1
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2770-x. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Hemminger Z, Sanchez-Tam G, Ocampo HD, Wang A, Underwood T, Xie F, Zhao Q, Song D, Li JJ, Dong H, Wollman R. Spatial Single-Cell Mapping of Transcriptional Differences Across Genetic Backgrounds in Mouse Brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617260. [PMID: 39416191 PMCID: PMC11483037 DOI: 10.1101/2024.10.08.617260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Genetic variation can alter brain structure and, consequently, function. Comparative statistical analysis of mouse brains across genetic backgrounds requires spatial, single-cell, atlas-scale data, in replicates-a challenge for current technologies. We introduce Atlas-scale Transcriptome Localization using Aggregate Signatures (ATLAS), a scalable tissue mapping method. ATLAS learns transcriptional signatures from scRNAseq data, encodes them in situ with tens of thousands of oligonucleotide probes, and decodes them to infer cell types and imputed transcriptomes. We validated ATLAS by comparing its cell type inferences with direct MERFISH measurements of marker genes and quantitative comparisons to four other technologies. Using ATLAS, we mapped the central brains of five male and five female C57BL/6J (B6) mice and five male BTBR T+ tf/J (BTBR) mice, an idiopathic model of autism, collectively profiling over 40 million cells across over 400 coronal sections. Our analysis revealed over 40 significant differences in cell type distributions and identified 16 regional composition changes across male-female and B6-BTBR comparisons. ATLAS thus enables systematic comparative studies, facilitating organ-level structure-function analysis of disease models.
Collapse
Affiliation(s)
| | | | | | - Aihui Wang
- Department of Chemistry and Biochemistry, UCLA
| | | | - Fangming Xie
- Department of Chemical Biology, David Geffen School of Medicine at UCLA
| | - Qiuying Zhao
- Department of Neurobiology, David Geffen School of Medicine at UCLA
| | | | - Jingyi Jessica Li
- Department of Statistics and Data Science, UCLA
- Institute of Quantitative Biosciences, UCLA
| | - Hongwei Dong
- Department of Neurobiology, David Geffen School of Medicine at UCLA
| | - Roy Wollman
- Department of Chemistry and Biochemistry, UCLA
- Institute of Quantitative Biosciences, UCLA
- Department of Integrative Biology and Physiology, UCLA
| |
Collapse
|
3
|
Xie X, Jin K, Wang Z, Wang S, Zhu J, Huang J, Tang S, Cai K, Zhang J. Constraint Coupling of Redox Cascade and Electron Transfer Synchronization on Electrode-Nanosensor Interface for Repeatable Detection of Tumor Biomarkers. SMALL METHODS 2024; 8:e2301330. [PMID: 38044264 DOI: 10.1002/smtd.202301330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Quantitative analysis of up-regulated biomarkers in pathological tissues is helpful to tumor surgery yet the loss of biomarker extraction and time-consuming operation limited the accurate and quick judgement in preoperative or intraoperative diagnosis. Herein, an immobilization-free electrochemical sensing platform is developed by constraint coupling of electron transfer cascade on electrode-nanosensor interface. Specifically, electrochemical indicator (Ri)-labeled single-stranded DNA on electroactive nanodonor (polydopamine, PDA) can be responsively detached by formation of DNA complex through the recognition and binding with targets. By applying the oxidation potential of Ri, nanosensor collisions on electrode surface trigger a cascade redox cycling of PDA and Ri through synchronous electron transfer, which boost the amplification of current signal output. The developed nanosensor exhibit excellent linear response toward up-regulated biomarkers (miRNA-21, ATP, and VEGF) with low detection limits (32 fM, 386 pM, and 2.8 pM). Moreover, background influence from physiological interferent is greatly reduced by restricted electron transfer coupling on electrode. The practical applicability is illustrated in sensitive and highly repeatable profiling of miRNA-21 in lysate of tumor cells and tumor tissue, beneficial for more reliable diagnosis. This electrochemical platform by employing electron transfer cascades at heterogeneous interfaces offers a route to anti-interference detection of biomarkers in tumor tissues.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaifei Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Shuai Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Shuqi Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
4
|
Zhao Z, Jiang M, He C, Yin W, Feng Y, Wang P, Ying L, Fu T, Su D, Peng R, Tan W. Enhancing Specific Fluorescence In Situ Hybridization with Quantum Dots for Single-Molecule RNA Imaging in Formalin-Fixed Paraffin-Embedded Tumor Tissues. ACS NANO 2024; 18:9958-9968. [PMID: 38547522 DOI: 10.1021/acsnano.3c10216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Single-molecule fluorescence in situ hybridization (smFISH) represents a promising approach for the quantitative analysis of nucleic acid biomarkers in clinical tissue samples. However, low signal intensity and high background noise are complications that arise from diagnostic pathology when performed with smFISH-based RNA imaging in formalin-fixed paraffin-embedded (FFPE) tissue specimens. Moreover, the associated complex procedures can produce uncertain results and poor image quality. Herein, by combining the high specificity of split DNA probes with the high signal readout of ZnCdSe/ZnS quantum dot (QD) labeling, we introduce QD split-FISH, a high-brightness smFISH technology, to quantify the expression of mRNA in both cell lines and clinical FFPE tissue samples of breast cancer and lung squamous carcinoma. Owing to its high signal-to-noise ratio, QD split-FISH is a fast, inexpensive, and sensitive method for quantifying mRNA expression in FFPE tumor tissues, making it suitable for biomarker imaging and diagnostic pathology.
