage activity and expanded DNA sequence specificity. Prior studies have suggested a mechanistic model linking the structural changes accompanying SgrAI filamentation to its accelerated DNA cleavage activity. In this model, the conformational changes that are specific to filamentous SgrAI maximize contacts between different copies of the enzyme within the filament and create a second divalent cation binding site in each subunit, which in turn facilitates the DNA cleavage reaction. However, our understanding of the atomic mechanism of catalysis is incomplete. Herein, we present two new structures of filamentous SgrAI solved using cryo-EM. The first structure, resolved to 3.3 Å, is of filamentous SgrAI containing an active site mutation that is designed to stall the DNA cleavage reaction, which reveals the enzymatic configuration prior to DNA cleavage. The second structure, resolved to 3.1 Å, is of WT filamentous SgrAI containing cleaved substrate DNA, which reveals the enzymatic configuration at the end of the enzymatic cleavage reaction. Both structures contain the phosphate moiety at the cleavage site and the biologically relevant divalent cation cofactor Mg2+ and define how the Mg2+ cation reconfigures during enzymatic catalysis. The data support a model for the activation mechanism that involves binding of a second Mg2+ in the SgrAI active site as a direct result of filamentation induced conformational changes.
Collapse
Affiliation(s)
- Zelin Shan
- The Salk Institute of Biological Sciences, La Jolla, California, USA
| | - Andres Rivero-Gamez
- The Salk Institute of Biological Sciences, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego La Jolla, California, USA
| | - Dmitry Lyumkis
- The Salk Institute of Biological Sciences, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego La Jolla, California, USA.
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
4
|
Xia Y, Zhao J, Saeed M, Hussain N, Chen X, Guo Z, Yong Y, Chen H. Molecular Modification Strategies of Nitrilase for Its Potential Application in Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15106-15121. [PMID: 38949086 DOI: 10.1021/acs.jafc.4c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Some feed source plants will produce secondary metabolites such as cyanogenic glycosides during metabolism, which will produce some poisonous nitrile compounds after hydrolysis and remain in plant tissues. The consumption of feed-source plants without proper treatment affect the health of the animals' bodies. Nitrilases can convert nitriles and have been used in industry as green biocatalysts. However, due to their bottleneck problems, their application in agriculture is still facing challenges. Acid-resistant nitrilase preparations, high-temperature resistance, antiprotease activity, strong activity, and strict reaction specificity urgently need to be developed. In this paper, the application potential of nitrilase in agriculture, especially in feed processing industry was explored, the source properties and catalytic mechanism of nitrilase were reviewed, and modification strategies for nitrilase application in agriculture were proposed to provide references for future research and application of nitrilase in agricultural and especially in the biological feed scene.
Collapse
Affiliation(s)
- Yutong Xia
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Jia Zhao
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
- Department of Poultry Science, Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Nazar Hussain
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Xihua Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Zhongjian Guo
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Yangchun Yong
- Biofuels Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| |
Collapse
|
5
|
Aguirre-Sampieri S, Casañal A, Emsley P, Garza-Ramos G. Cryo-EM structure of bacterial nitrilase reveals insight into oligomerization, substrate recognition, and catalysis. J Struct Biol 2024; 216:108093. [PMID: 38615726 PMCID: PMC7616060 DOI: 10.1016/j.jsb.2024.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Many enzymes can self-assemble into higher-order structures with helical symmetry. A particularly noteworthy example is that of nitrilases, enzymes in which oligomerization of dimers into spiral homo-oligomers is a requirement for their enzymatic function. Nitrilases are widespread in nature where they catalyze the hydrolysis of nitriles into the corresponding carboxylic acid and ammonia. Here, we present the Cryo-EM structure, at 3 Å resolution, of a C-terminal truncate nitrilase from Rhodococcus sp. V51B that assembles in helical filaments. The model comprises a complete turn of the helical arrangement with a substrate-intermediate bound to the catalytic cysteine. The structure was solved having added the substrate to the protein. The length and stability of filaments was made more substantial in the presence of the aromatic substrate, benzonitrile, but not for aliphatic nitriles or dinitriles. The overall structure maintains the topology of the nitrilase family, and the filament is formed by the association of dimers in a chain-like mechanism that stabilizes the spiral. The active site is completely buried inside each monomer, while the substrate binding pocket was observed within the oligomerization interfaces. The present structure is in a closed configuration, judging by the position of the lid, suggesting that the intermediate is one of the covalent adducts. The proximity of the active site to the dimerization and oligomerization interfaces, allows the dimer to sense structural changes once the benzonitrile was bound, and translated to the rest of the filament, stabilizing the helical structure.
