1
|
Fedorov VB, Garreau A, Tøien Ø, Barnes BM, Goropashnaya AV. Transcriptome remodeling and adaptive preservation of muscle protein content in hibernating black bears. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641932. [PMID: 40166218 PMCID: PMC11956910 DOI: 10.1101/2025.03.06.641932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Hibernation is an energy-saving adaptation associated with physical inactivity. In contrast to most mammals, hibernating bears demonstrate limited loss of muscle mass and protein content over the prolonged periods of immobility and fasting during winter. This suggests that bears have natural adaptive mechanisms preserving muscle mass and functionality. To identify transcriptional changes that underlie molecular mechanisms attenuating muscle loss, we conducted a large-scale gene expression profiling (14,199 genes) by transcriptome sequencing in quadriceps of adult black bears, comparing hibernating animals (n=5) and summer active animals (n=5). Gene set enrichment analysis showed significant positive correlation between hibernating phenotype and expression changes of genes involved in translation, ribosome and the mTORC1 mediated signaling. In contrast, coordinated transcriptional reduction was detected for genes involved in catabolism of branched chain amino acid (BCAA) suggesting preservation of BCAA. These findings imply maintenance of protein biosynthesis through the mTORC1 signaling positively activated by availability of BCAA in muscle during hibernation. Support for this conclusion comes from overexpression of RRAGD and RRAGB , crucial regulator of the mTORC1 response to leucine availability, and up regulation of EIF4B , downstream target of the mTORC1 signaling. Consistent with the mTORC1 suppression of autophagy-dependent protein degradation, MAP1LC3A and ULK1 were down regulated in hibernating muscle. The maintenance of protein biosynthesis and decrease in protein catabolism through the mTORC1 signaling as response to BCAA availability likely contribute to the preservation of muscle protein through prolonged periods of immobility and fasting during hibernation.
Collapse
|
2
|
Wei Y, Mao H, Liu Q, Fang W, Zhang T, Xu Y, Zhang W, Chen B, Zheng Y, Hu X. Lipid metabolism and microbial regulation analyses provide insights into the energy-saving strategies of hibernating snakes. Commun Biol 2025; 8:45. [PMID: 39800781 PMCID: PMC11725596 DOI: 10.1038/s42003-025-07493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Hibernation is a necessary means for animals to maintain survival while coping with low temperatures and food shortages. While most studies have largely focused on mammalian hibernation, its reptilian equivalent has been less studied. In order to provide insights into the energy metabolism and potential microbial regulatory mechanisms in hibernating snakes, the serum, liver, gut content samples were measured by multi-omic methods. Here we show the active snakes have more vigorous lipid metabolism, whereas snakes in hibernation groups have higher sphingolipid metabolism. Furthermore, the results indicate that the potential energy supply pathway was gluconeogenesis. Microbial analysis reveals that Proteobacteria and Firmicutes showed dynamic changes with the transformation among active, pre-hibernation and hibernation periods. The correlation analysis reveals the potential role of Romboutsia, Providencia and Vagococcus in regulating above metabolism by producing certain metabolites. The results advance the understanding of the complex energy-saving strategy in hibernating poikilotherms.
Collapse
Affiliation(s)
- Yuting Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qiuhong Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenjie Fang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tianxiang Zhang
- Institute of Wildlife Conservation, Jiangxi Academy of Forestry, Nanchang, China
| | - Yongtao Xu
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, China
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Weiwei Zhang
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, China
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yunlin Zheng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
3
|
Elfeky M, Tsubota A, Shimozuru M, Tsubota T, Kimura K, Okamatsu-Ogura Y. Regulation of mitochondrial metabolism by hibernating bear serum: Insights into seasonal metabolic adaptations. Biochem Biophys Res Commun 2024; 736:150510. [PMID: 39121671 DOI: 10.1016/j.bbrc.2024.150510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Hibernating animals undergo a unique and reversible decrease in their whole-body metabolism, which is often accompanied by a suppression of mitochondrial respiration. However, the precise mechanisms underlying these seasonal shifts in mitochondrial metabolism remain unclear. In this study, the effect of the serum from active and hibernating Japanese black bears on mitochondrial respiration was assessed. Stromal-vascular cells were obtained from bear white adipose tissue and cultured with or without an adipocyte differentiation cocktail. When the oxygen consumption was measured in the presence of bear serum, the hibernating bear serum reduced maximal respiration by 15.5 % (p < 0.05) and spare respiratory capacity by 46.0 % (p < 0.01) in the differentiated adipocytes in comparison to the active bear serum. Similar reductions of 23.4 % (p = 0.06) and 40.6 % (p < 0.05) respectively were observed in undifferentiated cells, indicating the effect is cell type-independent. Blue native PAGE analysis revealed that hibernating bear serum suppressed cellular metabolism independently of the assembly of mitochondrial respiratory chain complexes. RNA-seq analysis identified 1094 differentially expressed genes (fold change>1.5, FDR<0.05) related to insulin signaling and glucose metabolism pathways. These findings suggest that the rapid alterations in mitochondrial metabolism during hibernation are likely induced by a combination of reduced insulin signaling and suppressed mitochondrial function, rather than changes in respiratory complex assembly.