Collapse
Affiliation(s)
- Zeyin Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mengyuan Jiang
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chen He
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wenjuan Yin
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yawei Feng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Peng Wang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lisha Ying
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Department of Pathology, Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
5
|
Ren L, Huang D, Liu H, Ning L, Cai P, Yu X, Zhang Y, Luo N, Lin H, Su J, Zhang Y. Applications of single‑cell omics and spatial transcriptomics technologies in gastric cancer (Review). Oncol Lett 2024; 27:152. [PMID: 38406595 PMCID: PMC10885005 DOI: 10.3892/ol.2024.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Gastric cancer (GC) is a prominent contributor to global cancer-related mortalities, and a deeper understanding of its molecular characteristics and tumor heterogeneity is required. Single-cell omics and spatial transcriptomics (ST) technologies have revolutionized cancer research by enabling the exploration of cellular heterogeneity and molecular landscapes at the single-cell level. In the present review, an overview of the advancements in single-cell omics and ST technologies and their applications in GC research is provided. Firstly, multiple single-cell omics and ST methods are discussed, highlighting their ability to offer unique insights into gene expression, genetic alterations, epigenomic modifications, protein expression patterns and cellular location in tissues. Furthermore, a summary is provided of key findings from previous research on single-cell omics and ST methods used in GC, which have provided valuable insights into genetic alterations, tumor diagnosis and prognosis, tumor microenvironment analysis, and treatment response. In summary, the application of single-cell omics and ST technologies has revealed the levels of cellular heterogeneity and the molecular characteristics of GC, and holds promise for improving diagnostics, personalized treatments and patient outcomes in GC.
Collapse
Affiliation(s)
- Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| | - Danni Huang
- Department of Radiology, Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Hongjiang Liu
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan 624099, P.R. China
| | - Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| | - Peiling Cai
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Xiaolong Yu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Material Science and Engineering Institute of Hainan University, Sanya, Hainan 572025, P.R. China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Nanchao Luo
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan 624099, P.R. China
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Jinsong Su
- Research Institute of Integrated Traditional Chinese Medicine and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yinghui Zhang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| |
Collapse
|
6
|
Zhou X, Seow WY, Ha N, Cheng TH, Jiang L, Boonruangkan J, Goh JJL, Prabhakar S, Chou N, Chen KH. Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes. Nat Commun 2024; 15:2342. [PMID: 38491027 PMCID: PMC10943009 DOI: 10.1038/s41467-024-46669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
High-dimensional, spatially resolved analysis of intact tissue samples promises to transform biomedical research and diagnostics, but existing spatial omics technologies are costly and labor-intensive. We present Fluorescence In Situ Hybridization of Cellular HeterogeneIty and gene expression Programs (FISHnCHIPs) for highly sensitive in situ profiling of cell types and gene expression programs. FISHnCHIPs achieves this by simultaneously imaging ~2-35 co-expressed genes (clustered into modules) that are spatially co-localized in tissues, resulting in similar spatial information as single-gene Fluorescence In Situ Hybridization (FISH), but with ~2-20-fold higher sensitivity. Using FISHnCHIPs, we image up to 53 modules from the mouse kidney and mouse brain, and demonstrate high-speed, large field-of-view profiling of a whole tissue section. FISHnCHIPs also reveals spatially restricted localizations of cancer-associated fibroblasts in a human colorectal cancer biopsy. Overall, FISHnCHIPs enables fast, robust, and scalable cell typing of tissues with normal physiology or undergoing pathogenesis.