Collapse
Affiliation(s)
- Sergio Aguirre-Sampieri
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Circuito Escolar S/N, Ciudad Universitaria, CDMX, Mexico
| | - Ana Casañal
- Human Technopole, Palazzo Italia, Viale Rita Levi‑Montalcini, 1, 20157 Milan, Italy
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Structural Studies Division, Francis Crick Avenue, CB2 0QH Cambridge, England
| | - Georgina Garza-Ramos
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Circuito Escolar S/N, Ciudad Universitaria, CDMX, Mexico.
| |
Collapse
|
6
|
Ghadirian N, Morgan RD, Horton NC. DNA Sequence Control of Enzyme Filamentation and Activation of the SgrAI Endonuclease. Biochemistry 2024; 63:326-338. [PMID: 38207281 DOI: 10.1021/acs.biochem.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Enzyme polymerization (also known as filamentation) has emerged as a new layer of enzyme regulation. SgrAI is a sequence-dependent DNA endonuclease that forms polymeric filaments with enhanced DNA cleavage activity as well as altered DNA sequence specificity. To better understand this unusual regulatory mechanism, full global kinetic modeling of the reaction pathway, including the enzyme filamentation steps, has been undertaken. Prior work with the primary DNA recognition sequence cleaved by SgrAI has shown how the kinetic rate constants of each reaction step are tuned to maximize activation and DNA cleavage while minimizing the extent of DNA cleavage to the host genome. In the current work, we expand on our prior study by now including DNA cleavage of a secondary recognition sequence, to understand how the sequence of the bound DNA modulates filamentation and activation of SgrAI. The work shows that an allosteric equilibrium between low and high activity states is modulated by the sequence of bound DNA, with primary sequences more prone to activation and filament formation, while SgrAI bound to secondary recognition sequences favor the low (and nonfilamenting) state by up to 40-fold. In addition, the degree of methylation of secondary sequences in the host organism, Streptomyces griseus, is now reported for the first time and shows that as predicted, these sequences are left unprotected from the SgrAI endonuclease making sequence specificity critical in this unusual filament-forming enzyme.
Collapse
Affiliation(s)
- Niloofar Ghadirian
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Richard D Morgan
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, United States
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
The role of filamentation in activation and DNA sequence specificity of the sequence-specific endonuclease SgrAI. Biochem Soc Trans 2022; 50:1703-1714. [PMID: 36398769 PMCID: PMC9788392 DOI: 10.1042/bst20220547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Filament formation by metabolic, biosynthetic, and other enzymes has recently come into focus as a mechanism to fine-tune enzyme activity in the cell. Filamentation is key to the function of SgrAI, a sequence-specific DNA endonuclease that has served as a model system to provide some of the deepest insights into the biophysical characteristics of filamentation and its functional consequences. Structure-function analyses reveal that, in the filamentous state, SgrAI stabilizes an activated enzyme conformation that leads to accelerated DNA cleavage activity and expanded DNA sequence specificity. The latter is thought to be mediated by sequence-specific DNA structure, protein-DNA interactions, and a disorder-to-order transition in the protein, which collectively affect the relative stabilities of the inactive, non-filamentous conformation and the active, filamentous conformation of SgrAI bound to DNA. Full global kinetic modeling of the DNA cleavage pathway reveals a slow, rate-limiting, second-order association rate constant for filament assembly, and simulations of in vivo activity predict that filamentation is superior to non-filamenting mechanisms in ensuring rapid activation and sequestration of SgrAI's DNA cleavage activity on phage DNA and away from the host chromosome. In vivo studies demonstrate the critical requirement for accelerated DNA cleavage by SgrAI in its biological role to safeguard the bacterial host. Collectively, these data have advanced our understanding of how filamentation can regulate enzyme structure and function, while the experimental strategies used for SgrAI can be applied to other enzymatic systems to identify novel functional roles for filamentation.
