1
|
Suetsugu K, Hirota SK, Makino T, Suyama Y, Kaneko S, Fukushima K. Genomic signature and evolutionary history of completely cleistogamous lineages in the non-photosynthetic orchid Gastrodia. Proc Biol Sci 2025; 292:20250574. [PMID: 40393491 DOI: 10.1098/rspb.2025.0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/22/2025] Open
Abstract
Despite a long-standing interest since Darwin's time, the genomic implications of obligate self-fertilization remain elusive. Complete cleistogamy-the obligate production of closed, self-pollinating flowers-represents an extreme reproductive strategy. Here, we present the genomic profiles and evolutionary history of two lineages of the mycoheterotrophic orchid Gastrodia, both of which independently acquired complete cleistogamy, based on detailed sampling and a combination of simple sequence repeat (SSR), multiplexed ISSR genotyping by sequencing (MIG-seq) and RNA-seq data. Our analysis reveals clear species delimitation, with no evidence of introgression between the completely cleistogamous species and their co-occurring allogamous sisters. Intriguingly, all analyses indicate that both the completely cleistogamous Gastrodia species and their allogamous sisters exhibit genetic profiles typical of self-pollinating plants. This pattern suggests that their ancestors, probably bearing allogamous flowers, had already evolved mechanisms to mitigate the deleterious effects of selfing, potentially facilitating the emergence of complete cleistogamy through benefits such as reproductive assurance, enhanced colonization ability and species reinforcement. Meanwhile, further analyses suggest that complete cleistogamy evolved very recently (possibly within the last 1000-2000 years) in these two Gastrodia lineages. Combined with the scant evidence of complete cleistogamy outside Gastrodia, our findings imply a limited and ephemeral role for complete cleistogamy in plant speciation.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
- Institute for Advanced Research, Kobe University, Kobe, Hyogo, Japan
| | - Shun K Hirota
- Botanical Gardens, Osaka Metropolitan University, Katano, Osaka, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Yoshihisa Suyama
- Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Shingo Kaneko
- Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Japan
| | - Kenji Fukushima
- National Institute of Genetics, Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| |
Collapse
|
2
|
Shao S, Li Y, Feng X, Jin C, Liu M, Zhu R, Tracy ME, Guo Z, He Z, Shi S, Xu S. Chromosomal-Level Genome Suggests Adaptive Constraints Leading to the Historical Population Decline in an Extremely Endangered Plant. Mol Ecol Resour 2025; 25:e14045. [PMID: 39575519 DOI: 10.1111/1755-0998.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 03/08/2025]
Abstract
Increased human activity and climate change have significantly impacted wild habitats and increased the number of endangered species. Exploring evolutionary history and predicting adaptive potential using genomic data will facilitate species conservation and biodiversity recovery. Here, we examined the genome evolution of a critically endangered tree Pellacalyx yunnanensis, a plant species with extremely small populations (PSESP) that is narrowly distributed in Xishuangbanna, China. The species has neared extinction due to economic exploitation in recent decades. We assembled a chromosome-level genome of 334 Mb, with the N50 length of 20.5 Mb. Using the genome, we discovered that P. yunnanensis has undergone several population size reductions, leading to excess deleterious mutations. The species may possess low adaptive potential due to reduced genetic diversity and the loss of stress-responsive genes. We estimate that P. yunnanensis is the basal species of its genus and diverged from its relatives during global cooling, suggesting it was stranded in unsuitable environments during periods of dramatic climate change. In particular, the loss of seed dormancy leads to germination under unfavourable conditions and reproduction challenges. This dormancy loss may have occurred through genetic changes that suppress ABA signalling and the loss of genes involved in seed maturation. The high-quality genome has also enabled us to reveal phenotypic trait evolution in Rhizophoraceae and identify divergent adaptation to intertidal and inland habitats. In summary, our study elucidates mechanisms underlying the decline and evaluates the adaptive potential of P. yunnanensis to future climate change, informing future conservation efforts.