Collapse
Affiliation(s)
- Mohamed Elfeky
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt.
| | - Ayumi Tsubota
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Michito Shimozuru
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
4
|
Chen X, Han W, Yang R, Zhu X, Li S, Wang Y, Sun X, Li Y, Bao L, Zhang L, Wang S, Wang J. Transcriptome Analysis Reveals the lncRNA-mRNA Co-expression Network Regulating the Aestivation of Sea Cucumber. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:15. [PMID: 39611876 DOI: 10.1007/s10126-024-10388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 11/30/2024]
Abstract
LncRNAs are long non-coding RNAs that are widely recognized as crucial regulators of gene expression and metabolic control, involved in numerous dormancy-related processes. Aestivation is a common hypometabolism strategy of sea cucumber (Apostichopus japonicus) in response to high-temperature conditions and is typically characterized by the degradation of the intestine and respiratory tree. Although the aestivation process has been extensively studied in sea cucumbers, the role of lncRNAs in the context of aestivation states remains a conspicuous knowledge gap. Here, we identified and characterized 14,711 lncRNAs in A. japonicus and analyzed their differential expression patterns during the aestivation process in the intestine and respiratory tree. The results revealed the physiological differences, especially the metabolic processes, between the intestine and respiratory tree during the aestivation. The co-expression network of lncRNA-mRNA suggested the dominant role of lncRNA in regulating the differential response of the intestine and respiratory trees. Differentially co-expressed factors were significantly enriched in the deep-aestivation stage-specific modules. Conserved co-expressed factors included several transcription factors known to be involved in rhythm regulation, such as Klf2 and Egr1. Furthermore, a specific trans-acting lncRNA (lncrna.1393.1) was identified as a potential regulator of Klf2 and Egr1. Overall, the systematic identification, characterization, and expression analysis of lncRNAs in A. japonicus enhanced our knowledge of long non-coding regulation of aestivation in sea cucumber and provided new clues for understanding the common "toolkit" of dormancy regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaomei Chen
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wentao Han
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Rui Yang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Xuan Zhu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Shengwen Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yangfan Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Xue Sun
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yuli Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Lingling Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Shi Wang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Jing Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
5
|
Weir K, Vega N, Busa VF, Sajdak B, Kallestad L, Merriman D, Palczewski K, Carroll J, Blackshaw S. Identification of shared gene expression programs activated in multiple modes of torpor across vertebrate clades. Sci Rep 2024; 14:24360. [PMID: 39420030 PMCID: PMC11487170 DOI: 10.1038/s41598-024-74324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Torpor encompasses diverse adaptations to extreme environmental stressors such as hibernation, aestivation, brumation, and daily torpor. Here we introduce StrokeofGenus, an analytic pipeline that identifies distinct transcriptomic states and shared gene expression patterns across studies, tissues, and species. We use StrokeofGenus to study multiple and diverse forms of torpor from publicly-available RNA-seq datasets that span eight species and two classes. We identify three transcriptionally distinct states during the cycle of heterothermia: euthermia, torpor, and interbout arousal. We also identify torpor-specific gene expression patterns that are shared both across tissues and between species with over three hundred million years of evolutionary divergence. We further demonstrate the general sharing of gene expression patterns in multiple forms of torpor, implying a common evolutionary origin for this process. Although here we apply StrokeofGenus to analysis of torpor, it can be used to interrogate any other complex physiological processes defined by transient transcriptomic states.
Collapse
Affiliation(s)
- Kurt Weir
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Genome Biology Unit, European Molecular Biology Laboratories, Heidelberg, Germany
| | - Natasha Vega
- Department of Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | | | - Ben Sajdak
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
- Fauna Bio, Emeryville, CA, USA
- Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Les Kallestad
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
| | - Dana Merriman
- Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Seth Blackshaw
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Martin TG, Leinwand LA. Molecular regulation of reversible cardiac remodeling: lessons from species with extreme physiological adaptations. J Exp Biol 2024; 227:jeb247445. [PMID: 39344503 PMCID: PMC11463965 DOI: 10.1242/jeb.247445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Some vertebrates evolved to have a remarkable capacity for anatomical and physiological plasticity in response to environmental challenges. One example of such plasticity can be found in the ambush-hunting snakes of the genus Python, which exhibit reversible cardiac growth with feeding. The predation strategy employed by pythons is associated with months-long fasts that are arrested by ingestion of large prey. Consequently, digestion compels a dramatic increase in metabolic rate and hypertrophy of multiple organs, including the heart. In this Review, we summarize the post-prandial cardiac adaptations in pythons at the whole-heart, cellular and molecular scales. We highlight circulating factors and cellular signaling pathways that are altered during digestion to affect cardiac form and function and propose possible mechanisms that may drive the post-digestion regression of cardiac mass. Adaptive physiological cardiac hypertrophy has also been observed in other vertebrates, including in fish acclimated to cold water, birds flying at high altitudes and exercising mammals. To reveal potential evolutionarily conserved features, we summarize the molecular signatures of reversible cardiac remodeling identified in these species and compare them with those of pythons. Finally, we offer a perspective on the potential of biomimetics targeting the natural biology of pythons as therapeutics for human heart disease.