Collapse
|
8
|
Tang XL, Mao Y, Li YY, Zheng RC, Zheng YG. Improvement of multi-catalytic properties of nitrilase from Paraburkholderia graminis for efficient biosynthesis of 2-chloronicotinic acid. Biotechnol Bioeng 2022; 119:3421-3431. [PMID: 36042572 DOI: 10.1002/bit.28218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022]
Abstract
Nitrilase-catalyzed hydrolysis of nitriles is the promising approach for green and efficient biosynthesis of high value-added carboxylic acids. However, undesirable catalytic efficiency toward non-natural substrates restricts their wide-spread applications. Until now, very few robust nitrilases have been reported for 2-chloronicotinic acid (2-CA) production since the enzymes always show low activity and sometimes with poor reaction specificity. Herein, a nitrilase from Paraburkholderia graminis (PgNIT) was engineered to improve its catalytic properties. We identified the beneficial residues via computational analysis and constructed the mutant library. A series positive mutants were obtained and the "best" mutant F164G/I130L/N167Y/A55S exhibited 6000-folds higher catalytic efficiency to 2-chloronicotinonitrile (2-CN). Its reaction specificity was improved with elimination of hydration activity and meanwhile, the half-lives (t1/2 ) against different temperatures were increased. Molecular docking and molecular dynamics simulation revealed that the steric hindrance, conformational flexibility, as well as nucleophilic attack distance between the enzyme and substrate were the main reason alternating the catalytic properties of PgNIT. With the mutant as biocatalyst, a product yield of 130 g/L 2-CA was produced from 2-CN after 60 h, laying the foundation for constructing the nitrilase-catalyzed route of 2-CA. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yue Mao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Yi Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
9
|
Lu XF, Diao HJ, Wu ZM, Zhang ZL, Zheng RC, Zheng YG. Engineering of reaction specificity, enantioselectivity and catalytic activity of nitrilase for highly efficient synthesis of pregabalin precursor. Biotechnol Bioeng 2022; 119:2399-2412. [PMID: 35750945 DOI: 10.1002/bit.28165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/29/2022] [Accepted: 06/19/2022] [Indexed: 11/11/2022]
Abstract
Simultaneous evolution of multiple enzyme properties remains challenging in protein engineering. A chimeric nitrilase (BaNITM0 ) with high activity towards isobutylsuccinonitrile (IBSN) was previously constructed for biosynthesis of pregabalin precursor (S)-3-cyano-5-methylhexanoic acid ((S)-CMHA). However, BaNITM0 also catalyzed the hydration of IBSN to produce by-product (S)-3-cyano-5-methylhexanoic amide. In order to obtain industrial nitrilase with vintage performance, we carried out engineering of BaNITM0 for simultaneous evolution of reaction specificity, enantioselectivity and catalytic activity. The best variant V82L/M127I/C237S (BaNITM2 ) displayed higher enantioselectivity (E=515), increased enzyme activity (5.4-fold) and reduced amide formation (from 15.8% to 1.9 %) compared with BaNITM0 . Structure analysis and molecular dynamics simulations indicated that mutation M127I and C237S restricted the movement of E66 in the catalytic triad, resulting in decreased amide formation. Mutation V82L was incorporated to induce the reconstruction of the substrate binding region in the enzyme catalytic pocket, engendering the improvement of stereoselectivity. Enantio- and regio-selective hydrolysis of 150 g/L IBSN using 1.5 g/L E. coli cells harboring BaNITM2 as biocatalyst afforded (S)-CMHA with >99.0% ee and 45.9% conversion, which highlighted the robustness of BaNITM2 for efficient manufacturing of pregabalin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xia-Feng Lu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hong-Juan Diao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhe-Ming Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zi-Long Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
10
|
Vaishnav A, Kumar R, Singh HB, Sarma BK. Extending the benefits of PGPR to bioremediation of nitrile pollution in crop lands for enhancing crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154170. [PMID: 35227717 DOI: 10.1016/j.scitotenv.2022.154170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Incessant release of nitrile group of compounds such as cyanides into agricultural land through industrial effluents and excessive use of nitrile pesticides has resulted in increased nitrile pollution. Release of nitrile compounds (NCs) as plant root exudates is also contributing to the problem. The released NCs interact with soil elements and persists for a long time. Persistent higher concentration of NCs in soil cause toxicity