Collapse
Affiliation(s)
- Shao Shao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yulong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuanfeng Jin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ranran Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Li D, Gao K, Chen Y, Gao H, Huang H, Ye B, Shi L, Yu H, Zhao Y. Revealing that artificial reproduction promotes increased genetic diversity between generations in Carpinus putoensis. FRONTIERS IN PLANT SCIENCE 2025; 16:1494694. [PMID: 40084110 PMCID: PMC11903413 DOI: 10.3389/fpls.2025.1494694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025]
Abstract
Introduction Carpinus putoensis, an endemic species of Putuo Island in the Zhoushan Archipelago, Zhejiang Province, China, is listed as critically endangered (D1) in the 1998 World List of Threatened Trees. Methods Using 15 pairs of SSR primers markers, 143 individuals from three population generations were analyzed, generating 193 alleles. Results and Discussion The average number of alleles (Na ) was 12.9, ranging from 4 to 28, while the average effective number of alleles (Ne ) was 4.900, with a range of 1.649 to 11.602. The multilocus outcrossing rate (tm ) was 1.000, and the single-locus outcrossing rate (ts ) was 0.871, ranging from 0.751 to 0.920 across the families studied. The difference between tm and ts (0.129) and the positive biparental inbreeding coefficients (0.080 to 0.249) indicate the presence of inbreeding. Moreover, an increase in Na and Ne was observed across generations, from 6.400 and 2.838 in the F1 generation to 9.200 and 4.228 in the F3 generation, respectively. These results highlight the need for artificial interventions to increase population size and improve genetic diversity, which are critical factors for the conservation and recovery of C. putoensis.
Collapse
Affiliation(s)
- Dingsheng Li
- Zhoushan Academy of Forestry, Zhoushan, Zhejiang, China
| | - Kai Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Yeping Chen
- Zhoushan Academy of Forestry, Zhoushan, Zhejiang, China
| | - Haojie Gao
- Zhoushan Academy of Forestry, Zhoushan, Zhejiang, China
| | - Haiming Huang
- Zhoushan Forest Farm of Zhejiang, Zhoushan, Zhejiang, China
| | - Bo Ye
- Zhoushan Academy of Forestry, Zhoushan, Zhejiang, China
| | - Lei Shi
- Zhoushan Academy of Forestry, Zhoushan, Zhejiang, China
| | - Haina Yu
- Zhoushan Forest Farm of Zhejiang, Zhoushan, Zhejiang, China
| | - Ying Zhao
- Zhoushan Academy of Forestry, Zhoushan, Zhejiang, China
| |
Collapse
|
4
|
Sundar Panja A. The systematic codon usage bias has an important effect on genetic adaption in native species. Gene 2024; 926:148627. [PMID: 38823656 DOI: 10.1016/j.gene.2024.148627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Random mutations increase genetic variety and natural selection enhances adaption over generations. Codon usage biases (CUB) provide clues about the genome adaptation mechanisms of native species and extremophile species. Significant numbers of gene (CDS) of nine classes of endangered, native species, including extremophiles and mesophiles were utilised to compute CUB. Codon usage patterns differ among the lineages of endangered and extremophiles with native species. Polymorphic usage of nucleotides with codon burial suggests parallelism of native species within relatively confined taxonomic groups. Utilizing the deviation pattern of CUB of endangered and native species, I present a calculation parameter to estimate the extinction risk of endangered species. Species diversity and extinction risk are both positively associated with the propensity of random mutation in CDS (Coding DNA sequence). Codon bias tenet profoundly selected and it governs to adaptive evolution of native species.
Collapse
Affiliation(s)
- Anindya Sundar Panja
- Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal 721102, India.
| |
Collapse
|
5
|
Yin K, Chung MY, Lan B, Du FK, Chung MG. Plant conservation in the age of genome editing: opportunities and challenges. Genome Biol 2024; 25:279. [PMID: 39449103 PMCID: PMC11515576 DOI: 10.1186/s13059-024-03399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Numerous plant taxa are threatened by habitat destruction or overexploitation. To overcome these threats, new methods are urgently needed for rescuing threatened and endangered plant species. Here, we review the genetic consequences of threats to species populations. We highlight potential advantages of genome editing for mitigating negative effects caused by new pathogens and pests or climate change where other approaches have failed. We propose solutions to protect threatened plants using genome editing technology unless absolutely necessary. We further discuss the challenges associated with genome editing in plant conservation to mitigate the decline of plant diversity.