Collapse
Affiliation(s)
- Xinrui Zhou
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore
| | - Wan Yi Seow
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore
| | - Norbert Ha
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore
| | - Teh How Cheng
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore
| | - Lingfan Jiang
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore
| | - Jeeranan Boonruangkan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore
| | - Jolene Jie Lin Goh
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore
| | - Shyam Prabhakar
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore
| | - Nigel Chou
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore.
| | - Kok Hao Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore.
| |
Collapse
|
7
|
Rolph MJ, Bolfa P, Cavanaugh SM, Rolph KE. Fluorescent In Situ Hybridization for the Detection of Intracellular Bacteria in Companion Animals. Vet Sci 2024; 11:52. [PMID: 38275934 PMCID: PMC10821249 DOI: 10.3390/vetsci11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
FISH techniques have been applied for the visualization and identification of intracellular bacteria in companion animal species. Most frequently, these techniques have focused on the identification of adhesive-invasive Escherichia coli in gastrointestinal disease, although various other organisms have been identified in inflammatory or neoplastic gastrointestinal disease. Previous studies have investigated a potential role of Helicobacter spp. in inflammatory gastrointestinal and hepatic conditions. Other studies evaluating the role of infectious organisms in hepatopathies have received some attention with mixed results. FISH techniques using both eubacterial and species-specific probes have been applied in inflammatory cardiovascular, urinary, and cutaneous diseases to screen for intracellular bacteria. This review summarizes the results of these studies.
Collapse
Affiliation(s)
| | | | | | - Kerry E. Rolph
- Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| |
Collapse
|
8
|
Bressan D, Battistoni G, Hannon GJ. The dawn of spatial omics. Science 2023; 381:eabq4964. [PMID: 37535749 PMCID: PMC7614974 DOI: 10.1126/science.abq4964] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Spatial omics has been widely heralded as the new frontier in life sciences. This term encompasses a wide range of techniques that promise to transform many areas of biology and eventually revolutionize pathology by measuring physical tissue structure and molecular characteristics at the same time. Although the field came of age in the past 5 years, it still suffers from some growing pains: barriers to entry, robustness, unclear best practices for experimental design and analysis, and lack of standardization. In this Review, we present a systematic catalog of the different families of spatial omics technologies; highlight their principles, power, and limitations; and give some perspective and suggestions on the biggest challenges that lay ahead in this incredibly powerful-but still hard to navigate-landscape.
Collapse
Affiliation(s)
- Dario Bressan
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | - Giorgia Battistoni
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | - Gregory J. Hannon
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| |
Collapse
|
9
|
Jiang M, Wei K, Li M, Lin C, Ke R. Single-molecule RNA in situ detection in clinical FFPE tissue sections by vsmCISH. RNA (NEW YORK, N.Y.) 2023; 29:836-846. [PMID: 36813533 PMCID: PMC10187679 DOI: 10.1261/rna.079482.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/05/2023] [Indexed: 05/18/2023]
Abstract
Although RNA plays a vital role in gene expression, it is less used as an in situ biomarker for clinical diagnostics than DNA and protein. This is mainly due to technical challenges caused by the low expression level and easy degradation of RNA molecules. To tackle this issue, methods that are sensitive and specific are needed. Here, we present an RNA single-molecule chromogenic in situ hybridization assay based on DNA probe proximity ligation and rolling circle amplification. When the DNA probes hybridize into close proximity to the RNA molecules, they form a V-shape structure and mediate the circularization of circle probes. Thus, our method was termed vsmCISH. We successfully applied our method to assess HER2 mRNA expression status in invasive breast cancer tissue and investigated the utility of albumin mRNA ISH for differentiating primary from metastatic liver cancer. The promising results on clinical samples indicate that our method has great potential for application in diagnosing diseases using RNA biomarkers.