to beneficial microflora and affect crop productivity. The NCs can cause more problems to human health if they reach groundwater and enter the food chain. Nitrile degradation by soil bacteria can be a solution to the problem if thoroughly exploited. However, the impact of such bacteria in plant and soil environments is still not properly explored. Plant growth-promoting rhizobacteria (PGPR) with nitrilase activity has recently gained attention as potential solution to address the problem. This paper reviews the core issue of nitrile pollution in soil and the prospects of application of nitrile degrading bacteria for soil remediation, soil health improvement and plant growth promotion in nitrile-polluted soils. The possible mechanisms of PGPR that can be exploited to degrade NCs, converting them into plant useful compounds and synthesis of the phytohormone IAA from degraded NCs are also discussed at length.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura 281406, India; Agroecology and Environment, Agroscope (Reckenholz), Zürich 8046, Switzerland
| | - Roshan Kumar
- National Centre for Biological Sciences (TIFR-NCBS), Bengaluru 560065, India
| | | | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221110, India.
| |
Collapse
|
11
|
Zhang H, Zhang H, Qin X, Wang X, Wang Y, Tu T, Wang Y, Yao B, Huang H, Luo H. Biodegradation of nitriles derived from glucosinolates in rapeseed meal by BnNIT2: a nitrilase from Brassica napus with wide substrate specificity. Appl Microbiol Biotechnol 2022; 106:2445-2454. [PMID: 35262786 DOI: 10.1007/s00253-022-11844-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/02/2022]
Abstract
Nitriles derived from glucosinolates (GSLs) in rapeseed meal (RSM) can cause lesions on animal liver and kidneys. Nitrilase converts nitriles to carboxylic acids and NH3, eliminating their toxicity. Here we describe a nitrilase, BnNIT2, from Brassica napus (optimal temperature, 45 °C; pH, 7.0) that is stable at 40 °C and has a wide substrate specificity. Recombinant BnNIT2 converted the three main nitriles from GSLs (3-hydroxy-4-pentenenitrile, 3-butenenitrile, and 4-pentenenitrile), with the highest specific activity (58.6 U/mg) for 4-pentenenitrile. We used mutagenesis to improve the thermostability of BnNIT2; the resulting mutant BnNIT2-H90M had an ~ 14.5% increase in residual activity at 50 °C for 1 h. To verify the functionality of BnNIT2, GSLs were extracted from RSM and converted into nitriles at pH 5.0 in the presence of Fe2+. Then, BnNIT2 was used to degrade the nitriles from GSLs; ultimately, ~ 80% of nitriles were removed. Thus BnNIT2 is a potential enzyme for detoxification of RSM. KEY POINTS: • Functional identification of the plant nitrilase BnNIT2. • Identified a mutant, H90M, with improved thermostability. • BnNIT2 was capable of degrading nitriles from transformed GSLs.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Honghai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
12
|
Song J, Lu D, Niu Y, Sun H, Zhang P, Dong W, Li Y, Zhang Y, Lu L, Men Q, Zhang X, Ren P, Chen C. Label-free quantitative proteomics of maize roots from different root zones provides insight into proteins associated with enhance water uptake. BMC Genomics 2022; 23:184. [PMID: 35247985 PMCID: PMC8898408 DOI: 10.1186/s12864-022-08394-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Maize is one of the most important food crops worldwide. Roots play important role in maize productivity through water and nutrient uptake from the soil. Improving maize root traits for efficient water uptake will help to optimize irrigation and contribute to sustainable maize production. Therefore, we investigated the protein profiles of maize cv. Anyu308 root system divided into Upper root zone (UR), Middle root (MR), and Lower root (LR), by label free quantitative shotgun proteomic approach (LFQ). The aim of our study was to identify proteins and mechanisms associated with enhanced water uptake in different maize root zones under automatic irrigation system. RESULTS At field capacity, MR had the highest water uptake than the UR and LR. We identified a total of 489 differentially abundant proteins (DAPs) by pairwise comparison of MR, LR, and UR. Cluster analysis of DAPs revealed MR and UR had similar protein abundance patterns different from LR. More proteins were differentially abundant in MR/UR compared to LR/MR and LR/UR. Comparisons of protein profiles indicate that the DAPs in MR increased in abundance, compared to UR and LR which had more downregulated DAPs. The abundance patterns, functional category, and pathway enrichment analyses highlight chromatin structure and dynamics, ribosomal structures, polysaccharide metabolism, energy metabolism and transport, induction of water channels, inorganic ion transport, intracellular