Collapse
Affiliation(s)
- Kangquan Yin
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Mi Yoon Chung
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Bo Lan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Fang K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Myong Gi Chung
- Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| |
Collapse
|
6
|
Kou YX, Liu ML, López-Pujol J, Zhang QJ, Zhang ZY, Li ZH. Contrasting demographic history and mutational load in three threatened whitebark pines (Pinus subsect. Gerardianae): implications for conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2967-2981. [PMID: 39115017 DOI: 10.1111/tpj.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 11/15/2024]
Abstract
Demographic history and mutational load are of paramount importance for the adaptation of the endangered species. However, the effects of population evolutionary history and genetic load on the adaptive potential in endangered conifers remain unclear. Here, using population transcriptome sequencing, whole chloroplast genomes and mitochondrial DNA markers, combined with niche analysis, we determined the demographic history and mutational load for three threatened whitebark pines having different endangered statuses, Pinus bungeana, P. gerardiana and P. squamata. Demographic inference indicated that severe bottlenecks occurred in all three pines at different times, coinciding with periods of major climate and geological changes; in contrast, while P. bungeana experienced a recent population expansion, P. gerardiana and P. squamata maintained small population sizes after bottlenecking. Abundant homozygous-derived variants accumulated in the three pines, particularly in P. squamata, while the species with most heterozygous variants was P. gerardiana. Abundant moderately and few highly deleterious variants accumulated in the pine species that have experienced the most severe demographic bottlenecks (P. gerardiana and P. squamata), most likely because of purging effects. Finally, niche modeling showed that the distribution of P. bungeana might experience a significant expansion in the future, and the species' identified genetic clusters are also supported by differences in the ecological niche. The integration of genomic, demographic and niche data has allowed us to prove that the three threatened pines have contrasting patterns of demographic history and mutational load, which may have important implications in their adaptive potential and thus are also key for informing conservation planning.
Collapse
Affiliation(s)
- Yi-Xuan Kou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona, Catalonia, 08038, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón, 091650, Ecuador
| | - Qi-Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhi-Yong Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
7
|
Kryukov K, Nakahama N, Kuraku S. Genome assembly catalog for species in the Japanese Red List: unlocking endangered biodiversity through genomic inventory. F1000Res 2024; 13:583. [PMID: 39050029 PMCID: PMC11267146 DOI: 10.12688/f1000research.149793.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Improvements in DNA sequencing technology are allowing the dramatic increase of whole genome data for a wide variety of species. Such genome sequence data can assist the monitoring of intraspecific genetic diversity, but is often lacking for threatened species. In this project, we focused on the national Red List, a catalog of extinct and threatened species, issued by the Japanese government. We combined the data included in it with the record of genome assembly in NCBI and tabulated the assembly availability of the species in the list. The combined data shows a low percentage (2.1%) of the availability of whole genome sequence data for the taxa ranked on the Japanese Red List as well as a strong bias towards mammals and birds in Animalia and vascular plants in Plantae. Our data presentation highlights potential systematic limitations in genome sequencing (e.g., budget for sequencing large genomes of amphibians) and instructs future policies including which taxon needs more effort for genome sequencing. The resultant tables are available in the original website https://treethinkers.nig.ac.jp/redlist/ and are regularly updated.
Collapse
Affiliation(s)
- Kirill Kryukov
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, 411-8540, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Naoyuki Nakahama
- Institute of Natural and Environmental Sciences, University of Hyogo, Sanda, Hyogo, 669-1546, Japan
- Division of Ecological Restoration, Museum of Nature and Human Activities, Hyogo, Sanda, Hyogo, 669-1546, Japan
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, Sokendai Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
8
|
Kobayashi Y, Komaki Y, Isagi Y. Exploring phylogeny and genomic vulnerability of Melastoma (Melastomataceae) endemic to a World Natural Heritage site, the Bonin Islands. Sci Rep 2024; 14:15668. [PMID: 39019909 PMCID: PMC11254903 DOI: 10.1038/s41598-024-65726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
Melastoma (Melastomataceae) includes ca. 100 species across tropical to subtropical regions of Asia and Oceania. The Bonin Islands harbor three endemic taxa: M. tetramerum, M. tetramerum var. pentapetalum, and M. candidum var. alessandrense. Of these, M. tetramerum is critically endangered and faces near extinction in the wild. This study investigates the phylogenetic relationships among these endemic Melastoma species in the Bonin Islands based on the whole chloroplast genome and nuclear SNPs. The results revealed that M. candidum var. alessandrense was placed in the clade of the widespread East Asian M. candidum and has a distinct evolutionary origin from the other two taxa. The population genomics analyses (heterozygosity, rates of deleterious mutations, and numbers and lengths of runs of homozygosity) indicated lower genetic diversity and more vulnerable genomes of endemic Melastoma, especially M. tetramerum var. pentapetalum. M. tetramerum var. pentapetalum is not a target of any protection programs, however, conservation plans might be required for this variety because M. tetramerum var. pentapetalum would have a more vulnerable genome than M. tetramerum, which faces near extinction in the wild. This information can facilitate the development of effective conservation strategies in a precautionary way that anticipates imminent threats to the survival of the species.