Collapse
Affiliation(s)
- Meng Jiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Kaipeng Wei
- Department of Pathology, The 910 Hospital, Quanzhou, Fujian, China
| | - Meiqing Li
- Department of Pathology, Women and Children's Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Chen Lin
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| |
Collapse
|
10
|
Monné Rodríguez JM, Frisk AL, Kreutzer R, Lemarchand T, Lezmi S, Saravanan C, Stierstorfer B, Thuilliez C, Vezzali E, Wieczorek G, Yun SW, Schaudien D. European Society of Toxicologic Pathology (Pathology 2.0 Molecular Pathology Special Interest Group): Review of In Situ Hybridization Techniques for Drug Research and Development. Toxicol Pathol 2023; 51:92-111. [PMID: 37449403 PMCID: PMC10467011 DOI: 10.1177/01926233231178282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In situ hybridization (ISH) is used for the localization of specific nucleic acid sequences in cells or tissues by complementary binding of a nucleotide probe to a specific target nucleic acid sequence. In the last years, the specificity and sensitivity of ISH assays were improved by innovative techniques like synthetic nucleic acids and tandem oligonucleotide probes combined with signal amplification methods like branched DNA, hybridization chain reaction and tyramide signal amplification. These improvements increased the application spectrum for ISH on formalin-fixed paraffin-embedded tissues. ISH is a powerful tool to investigate DNA, mRNA transcripts, regulatory noncoding RNA, and therapeutic oligonucleotides. ISH can be used to obtain spatial information of a cell type, subcellular localization, or expression levels of targets. Since immunohistochemistry and ISH share similar workflows, their combination can address simultaneous transcriptomics and proteomics questions. The goal of this review paper is to revisit the current state of the scientific approaches in ISH and its application in drug research and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Seong-Wook Yun
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
11
|
Yu Q, Jiang M, Wu L. Spatial transcriptomics technology in cancer research. Front Oncol 2022; 12:1019111. [PMID: 36313703 PMCID: PMC9606570 DOI: 10.3389/fonc.2022.1019111] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/21/2022] [Indexed: 08/25/2023] Open
Abstract
In recent years, spatial transcriptomics (ST) technologies have developed rapidly and have been widely used in constructing spatial tissue atlases and characterizing spatiotemporal heterogeneity of cancers. Currently, ST has been used to profile spatial heterogeneity in multiple cancer types. Besides, ST is a benefit for identifying and comprehensively understanding special spatial areas such as tumor interface and tertiary lymphoid structures (TLSs), which exhibit unique tumor microenvironments (TMEs). Therefore, ST has also shown great potential to improve pathological diagnosis and identify novel prognostic factors in cancer. This review presents recent advances and prospects of applications on cancer research based on ST technologies as well as the challenges.
Collapse
Affiliation(s)
- Qichao Yu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Jiang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Liang Wu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| |
Collapse
|
12
|
Rensen E, Pietropaoli S, Mueller F, Weber C, Souquere S, Sommer S, Isnard P, Rabant M, Gibier JB, Terzi F, Simon-Loriere E, Rameix-Welti MA, Pierron G, Barba-Spaeth G, Zimmer C. Sensitive visualization of SARS-CoV-2 RNA with CoronaFISH. Life Sci Alliance 2022; 5:e202101124. [PMID: 34996842 PMCID: PMC8742873 DOI: 10.26508/lsa.202101124] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/22/2023] Open
Abstract
The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single linear RNA segment that serves as a template for transcription and replication, leading to the synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to visualize vRNA directly in infected cells are critical to analyze the viral replication cycle, screen for therapeutic molecules, or study infections in human tissue. Here, we report the design, validation, and initial application of FISH probes to visualize positive or negative RNA of SARS-CoV-2 (CoronaFISH). We demonstrate sensitive visualization of vRNA in African green monkey and several human cell lines, in patient samples and human tissue. We further demonstrate the adaptation of CoronaFISH probes to electron microscopy. We provide all required oligonucleotide sequences, source code to design the probes, and a detailed protocol. We hope that CoronaFISH will complement existing techniques for research on SARS-CoV-2 biology and COVID-19 pathophysiology, drug screening, and diagnostics.
Collapse
Affiliation(s)
- Elena Rensen
- Institut Pasteur, Université de Paris, CNRS UMR 3691, Imaging and Modeling Unit, Paris, France
| | - Stefano Pietropaoli
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Florian Mueller
- Institut Pasteur, Université de Paris, CNRS UMR 3691, Imaging and Modeling Unit, Paris, France
| | - Christian Weber
- Institut Pasteur, Université de Paris, CNRS UMR 3691, Imaging and Modeling Unit, Paris, France
| | | | - Sina Sommer
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Pierre Isnard
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Paris, France
- Service d'Anatomo-Pathologie, AP-HP, Hôpital Necker Enfants Malades, AP-HP Centre, Paris, France
| | - Marion Rabant
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Paris, France
- Service d'Anatomo-Pathologie, AP-HP, Hôpital Necker Enfants Malades, AP-HP Centre, Paris, France
| | - Jean-Baptiste Gibier
- Service d'Anatomo-Pathologie, Centre de Biologie Pathologie, CHU Lille, Lille, France
| | - Fabiola Terzi
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Paris, France
| | - Etienne Simon-Loriere
- Institut Pasteur, Université de Paris, G5 Evolutionary Genomics of RNA Viruses, Paris, France
| | - Marie-Anne Rameix-Welti
- Université Paris-Saclay, INSERM, Université de Versailles St. Quentin, UMR 1173 (2I), Montigny-le-Bretonneux, France
- AP-HP, Université Paris Saclay, Hôpital Ambroise Paré, Laboratoire de Microbiologie, Boulogne-Billancourt, France
| | | | - Giovanna Barba-Spaeth
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Christophe Zimmer
- Institut Pasteur, Université de Paris, CNRS UMR 3691, Imaging and Modeling Unit, Paris, France
| |
Collapse
|
13
|
Photothermal mediated rolling circle amplification toward specific and direct in situ mRNA detection. Biosens Bioelectron 2021; 192:113507. [PMID: 34330037 DOI: 10.1016/j.bios.2021.113507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Rolling circle amplification (RCA) had the prospect of assisting clinic diagnosis with advantage in in situ mRNA detection at single cell level. However, for direct mRNA detection, RCA had relatively low detection specificity and efficiency. Here, we introduced 4-(10, 15, 20-Triphenylporphyrin-5-yl)phenylamine (TPP) modified Au nanoparticle (Au-TPP) to improve the specificity of in-situ RCA. Through photothermal effect, Au-TPP acted as the specific heat source upon irradiation of 635 nm laser. The photothermal mediated RCA would be initiated only when the Au-TPP as well as the padlock anchored adjacently on the same target mRNA. Furthermore, we introduced 'C' form target-specific oligonucleotide linker probes to make generic padlock and Au-TPP for different mRNA targets, so that for a new mRNA target one does not have to redesign the padlock and the Au-TPP probe. By these strategies, we successfully developed a specific and photothermal mediated hyperbranched rolling circle amplification for direct in situ mRNA detection, suitable for both formalin-fixed paraffin-embedded (FFPE) tissue section and frozen tissue section.