trafficking, and vesicular transport, and posttranslational modification as primary biological processes related to enhanced root water uptake in maize. Specifically, the abundance of histones, ribosomal proteins, and aquaporins, including mitochondrion electron transport proteins and the TCA cycle, underpinned MR's enhanced water uptake. Furthermore, proteins involved in folding and vascular transport supported the radial transport of solute across cell membranes in UR and MR. Parallel reaction monitoring analysis was used to confirmed profile of the DAPs obtained by LFQ-based proteomics. CONCLUSION The list of differentially abundant proteins identified in MR are interesting candidates for further elucidation of their role in enhanced water uptake in maize root. Overall, the current results provided an insight into the mechanisms of maize root water uptake.
Collapse
Affiliation(s)
- Junqiao Song
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Daowen Lu
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Yongfeng Niu
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Haichao Sun
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Pan Zhang
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Wenheng Dong
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Yongjiang Li
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Yingying Zhang
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Lianyong Lu
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Qi Men
- Hebei Runnong Water Saving Technology Co., Ltd., Tangshan, China
| | - Xiaohui Zhang
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China
| | - Pengxun Ren
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Chuankui Chen
- Maize Research Institute, Anyang Academy of Agricultural Sciences, Anyang, China.
| |
Collapse
|
13
|
Phelan RM, Abrahamson MJ, Brown JTC, Zhang RK, Zwick CR. Development of Scalable Processes with Underutilized Biocatalyst Classes. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan M. Phelan
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Michael J. Abrahamson
- Operations Science and Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Jesse T. C. Brown
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Ruijie K. Zhang
- Discovery Chemistry and Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Christian R. Zwick
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
14
|
Cackett L, Cannistraci CV, Meier S, Ferrandi P, Pěnčík A, Gehring C, Novák O, Ingle RA, Donaldson L. Salt-Specific Gene Expression Reveals Elevated Auxin Levels in Arabidopsis thaliana Plants Grown Under Saline Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:804716. [PMID: 35222469 PMCID: PMC8866861 DOI: 10.3389/fpls.2022.804716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Soil salinization is increasing globally, driving a reduction in crop yields that threatens food security. Salinity stress reduces plant growth by exerting two stresses on plants: rapid shoot ion-independent effects which are largely osmotic and delayed ionic effects that are specific to salinity stress. In this study we set out to delineate the osmotic from the ionic effects of salinity stress. Arabidopsis thaliana plants were germinated and grown for two weeks in media supplemented with 50, 75, 100, or 125 mM NaCl (that imposes both an ionic and osmotic stress) or iso-osmolar concentrations (100, 150, 200, or 250 mM) of sorbitol, that imposes only an osmotic stress. A subsequent transcriptional analysis was performed to identify sets of genes that are differentially expressed in plants grown in (1) NaCl or (2) sorbitol compared to controls. A comparison of the gene sets identified genes that are differentially expressed under both challenge conditions (osmotic genes) and genes that are only differentially expressed in plants grown on NaCl (ionic genes, hereafter referred to as salt-specific genes). A pathway analysis of the osmotic and salt-specific gene lists revealed that distinct biological processes are modulated during growth under the two conditions. The list of salt-specific genes was enriched in the gene ontology (GO) term "response to auxin." Quantification of the predominant auxin, indole-3-acetic acid (IAA) and IAA biosynthetic intermediates revealed that IAA levels are elevated in a salt-specific manner through increased IAA biosynthesis. Furthermore, the expression of NITRILASE 2 (NIT2), which hydrolyses indole-3-acetonitile (IAN) into IAA, increased in a salt-specific manner. Overexpression of NIT2 resulted in increased IAA levels, improved Na:K ratios and enhanced survival and growth of Arabidopsis under saline conditions. Overall, our data suggest that auxin is involved in maintaining growth during the ionic stress imposed by saline conditions.