Collapse
Affiliation(s)
| | - Yoshiteru Komaki
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
Tsunenari K, Ito T, Yokota M, Shibabayashi M, Endo C, Chung KF, Suyama Y, Matsuo A, Abe A, Naiki A, Setoguchi H, Makino T, Isagi Y. Double migration of the endangered Tricyrtis formosana (Liliaceae) in Japan. Sci Rep 2024; 14:957. [PMID: 38200076 PMCID: PMC10781951 DOI: 10.1038/s41598-024-51431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
The Ryukyu Islands of Japan are a biodiversity hotspot due to geographical and historical factors. Tricyrtis formosana is a perennial herbaceous plant that commonly found in Taiwan. But only a few populations have been identified in a limited habitat on Iriomote Island, while populations of unknown origin occur near human settlements in an area on the main island of Okinawa. To better understand these populations of the phylogenetic uniqueness and intrinsic vulnerability, we conducted comparative analyses including (1) phylogeny and population structure with MIG-seq data, (2) photosynthesis-related traits of plants grown under common conditions and (3) transcriptome analysis to detect deleterious variations. Results revealed that T. formosana was split into two clades by the congeners and that Iriomote and Okinawa populations independently derived from ancestral Taiwanese populations in each clade. Photosynthetic efficiency was lowest in the Iriomote population, followed by Okinawa and Taiwan. Transcriptome analysis showed that the Iriomote population accumulated more deleterious variations, suggesting intrinsic vulnerability. These results indicate that each T. formosana population in Japan is phylogenetically unique and has been independently dispersed from Taiwan, and that the Iriomote population presents a high conservation difficulty with a unique photosynthesis-related characteristic and a larger amount of deleterious variations.
Collapse
Affiliation(s)
- Kaori Tsunenari
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
- Japan Broadcasting Cooporation, Tokyo, Japan.
| | - Takuro Ito
- The Center for Academic Resources and Archives, Tohoku University, Sendai, Japan
| | | | | | - Chiharu Endo
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kuo-Fang Chung
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yoshihisa Suyama
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayumi Matsuo
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Atsushi Abe
- Okinawa Churashima Foundation Research Institute, Botanical Laboratory, Okinawa, Japan
| | - Akiyo Naiki
- Tropical Biosphere Research Center, University of the Ryukyus, Taketomi, Okinawa, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Takashi Makino
- Graduate School of Life Science, Tohoku University, Sendai, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
10
|
Rajapaksha R, Zhang LB, Pushpakumara G, Wijesundara S. An analysis of the current status and future prospects of Sri Lankan pteridophytes towards a new dimension. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wong DCJ, Peakall R. Orchid Phylotranscriptomics: The Prospects of Repurposing Multi-Tissue Transcriptomes for Phylogenetic Analysis and Beyond. FRONTIERS IN PLANT SCIENCE 2022; 13:910362. [PMID: 35712597 PMCID: PMC9196242 DOI: 10.3389/fpls.2022.910362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 06/10/2023]
Abstract
The Orchidaceae is rivaled only by the Asteraceae as the largest plant family, with the estimated number of species exceeding 25,000 and encompassing more than 700 genera. To gain insights into the mechanisms driving species diversity across both global and local scales, well-supported phylogenies targeting different taxonomic groups and/or geographical regions will be crucial. High-throughput sequencing technologies have revolutionized the field of molecular phylogenetics by simplifying the process of obtaining genome-scale sequence data. Consequently, there has been an explosive growth of such data in public repositories. Here we took advantage of this unprecedented access to transcriptome data from predominantly non-phylogenetic studies to assess if it can be repurposed to gain rapid and accurate phylogenetic insights across the orchids. Exhaustive searches revealed transcriptomic data for more than 100 orchid species spanning 5 subfamilies, 13 tribes, 21 subtribes, and 50 genera that were amendable for exploratory phylotranscriptomic analysis. Next, we performed re-assembly of the transcriptomes before strategic selection of the final samples based on a gene completeness evaluation. Drawing on these data, we report phylogenetic analyses at both deep and shallow evolutionary scales via maximum likelihood and shortcut coalescent species tree methods. In this perspective, we discuss some key outcomes of this study and conclude by highlighting other complementary, albeit rarely explored, insights beyond phylogenetic analysis that repurposed multi-tissue transcriptome can offer.