Collapse
|
14
|
Lei CS, Kung HJ, Shih JW. Long Non-Coding RNAs as Functional Codes for Oral Cancer: Translational Potential, Progress and Promises. Int J Mol Sci 2021; 22:4903. [PMID: 34063159 PMCID: PMC8124393 DOI: 10.3390/ijms22094903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022] Open
Abstract
Oral cancer is one of the leading malignant tumors worldwide. Despite the advent of multidisciplinary approaches, the overall prognosis of patients with oral cancer is poor, mainly due to late diagnosis. There is an urgent need to develop valid biomarkers for early detection and effective therapies. Long non-coding RNAs (lncRNAs) are recognized as key elements of gene regulation, with pivotal roles in various physiological and pathological processes, including cancer. Over the past few years, an exponentially growing number of lncRNAs have been identified and linked to tumorigenesis and prognosis outcomes in oral cancer, illustrating their emerging roles in oral cancer progression and the associated signaling pathways. Herein, we aim to summarize the most recent advances made concerning oral cancer-associated lncRNA, and their expression, involvement, and potential clinical impact, reported to date, with a specific focus on the lncRNA-mediated molecular regulation in oncogenic signaling cascades and oral malignant progression, while exploring their potential, and challenges, for clinical applications as biomarkers or therapeutic targets for oral cancer.
Collapse
Affiliation(s)
- Cing-Syuan Lei
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (C.-S.L.); (H.-J.K.)
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (C.-S.L.); (H.-J.K.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jing-Wen Shih
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (C.-S.L.); (H.-J.K.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
15
|
Wan J, Lu H. Enabling high-throughput single-animal gene-expression studies with molecular and micro-scale technologies. LAB ON A CHIP 2020; 20:4528-4538. [PMID: 33237042 PMCID: PMC7769683 DOI: 10.1039/d0lc00881h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gene expression and regulation play diverse and important roles across all living systems. By quantifying the expression, whether in a sample of single cells, a specific tissue, or in a whole animal, one can gain insights into the underlying biology. Many biological questions now require single-animal and tissue-specific resolution, such as why individuals, even within an isogenic population, have variations in development and aging across different tissues and organs. The popular techniques that quantify the transcriptome (e.g. RNA-sequencing) process populations of animals and cells together and thus, have limitations in both individual and spatial resolution. There are single-animal assays available (e.g. fluorescent reporters); however, they suffer other technical bottlenecks, such as a lack of robust sample-handling methods. Microfluidic technologies have demonstrated various improvements throughout the years, and it is likely they can enhance the impact of these single-animal gene-expression assays. In this perspective, we aim to highlight how the engineering/method-development field have unique opportunities to create new tools that can enable us to robustly answer the next set of important questions in biology that require high-density, high-quality gene expression data.
Collapse
Affiliation(s)
- Jason Wan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA.
| | - Hang Lu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA. and School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
16
|
Lin C, Jiang M, Liu L, Chen X, Zhao Y, Chen L, Hong Y, Wang X, Hong C, Yao X, Ke R. Imaging of individual transcripts by amplification-based single-molecule fluorescence in situ hybridization. N Biotechnol 2020; 61:116-123. [PMID: 33301924 DOI: 10.1016/j.nbt.2020.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 11/29/2022]
Abstract
An amplification-based single-molecule fluorescence in situ hybridization (asmFISH) assay is introduced that exploits improved probe design for highly specific imaging of individual transcripts in fixed cells and tissues. In this method, a pair of DNA ligation probes are ligated on RNA templates upon specific hybridization, followed by probe circularization based on enzymatic DNA ligation and rolling circle amplification for signal boosting. The method is more efficient and specific than the padlock probe assay for detection of the same RNA molecules and discrimination of single nucleotide polymorphisms. Moreover, asmFISH is a versatile method which can be applied not only to cultured cells, but also to fresh frozen and formalin-fixed, paraffin-embedded tissue sections.