Collapse
Affiliation(s)
- Lee Cackett
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Carlo Vittorio Cannistraci
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Computer Science, Tsinghua University, Beijing, China
- Center for Complex Network Intelligence, Tsinghua Laboratory of Brain and Intelligence, Department of Biomedical Engineering, Tsinghua University, Beijing, China
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Stuart Meier
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Paul Ferrandi
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czechia
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czechia
| | - Robert A. Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Lara Donaldson
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| |
Collapse
|
15
|
Xiong N, Xie D, Dong Y, Xue YP, Zheng YG. Efficient biosynthesis of 1-cyanocyclohexaneacetic acid using a highly soluble nitrilase by N-terminus modification of novel peptide tags. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Jones LB, Wang X, Gullapalli JS, Kunz DA. Characterization of the Nit6803 nitrilase homolog from the cyanotroph Pseudomonas fluorescens NCIMB 11764. Biochem Biophys Rep 2021; 25:100893. [PMID: 33506113 PMCID: PMC7815647 DOI: 10.1016/j.bbrep.2020.100893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/01/2022] Open
Abstract
We report the purification and characterization of a nitrilase (E.C. 3.5.5.1) (Nit11764) essential for the assimilation of cyanide as the sole nitrogen source by the cyanotroph, Pseudomonas fluorescens NCIMB 11764. Nit11764, is a member of a family of homologous proteins (nitrile_sll0784) for which the genes typically reside in a conserved seven-gene cluster known as Nit1C. The physical properties and substrate specificity of Nit11764 resemble those of Nit6803, the current reference protein for the family, and the only true nitrilase that has been crystallized. The substrate binding pocket of the two enzymes places the substrate in direct proximity to the active site nucleophile (C160) and conserved catalytic triad (Glu44, Lys126). The two enzymes exhibit a similar substrate profile, however, for Nit11764, cinnamonitrile, was found to be an even better substrate than fumaronitrile the best substrate previously identified for Nit6803. A higher affinity for cinnamonitrile (Km 1.27 mM) compared to fumaronitrile (Km 8.57 mM) is consistent with docking studies predicting a more favorable interaction with hydrophobic residues lining the binding pocket. By comparison, 3,4-dimethoxycinnamonitrile was a poorer substrate the substituted methoxyl groups apparently hindering entry into the binding pocket. in situ 1H NMR studies revealed that only one of the two nitrile substituents in the dinitrile, fumaronitrile, was attacked yielding trans-3-cyanoacrylate (plus ammonia) as a product. The essentiality of Nit11764 for cyanotrophy remains uncertain given that cyanide itself is a poor substrate and the catalytic efficiencies for even the best of nitrile substrates (~5 × 103 M-1 s-1) is less than stellar.