Collapse
|
12
|
Linan AG, Lowry Ii PP, Miller AJ, Schatz GE, Sevathian JC, Edwards CE. Interspecific hybridization and island colonization history, not rarity, most strongly affect the genetic diversity in a clade of Mascarene-endemic trees. J Hered 2022; 113:336-352. [PMID: 35192705 DOI: 10.1093/jhered/esac010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/21/2022] [Indexed: 11/14/2022] Open
Abstract
Many factors shape the genetic diversity of island-endemic trees, with important implications for conservation. Oceanic island-endemic lineages undergo an initial founding bottleneck during the colonization process and subsequently accumulate diversity following colonization. Moreover, many island endemics occur in small populations and are further threatened by anthropogenic factors that cause population declines, making them susceptible to losses in genetic diversity through genetic drift, inbreeding, and bottlenecks. However, life-history traits commonly found in trees, such as outcrossing mechanisms, long lifespans, and a propensity for interspecific hybridization, may help buffer against losses of genetic variation. To assess the relative importance of colonization history, rarity, and distribution in shaping genetic diversity of island-endemic trees, we conducted a comparative population genomic analysis of 13 species of Diospyros (Ebenaceae) endemic to the Mascarene Islands that differ in island colonization history, distribution, population size, and IUCN threat status. We genotyped 328 individuals across the islands using 2b-RADseq, compared genetic diversity both among and within species, and assessed patterns of genetic structure. Genetic diversity did not vary significantly by IUCN status, but we found that species that co-occur with others on the same intermediate-aged island (Mauritius) had much greater genetic diversity than those that occur solitarily on an island (Réunion and Rodrigues), likely because of greater interspecific hybridization among species with overlapping distributions and processes related to time since island colonization. Results presented here were used to determine priority localities for in situ and ex situ conservation efforts to maximize the genetic diversity of each Mascarene Diospyros species.
Collapse
Affiliation(s)
- Alexander G Linan
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO 63110, USA.,Department of Biology, Saint Louis University, Macelwane Hall, 3507 Laclede Avenue, St. Louis, MO 63103, USA
| | - Porter P Lowry Ii
- Africa and Madagascar Program, Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO 63110, USA.,Institut de Systématique, Évolution et Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, C.P. 39, 57 rue Cuvier, 75005 Paris, France
| | - Allison J Miller
- Department of Biology, Saint Louis University, Macelwane Hall, 3507 Laclede Avenue, St. Louis, MO 63103, USA.,Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - George E Schatz
- Africa and Madagascar Program, Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO 63110, USA
| | - Jean Claude Sevathian
- Botanist, Sustainability Consultant and Landscape Care and Maintenance Service, 20 Bis Morcellement La Confiance, Beau Bassin 71504, Mauritius
| | - Christine E Edwards
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Miao J, Farhat P, Wang W, Ruhsam M, Milne R, Yang H, Tso S, Li J, Xu J, Opgenoorth L, Miehe G, Mao K. Evolutionary history of two rare endemic conifer species from the eastern Qinghai-Tibet Plateau. ANNALS OF BOTANY 2021; 128:903-918. [PMID: 34472580 PMCID: PMC8577208 DOI: 10.1093/aob/mcab114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Understanding the population genetics and evolutionary history of endangered species is urgently needed in an era of accelerated biodiversity loss. This knowledge is most important for regions with high endemism that are ecologically vulnerable, such as the Qinghai-Tibet Plateau (QTP). METHODS The genetic variation of 84 juniper trees from six populations of Juniperus microsperma and one population of Juniperus erectopatens, two narrow-endemic junipers from the QTP that are sister to each other, was surveyed using RNA-sequencing data. Coalescent-based analyses were used to test speciation, migration and demographic scenarios. Furthermore, positively selected and climate-associated genes were identified, and the genetic load was assessed for both species. KEY RESULTS Analyses of 149 052 single nucleotide polymorphisms showed that the two species are well differentiated and monophyletic. They diverged around the late Pliocene, but interspecific gene flow continued until the Last Glacial Maximum. Demographic reconstruction by Stairway Plot detected two severe bottlenecks for J. microsperma but only one for J. erectopatens. The identified positively selected genes and climate-associated genes revealed habitat adaptation of the two species. Furthermore, although J. microsperma had a much wider geographical distribution than J. erectopatens, the former possesses lower genetic diversity and a higher genetic load than the latter. CONCLUSIONS This study sheds light on the evolution of two endemic juniper species from the QTP and their responses to Quaternary climate fluctuations. Our findings emphasize the importance of speciation and demographic history reconstructions in understanding the current distribution pattern and genetic diversity of threatened species in mountainous regions.