Collapse
Affiliation(s)
- Chen Lin
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Meng Jiang
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Ling Liu
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Xiaoyuan Chen
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China
| | - Yuancun Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Laboratory Medicine, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Laboratory Medicine, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yujuan Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Chengye Hong
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Xihu Yao
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Rongqin Ke
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, China.
| |
Collapse
|
17
|
Zhao Y, Lin C, Wu P, Chen X, Zhao Y, Li Y, Chen L, Nilsson M, Ke R. Single Cell RNA Expression Analysis Using Flow Cytometry Based on Specific Probe Ligation and Rolling Circle Amplification. ACS Sens 2020; 5:3031-3036. [PMID: 32935538 DOI: 10.1021/acssensors.0c01569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conventional flow cytometry has been widely used for high-throughput single-cell gene expression analysis using specific antibody staining. However, this is limited by the availability of high-quality antibodies. We developed a novel flow cytometry RNA detection technique termed RCA-Flow for single-cell RNA expression analysis. We showed that it is able to analyze not only mRNAs but also microRNAs and circular RNAs that are otherwise difficult to analyze by other flow cytometry techniques. The versatility for high-throughput analysis of different types of RNA molecules makes our method possess great potential for both biomedical and clinical applications.
Collapse
Affiliation(s)
- Yansong Zhao
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Chen Lin
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Pengcheng Wu
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Xiaoyuan Chen
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Yuancun Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Laboratory Medicine, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yupeng Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Laboratory Medicine, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Laboratory Medicine, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, 171 21 Solna, Sweden
| | - Rongqin Ke
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou 362021, China
| |
Collapse
|
18
|
Nerurkar SN, Goh D, Cheung CCL, Nga PQY, Lim JCT, Yeong JPS. Transcriptional Spatial Profiling of Cancer Tissues in the Era of Immunotherapy: The Potential and Promise. Cancers (Basel) 2020; 12:E2572. [PMID: 32917035 PMCID: PMC7563386 DOI: 10.3390/cancers12092572] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 12/18/2022] Open
Abstract
Intratumoral heterogeneity poses a major challenge to making an accurate diagnosis and establishing personalized treatment strategies for cancer patients. Moreover, this heterogeneity might underlie treatment resistance, disease progression, and cancer relapse. For example, while immunotherapies can confer a high success rate, selective pressures coupled with dynamic evolution within a tumour can drive the emergence of drug-resistant clones that allow tumours to persist in certain patients. To improve immunotherapy efficacy, researchers have used transcriptional spatial profiling techniques to identify and subsequently block the source of tumour heterogeneity. In this review, we describe and assess the different technologies available for such profiling within a cancer tissue. We first outline two well-known approaches, in situ hybridization and digital spatial profiling. Then, we highlight the features of an emerging technology known as Visium Spatial Gene Expression Solution. Visium generates quantitative gene expression data and maps them to the tissue architecture. By retaining spatial information, we are well positioned to identify novel biomarkers and perform computational analyses that might inform on novel combinatorial immunotherapies.
Collapse
Affiliation(s)
- Sanjna Nilesh Nerurkar
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore 169856, Singapore; (D.G.); (P.Q.Y.N.); (J.C.T.L.)
| | | | - Pei Qi Yvonne Nga
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore 169856, Singapore; (D.G.); (P.Q.Y.N.); (J.C.T.L.)
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore 169856, Singapore; (D.G.); (P.Q.Y.N.); (J.C.T.L.)
| | - Joe Poh Sheng Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore 169856, Singapore; (D.G.); (P.Q.Y.N.); (J.C.T.L.)