Collapse
Affiliation(s)
- Lauren B Jones
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Xiaoqiang Wang
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA.,BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Jaya S Gullapalli
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Daniel A Kunz
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
17
|
Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, Agerbirk N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. PHYTOCHEMISTRY 2020; 169:112100. [PMID: 31771793 DOI: 10.1016/j.phytochem.2019.112100] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/04/2019] [Accepted: 08/18/2019] [Indexed: 05/05/2023]
Abstract
The glucosinolates (GSLs) is a well-defined group of plant metabolites characterized by having an S-β-d-glucopyrano unit anomerically connected to an O-sulfated (Z)-thiohydroximate function. After enzymatic hydrolysis, the sulfated aglucone can undergo rearrangement to an isothiocyanate, or form a nitrile or other products. The number of GSLs known from plants, satisfactorily characterized by modern spectroscopic methods (NMR and MS) by mid-2018, is 88. In addition, a group of partially characterized structures with highly variable evidence counts for approximately a further 49. This means that the total number of characterized GSLs from plants is somewhere between 88 and 137. The diversity of GSLs in plants is critically reviewed here, resulting in significant discrepancies with previous reviews. In general, the well-characterized GSLs show resemblance to C-skeletons of the amino acids Ala, Val, Leu, Trp, Ile, Phe/Tyr and Met, or to homologs of Ile, Phe/Tyr or Met. Insufficiently characterized, still hypothetic GSLs include straight-chain alkyl GSLs and chain-elongated GSLs derived from Leu. Additional reports (since 2011) of insufficiently characterized GSLs are reviewed. Usually the crucial missing information is correctly interpreted NMR, which is the most effective tool for GSL identification. Hence, modern use of NMR for GSL identification is also reviewed and exemplified. Apart from isolation, GSLs may be obtained by organic synthesis, allowing isotopically labeled GSLs and any kind of side chain. Enzymatic turnover of GSLs in plants depends on a considerable number of enzymes and other protein factors and furthermore depends on GSL structure. Identification of GSLs must be presented transparently and live up to standard requirements in natural product chemistry. Unfortunately, many recent reports fail in these respects, including reports based on chromatography hyphenated to MS. In particular, the possibility of isomers and isobaric structures is frequently ignored. Recent reports are re-evaluated and interpreted as evidence of the existence of "isoGSLs", i.e. non-GSL isomers of GSLs in plants. For GSL analysis, also with MS-detection, we stress the importance of using authentic standards.
Collapse
Affiliation(s)
- Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia.
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Patrick Rollin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans et CNRS, UMR 7311, BP 6759, F-45067, Orléans Cedex 2, France
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
18
|
Park CK, Horton NC. Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation. Biophys Rev 2019; 11:927-994. [PMID: 31734826 PMCID: PMC6874960 DOI: 10.1007/s12551-019-00602-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI endonuclease system are also highlighted.
Collapse
Affiliation(s)
- Chad K. Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Nancy C. Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
19
|
Comparative Analysis of the Conversion of Mandelonitrile and 2-Phenylpropionitrile by a Large Set of Variants Generated from a Nitrilase Originating from Pseudomonas fluorescens EBC191. Molecules 2019; 24:molecules24234232. [PMID: 31766372 PMCID: PMC6930498 DOI: 10.3390/molecules24234232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/17/2022] Open
Abstract
The arylacetonitrilase from the bacterium Pseudomonas fluorescens EBC191 has been intensively studied as a model to understand the molecular basis for the substrate-, reaction-, and enantioselectivity of nitrilases. The nitrilase converts various aromatic and aliphatic nitriles to the corresponding acids and varying amounts of the corresponding amides. The enzyme has been analysed by site-specific mutagenesis and more than 50 different variants have been generated and analysed for the conversion of (R,S)-mandelonitrile and (R,S)-2-phenylpropionitrile. These comparative analyses demonstrated that single point mutations are sufficient to generate enzyme variants which hydrolyse (R,S)-mandelonitrile to (R)-mandelic acid with an enantiomeric excess (ee) of 91% or to (S)-mandelic acid with an ee-value of 47%. The conversion of (R,S)-2-phenylpropionitrile by different nitrilase variants resulted in the formation of either (S)- or (R)-2-phenylpropionic acid with ee-values up to about 80%. Furthermore, the amounts of amides that are produced from (R,S)-mandelonitrile and (R,S)-2-phenylpropionitrile could be changed by single point mutations between 2%–94% and <0.2%–73%, respectively. The present study attempted to collect and compare the results obtained during our previous work, and to obtain additional general information about the relationship of the amide forming capacity of nitrilases and the enantiomeric composition of the products.