Collapse
Affiliation(s)
- Jibin Miao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
- College of Science, Tibet University, Lhasa 850000, PR China
| | - Perla Farhat
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Wentao Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Richard Milne
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Heng Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Sonam Tso
- College of Science, Tibet University, Lhasa 850000, PR China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jingjing Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Lars Opgenoorth
- Faculty of Biology and Geology, University of Marburg, 35032 Marburg, Germany
| | - Georg Miehe
- Faculty of Biology and Geology, University of Marburg, 35032 Marburg, Germany
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
- College of Science, Tibet University, Lhasa 850000, PR China
| |
Collapse
|
14
|
Yang MY, Kim SY, Kim MS. Verification of hotspots of genetic diversity in Korean population of Grateloupia asiatica and G. jejuensis (Rhodophyta) show low genetic diversity and similar geographic distribution. Genes Genomics 2021; 43:1463-1469. [PMID: 34697760 DOI: 10.1007/s13258-021-01168-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Understanding the genetic diversity and distribution patterns of seaweeds species is crucial for evaluating key regions of high genetic diversity. Identifying hotspots of high intraspecific diversity is an important step for developing conservation strategies. Grateloupia is a diverse genus of Rhodophyta, many of which are resource of numerous useful bioactive compounds; therefore, the genus is valuable target for conservation. OBJECTIVE The aim of this study is to examine the genetic diversity and population structure of two Grateloupia species, Grateloupia asiatica and Grateloupia jejuensis, with the understanding of the phylogeography of the Korean genetic diversity hotspot for two species. METHODS Plastid rbcL gene sequences of 134 specimens of G. asiatica and 112 specimens of G. jejuensis collected from the Korean coast were analyzed. We evaluated the number of haplotypes, genetic diversity (haplotype and nucleotide diversity), and haplotype networks of two species. Historical demographic was inferred by calculating neutrality tests and genetic differentiation was estimated using the fixation index, FST. RESULTS Our results show that both species are generally similar in geographical distribution patterns, that is, relatively homogeneous with few haplotypes derived from the most frequent haplotype. The east coast of Korea is identified as a 'hotspot' with the highest genetic diversity for both species, whereas Jeju Island is identified as a 'cold spot' with the lowest genetic diversity for G. jejuensis. Analyses across most distribution ranges of the two species in Korea reveal low genetic and haplotype diversities, which could indicate that these two Grateloupia species have either experienced a historical lack of diversity or a recent reduction in diversity due to high gene flow. CONCLUSIONS The low genetic diversity values found in the present study raise considerable concern about the conservation status of these two Grateloupia species and highlight the need to locate further hotspots of genetic diversity to strengthen their resilience against further decline.
Collapse
Affiliation(s)
- Mi Yeon Yang
- Department of Biology and Research Institute for Basic Sciences, Jeju National University, Jeju, 63243, Korea
| | - Su Yeon Kim
- Korea Inter-University Institute of Ocean Science, Pukyong National University, Busan, 48513, Korea
| | - Myung Sook Kim
- Department of Biology and Research Institute for Basic Sciences, Jeju National University, Jeju, 63243, Korea.