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| |
Collapse
|
19
|
Wen G, Vanheusden M, Acke A, Valli D, Neely RK, Leen V, Hofkens J. Evaluation of Direct Grafting Strategies via Trivalent Anchoring for Enabling Lipid Membrane and Cytoskeleton Staining in Expansion Microscopy. ACS NANO 2020; 14:7860-7867. [PMID: 32176475 DOI: 10.1101/696039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Super-resolution fluorescence microscopy is a key tool in the elucidation of biological fine structures, providing insights into the distribution and interactions of biomolecular complexes down to the nanometer scale. Expansion microscopy is a recently developed approach for achieving nanoscale resolution on a conventional microscope. Here, biological samples are embedded in an isotropically swollen hydrogel. This physical expansion of the sample allows imaging with resolutions down to the tens-of-nanometers. However, because of the requirement that fluorescent labels are covalently bound to the hydrogel, standard, small-molecule targeting of fluorophores has proven incompatible with expansion microscopy. Here, we show a chemical linking approach that enables direct, covalent grafting of a targeting molecule and fluorophore to the hydrogel in expansion microscopy. We show application of this series of molecules in the antibody-free targeting of the cell cytoskeleton and in an example of lipid membrane staining for expansion microscopy. Furthermore, using this trivalent linker strategy, we demonstrate the benefit of introducing fluorescent labels post-expansion by visualizing an immunostaining through fluorescent oligonucleotide hybridization after expanding the polymer. Our probes allow different labeling approaches that are compatible with expansion microscopy.
Collapse
Affiliation(s)
- Gang Wen
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
| | | | - Aline Acke
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
| | - Donato Valli
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
| | - Robert K Neely
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Volker Leen
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
20
|
Takahashi H, Horio K, Kato S, Kobori T, Watanabe K, Aki T, Nakashimada Y, Okamura Y. Direct detection of mRNA expression in microbial cells by fluorescence in situ hybridization using RNase H-assisted rolling circle amplification. Sci Rep 2020; 10:9588. [PMID: 32541674 PMCID: PMC7295810 DOI: 10.1038/s41598-020-65864-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/04/2020] [Indexed: 11/11/2022] Open
Abstract
Meta-analyses using next generation sequencing is a powerful strategy for studying microbiota; however, it cannot clarify the role of individual microbes within microbiota. To know which cell expresses what gene is important for elucidation of the individual cell’s function in microbiota. In this report, we developed novel fluorescence in situ hybridization (FISH) procedure using RNase-H-assisted rolling circle amplification to visualize mRNA of interest in microbial cells without reverse transcription. Our results show that this method is applicable to both Gram-negative and Gram-positive microbes without any noise from DNA, and it is possible to visualize the target mRNA expression directly at the single-cell level. Therefore, our procedure, when combined with data of meta-analyses, can help to understand the role of individual microbes in the microbiota.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.
| | - Kyohei Horio
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Toshiro Kobori
- Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8642, Japan
| | - Kenshi Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Tsunehiro Aki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Yoshiko Okamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan. .,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
21
|
Single-molecule analysis of nucleic acid biomarkers - A review. Anal Chim Acta 2020; 1115:61-85. [PMID: 32370870 DOI: 10.1016/j.aca.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are important biomarkers for disease detection, monitoring, and treatment. Advances in technologies for nucleic acid analysis have enabled discovery and clinical implementation of nucleic acid biomarkers. However, challenges remain with technologies for nucleic acid analysis, thereby limiting the use of nucleic acid biomarkers in certain contexts. Here, we review single-molecule technologies for nucleic acid analysis that can be used to overcome these challenges. We first discuss the various types of nucleic acid biomarkers important for clinical applications and conventional technologies for nucleic acid analysis. We then discuss technologies for single-molecule in vitro and in situ analysis of nucleic acid biomarkers. Finally, we discuss other ultra-sensitive techniques for nucleic acid biomarker detection.
Collapse
|
22
|
Chatterjee T, Li Z, Khanna K, Montoya K, Tewari M, Walter NG, Johnson-Buck A. Ultraspecific analyte detection by direct kinetic fingerprinting of single molecules. Trends Analyt Chem 2020; 123:115764. [PMID: 32863484 PMCID: PMC7451408 DOI: 10.1016/j.trac.2019.115764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The detection and quantification of biomarkers have numerous applications in biological research and medicine. The most widely used methods to detect nucleic acids require amplification via the polymerase chain reaction (PCR). However, errors arising from the imperfect copying fidelity of DNA polymerases, limited specificity of primers, and heat-induced damage reduce the specificity of PCR-based methods, particularly for single-nucleotide variants. Furthermore, not all analytes can be amplified efficiently. While amplification-free methods avoid these pitfalls, the specificity of most such methods is strictly constrained by probe binding thermodynamics, which for example hampers detection of rare somatic mutations. In contrast, single-molecule recognition through equilibrium Poisson sampling (SiMREPS) provides ultraspecific detection with single-molecule and single-nucleotide sensitivity by monitoring the repetitive interactions of a fluorescent probe with surface-immobilized targets. In this review, we discuss SiMREPS in comparison with other analytical approaches, and describe its utility in quantifying a range of nucleic acids and other analytes.