Collapse
|
20
|
Zhang Q, Lu X, Zhang Y, Tang X, Zheng R, Zheng Y. Development of a robust nitrilase by fragment swapping and semi‐rational design for efficient biosynthesis of pregabalin precursor. Biotechnol Bioeng 2019; 117:318-329. [DOI: 10.1002/bit.27203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/06/2019] [Accepted: 10/13/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Qin Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Xia‐Feng Lu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Yan Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Xiao‐Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Ren‐Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| |
Collapse
|
21
|
Mulelu AE, Kirykowicz AM, Woodward JD. Cryo-EM and directed evolution reveal how Arabidopsis nitrilase specificity is influenced by its quaternary structure. Commun Biol 2019; 2:260. [PMID: 31341959 PMCID: PMC6637149 DOI: 10.1038/s42003-019-0505-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/13/2019] [Indexed: 01/17/2023] Open
Abstract
Nitrilases are helical enzymes that convert nitriles to acids and/or amides. All plants have a nitrilase 4 homolog specific for ß-cyanoalanine, while in some plants neofunctionalization has produced nitrilases with altered specificity. Plant nitrilase substrate size and specificity correlate with helical twist, but molecular details of this relationship are lacking. Here we determine, to our knowledge, the first close-to-atomic resolution (3.4 Å) cryo-EM structure of an active helical nitrilase, the nitrilase 4 from Arabidopsis thaliana. We apply site-saturation mutagenesis directed evolution to three residues (R95, S224, and L169) and generate a mutant with an altered helical twist that accepts substrates not catalyzed by known plant nitrilases. We reveal that a loop between α2 and α3 limits the length of the binding pocket and propose that it shifts position as a function of helical twist. These insights will allow us to start designing nitrilases for chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Andani E. Mulelu
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Structural Biology Research Unit, University of Cape Town, Cape Town, 7925 South Africa
| | - Angela M. Kirykowicz
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Structural Biology Research Unit, University of Cape Town, Cape Town, 7925 South Africa
| | - Jeremy D. Woodward
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925 South Africa
- Structural Biology Research Unit, University of Cape Town, Cape Town, 7925 South Africa
| |
Collapse
|
22
|
Ashrafi AM, Sýs M, Sedláčková E, Farag AS, Adam V, Přibyl J, Richtera L. Application of the Enzymatic Electrochemical Biosensors for Monitoring Non-Competitive Inhibition of Enzyme Activity by Heavy Metals. SENSORS 2019; 19:s19132939. [PMID: 31277338 PMCID: PMC6651500 DOI: 10.3390/s19132939] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/21/2023]
Abstract
The inhibition effect of the selected heavy metals (Ag+, Cd2+, Cu2+, and Hg2+) on glucose oxidase (GOx) enzyme from Aspergillus niger (EC 1.1.3.4.) was studied using a new amperometric biosensor with an electrochemical transducer based on a glassy carbon electrode (GCE) covered with a thin layer of multi-wall carbon nanotubes (MWCNTs) incorporated with ruthenium(IV) oxide as a redox mediator. Direct adsorption of multi-wall carbon nanotubes (MWCNTs) and subsequent covering with Nafion® layer was used for immobilization of Gox. The analytical figures of merit of the developed glucose (Glc) biosensor are sufficient for determination of Glc in body fluids in clinical analysis. From all tested heavy metals, mercury(II) has the highest inhibition effect. However, it is necessary to remember that cadmium and silver ions also significantly inhibit the catalytic activity of Gox. Therefore, the development of Gox biosensors for selective indirect determination of each heavy metal still represents a challenge in the field of bioelectroanalysis. It can be concluded that amperometric biosensors, differing in the utilized enzyme, could find their application in the toxicity studies of various poisons.
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Milan Sýs
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Eliška Sedláčková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Amir Shaaban Farag
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Jan Přibyl
- Czech Republic CEITEC MU, Nanobiotechnol Group, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Lukáš Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|