| |
Collapse
|
15
|
Evolutionary effects of geographic and climatic isolation between Rhododendron tsusiophyllum populations on the Izu Islands and mainland Honshu of Japan. Heredity (Edinb) 2021; 126:859-868. [PMID: 33654179 PMCID: PMC8102576 DOI: 10.1038/s41437-021-00417-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 01/30/2023] Open
Abstract
Geographic and environmental isolations of islands and the mainland offer excellent opportunity to investigate colonization and survival dynamics of island populations. We inferred and compared evolutionary processes and the demographic history of Rhododendron tsusiophyllum, in the Izu Islands and the much larger island Honshu, treated here as the mainland, using thousands of nuclear SNPs obtained by ddRAD-seq from eight populations of R. tsusiophyllum and three populations of R. tschonoskii as an outgroup. Phylogenetic relationships and their habitats suggest that R. tsusiophyllum had evolved and migrated from cold north to warm south regions. We detected clear genetic divergence among populations in three regions of Honshu and the Izu Islands, suggesting restricted migration between them due to isolated habitats on mountains even in the mainland. The three regions have different changes in effective population size, especially, genetic diversity and population size of the Izu Islands are small compared to the others. Further, habitats of populations in the Izu Islands are warmer than those in Honshu, suggesting that they have undergone adaptive evolution. Our study provides evidences of montane rather than insular isolation on genetic divergence, survival of populations and significance of adaptive evolution for island populations with small population size and low genetic diversity, despite close proximity to mainland populations.
Collapse
|
16
|
Narita A, Nakahama N, Izuno A, Hayama K, Komaki Y, Tanaka T, Murata J, Isagi Y. Conservation genetics of critically endangered Crepidiastrum grandicollum (Asteraceae) and two closely related woody species of the Bonin Islands, Japan. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Island songbirds as windows into evolution in small populations. Curr Biol 2021; 31:1303-1310.e4. [PMID: 33476557 DOI: 10.1016/j.cub.2020.12.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
Due to their limited ranges and inherent isolation, island species have long been recognized as crucial systems for tackling a range of evolutionary questions, including in the early study of speciation.1,2 Such species have been less studied in the understanding of the evolutionary forces driving DNA sequence evolution. Island species usually have lower census population sizes (N) than continental species and, supposedly, lower effective population sizes (Ne). Given that both the rates of change caused by genetic drift and by selection are dependent upon Ne, island species are theoretically expected to exhibit (1) lower genetic diversity, (2) less effective natural selection against slightly deleterious mutations,3,4 and (3) a lower rate of adaptive evolution.5-8 Here, we have used a large set of newly sequenced and published whole-genome sequences of Passerida species (14 insular and 11 continental) to test these predictions. We confirm that island species exhibit lower census size and Ne, supporting the hypothesis that the smaller area available on islands constrains the upper bound of Ne. In the insular species, we find lower nucleotide diversity in coding regions, higher ratios of non-synonymous to synonymous polymorphisms, and lower adaptive substitution rates. Our results provide robust evidence that the lower Ne experienced by island species has affected both the ability of natural selection to efficiently remove weakly deleterious mutations and also the adaptive potential of island species, therefore providing considerable empirical support for the nearly neutral theory. We discuss the implications for both evolutionary and conservation biology.
Collapse
|
18
|
Chiocchio A, Arntzen JW, Martínez-Solano I, de Vries W, Bisconti R, Pezzarossa A, Maiorano L, Canestrelli D. Reconstructing hotspots of genetic diversity from glacial refugia and subsequent dispersal in Italian common toads (Bufo bufo). Sci Rep 2021; 11:260. [PMID: 33420098 PMCID: PMC7794404 DOI: 10.1038/s41598-020-79046-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/01/2020] [Indexed: 02/01/2023] Open
Abstract
Genetic diversity feeds the evolutionary process and allows populations to adapt to environmental changes. However, we still lack a thorough understanding of why hotspots of genetic diversity are so 'hot'. Here, we analysed the relative contribution of bioclimatic stability and genetic admixture between divergent lineages in shaping spatial patterns of genetic diversity in the common toad Bufo bufo along the Italian peninsula. We combined population genetic, phylogeographic and species distribution modelling (SDM) approaches to map ancestral areas, glacial refugia, and secondary contact zones. We consistently identified three phylogeographic lineages, distributed in northern, central and southern Italy. These lineages expanded from their ancestral areas and established secondary contact zones, before the last interglacial. SDM identified widespread glacial refugia in peninsular Italy, sometimes located under the present-day sea-level. Generalized linear models indicated genetic admixture as the only significant predictor of the levels of population genetic diversity. Our results show that glacial refugia contributed to preserving both levels and patterns of genetic diversity across glacial-interglacial cycles, but not to their formation, and highlight a general principle emerging in Mediterranean species: higher levels of genetic diversity mark populations with substantial contributions from multiple genetic lineages, irrespective of the location of glacial refugia.