Collapse
Affiliation(s)
- Tanmay Chatterjee
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zi Li
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kunal Khanna
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Karen Montoya
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Abstract
As RNA in situ hybridization (ISH) moves into the mainstream lab and increasingly into clinical adoption and additional multiplexing techniques are developed to enable further RNA ISH identification, a set of guidelines on the validation of ISH is required. These guidelines include choice of methods, appropriate controls, and protocol optimization as well as a central core message of understanding the target, understanding the ISH technique, and using the most appropriate controlling mechanisms to enable reproducible and trustworthy data to be obtained.
Collapse
|
24
|
Svedlund J, Strell C, Qian X, Zilkens KJC, Tobin NP, Bergh J, Sieuwerts AM, Nilsson M. Generation of in situ sequencing based OncoMaps to spatially resolve gene expression profiles of diagnostic and prognostic markers in breast cancer. EBioMedicine 2019; 48:212-223. [PMID: 31526717 PMCID: PMC6838368 DOI: 10.1016/j.ebiom.2019.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gene expression analysis of breast cancer largely relies on homogenized tissue samples. Due to the high degree of cellular and molecular heterogeneity of tumor tissues, bulk tissue-based analytical approaches can only provide very limited system-level information about different signaling mechanisms and cellular interactions within the complex tissue context. METHODS We describe an analytical approach using in situ sequencing (ISS), enabling highly multiplexed, spatially and morphologically resolved gene expression profiling. Ninety-one genes including prognostic and predictive marker profiles, as well as genes involved in specific cellular pathways were mapped within whole breast cancer tissue sections, covering luminal A/B-like, HER2-positive and triple negative tumors. Finally, all these features were combined and assembled into a molecular-morphological OncoMap for each tumor tissue. FINDINGS Our in situ approach spatially revealed intratumoral heterogeneity with regard to tumor subtype as well as to the OncotypeDX recurrence score and even uncovered areas of minor cellular subpopulations. Since ISS-resolved molecular profiles are linked to their histological context, a deeper analysis of the core and periphery of tumor foci enabled identification of specific gene expression patterns associated with these morphologically relevant regions. INTERPRETATION ISS generated OncoMaps represent useful tools to extend our general understanding of the biological processes behind tumor progression and can further support the identification of novel therapeutical targets as well as refine tumor diagnostics. FUND: Swedish Cancerfonden, UCAN, Vetenskapsrådet, Cancer Genomics Netherlands, Iris, Stig och Gerry Castenbäcks Stiftelse, BRECT, PCM Program, King Gustaf V Jubilee Fund, BRO, KI and Stockholm County Council, Alice Wallenberg Foundation.
Collapse
Affiliation(s)
- Jessica Svedlund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Carina Strell
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Xiaoyan Qian
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Kilian J C Zilkens
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Nicholas P Tobin
- Karolinska Institutet and Breast Cancer Section, Cancer Theme Karolinska University Hospital, Department of Oncology and Pathology, Stockholm, Sweden
| | - Jonas Bergh
- Karolinska Institutet and Breast Cancer Section, Cancer Theme Karolinska University Hospital, Department of Oncology and Pathology, Stockholm, Sweden; Department of Public Health, Oxford University, Oxford, United Kingdom
| | - Anieta M Sieuwerts
- Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Department of Medical Oncology, Rotterdam, the Netherlands
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
25
|
Jiang M, Liu L, Hong C, Chen D, Yao X, Chen X, Lin C, Ke R. Single molecule chromogenic in situ hybridization assay for RNA visualization in fixed cells and tissues. RNA (NEW YORK, N.Y.) 2019; 25:1038-1046. [PMID: 31064786 PMCID: PMC6633204 DOI: 10.1261/rna.070599.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Visualization of gene expression at single RNA molecular level represents a great challenge to both imaging technologies and molecular engineering. Here we show a single molecule chromogenic in situ hybridization (smCISH) assay that enables counting and localizing individual RNA molecules in fixed cells and tissue under bright-field microscopy. Our method is based on in situ padlock probe assays directly using RNA as a ligation template and rolling circle amplification combined with enzyme catalyzed chromogenic reaction for amplification product visualization. We show potential applications of our method by detecting gene expression variations in single cells, subcellular localization information of expressed genes, and gene expression heterogeneity in formalin-fixed, paraffin-embedded tissue sections. This facile and straightforward method can in principle be applied to any type of RNA molecules in different samples.
Collapse
Affiliation(s)
- Meng Jiang
- Center for Precision Medicine, School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Ling Liu
- Center for Precision Medicine, School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Chengye Hong
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Debo Chen
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Xihu Yao
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Xiaoyuan Chen
- Center for Precision Medicine, School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Chen Lin
- Center for Precision Medicine, School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Rongqin Ke
- Center for Precision Medicine, School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian, 362021, China
| |
Collapse
|