Collapse
Affiliation(s)
- Andrea Chiocchio
- Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100, Viterbo, Italy.
| | - Jan W Arntzen
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
| | - Iñigo Martínez-Solano
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Wouter de Vries
- Asociation Ambor, Ctra. Constantina - Pedroso 1, 41450, Constantina, Spain
| | - Roberta Bisconti
- Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| | - Alice Pezzarossa
- Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| | - Luigi Maiorano
- Department of Biology and Biotechnology "Charles Darwin", Università di Roma La Sapienza, Viale dell'Università 32, 00185, Rome, Italy
| | - Daniele Canestrelli
- Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| |
Collapse
|
19
|
Gao JG, Liu H, Wang N, Yang J, Zhang XL. Plant extinction excels plant speciation in the Anthropocene. BMC PLANT BIOLOGY 2020; 20:430. [PMID: 32938403 PMCID: PMC7493330 DOI: 10.1186/s12870-020-02646-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In the past several millenniums, we have domesticated several crop species that are crucial for human civilization, which is a symbol of significant human influence on plant evolution. A pressing question to address is if plant diversity will increase or decrease in this warming world since contradictory pieces of evidence exit of accelerating plant speciation and plant extinction in the Anthropocene. RESULTS Comparison may be made of the Anthropocene with the past geological times characterised by a warming climate, e.g., the Palaeocene-Eocene Thermal Maximum (PETM) 55.8 million years ago (Mya)-a period of "crocodiles in the Arctic", during which plants saw accelerated speciation through autopolyploid speciation. Three accelerators of plant speciation were reasonably identified in the Anthropocene, including cities, polar regions and botanical gardens where new plant species might be accelerating formed through autopolyploid speciation and hybridization. CONCLUSIONS However, this kind of positive effect of climate warming on new plant species formation would be thoroughly offset by direct and indirect intensive human exploitation and human disturbances that cause habitat loss, deforestation, land use change, climate change, and pollution, thus leading to higher extinction risk than speciation in the Anthropocene. At last, four research directions are proposed to deepen our understanding of how plant traits affect speciation and extinction, why we need to make good use of polar regions to study the mechanisms of dispersion and invasion, how to maximize the conservation of plant genetics, species, and diverse landscapes and ecosystems and a holistic perspective on plant speciation and extinction is needed to integrate spatiotemporally.
Collapse
Affiliation(s)
- Jian-Guo Gao
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, China.
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou, 510650, China
| | - Ning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao-Ling Zhang
- Department of Public Policy, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
20
|
Sun Y, Deng T, Zhang A, Moore MJ, Landis JB, Lin N, Zhang H, Zhang X, Huang J, Zhang X, Sun H, Wang H. Genome Sequencing of the Endangered Kingdonia uniflora (Circaeasteraceae, Ranunculales) Reveals Potential Mechanisms of Evolutionary Specialization. iScience 2020; 23:101124. [PMID: 32428861 PMCID: PMC7232092 DOI: 10.1016/j.isci.2020.101124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/20/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Kingdonia uniflora, an alpine herb, has an extremely narrow distribution and represents a model for studying evolutionary mechanisms of species that have adapted to undisturbed environments for evolutionarily long periods of time. We assembled a 1,004.7-Mb draft genome (encoding 43,301 genes) of K. uniflora and found significant overrepresentation in gene families associated with DNA repair, underrepresentation in gene families associated with stress response, and loss of most plastid ndh genes. During the evolutionary process, the overrepresentation of gene families involved in DNA repair could help asexual K. uniflora reduce the accumulation of deleterious mutations, while reducing genetic diversity, which is important in responding to environment fluctuations. The underrepresentation of gene families related to stress response and functional loss of ndh genes could be due to lack or loss of ability to respond to environmental changes caused by long-term adaptation to a relatively stable ecological environment.
Collapse
Affiliation(s)
- Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Aidi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | | | - Jacob B Landis
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA; School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| | - Nan Lin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Xiujun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|