Collapse
Affiliation(s)
- Thomas G. Martin
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Leslie A. Leinwand
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
7
|
Singh PP, Reeves GA, Contrepois K, Papsdorf K, Miklas JW, Ellenberger M, Hu CK, Snyder MP, Brunet A. Evolution of diapause in the African turquoise killifish by remodeling the ancient gene regulatory landscape. Cell 2024; 187:3338-3356.e30. [PMID: 38810644 PMCID: PMC11970524 DOI: 10.1016/j.cell.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Suspended animation states allow organisms to survive extreme environments. The African turquoise killifish has evolved diapause as a form of suspended development to survive a complete drought. However, the mechanisms underlying the evolution of extreme survival states are unknown. To understand diapause evolution, we performed integrative multi-omics (gene expression, chromatin accessibility, and lipidomics) in the embryos of multiple killifish species. We find that diapause evolved by a recent remodeling of regulatory elements at very ancient gene duplicates (paralogs) present in all vertebrates. CRISPR-Cas9-based perturbations identify the transcription factors REST/NRSF and FOXOs as critical for the diapause gene expression program, including genes involved in lipid metabolism. Indeed, diapause shows a distinct lipid profile, with an increase in triglycerides with very-long-chain fatty acids. Our work suggests a mechanism for the evolution of complex adaptations and offers strategies to promote long-term survival by activating suspended animation programs in other species.
Collapse
Affiliation(s)
| | - G Adam Reeves
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Jason W Miklas
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Chi-Kuo Hu
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Sone M, Yamaguchi Y. Cold resistance of mammalian hibernators ∼ a matter of ferroptosis? Front Physiol 2024; 15:1377986. [PMID: 38725569 PMCID: PMC11079186 DOI: 10.3389/fphys.2024.1377986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Most mammals adapt thermal physiology around 37°C and large deviations from their range, as observed in severe hypothermia and hyperthermia, resulting in organ dysfunction and individual death. A prominent exception is mammalian hibernation. Mammalian hibernators resist the long-term duration of severe low body temperature that is lethal to non-hibernators, including humans and mice. This cold resistance is supported, at least in part, by intrinsic cellular properties, since primary or immortalized cells from several hibernator species can survive longer than those from non-hibernators when cultured at cold temperatures. Recent studies have suggested that cold-induced cell death fulfills the hallmarks of ferroptosis, a type of necrotic cell death that accompanies extensive lipid peroxidation by iron-ion-mediated reactions. In this review, we summarize the current knowledge of cold resistance of mammalian hibernators at the cellular and molecular levels to organ and systemic levels and discuss key pathways that confer cold resistance in mammals.
Collapse
Affiliation(s)
- Masamitsu Sone
- Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Yoshifumi Yamaguchi
- Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Niu YH, Guan LH, Wang C, Jiang HF, Li GG, Yang LD, He SP. Comparative transcriptomic evidence of physiological changes and potential relationships in vertebrates under different dormancy states. Zool Res 2024; 45:341-354. [PMID: 38485504 PMCID: PMC11017076 DOI: 10.24272/j.issn.2095-8137.2023.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 03/19/2024] Open
Abstract
Dormancy represents a fascinating adaptive strategy for organisms to survive in unforgiving environments. After a period of dormancy, organisms often exhibit exceptional resilience. This period is typically divided into hibernation and aestivation based on seasonal patterns. However, the mechanisms by which organisms adapt to their environments during dormancy, as well as the potential relationships between different states of dormancy, deserve further exploration. Here, we selected Perccottus glenii and Protopterus annectens as the primary subjects to study hibernation and aestivation, respectively. Based on histological and transcriptomic analysis of multiple organs, we discovered that dormancy involved a coordinated functional response across organs. Enrichment analyses revealed noteworthy disparities between the two dormant species in their responses to extreme temperatures. Notably, similarities in gene expression patterns pertaining to energy metabolism, neural activity, and biosynthesis were noted during hibernation, suggesting a potential correlation between hibernation and aestivation. To further explore the relationship between these two phenomena, we analyzed other dormancy-capable species using data from publicly available databases. This comparative analysis revealed that most orthologous genes involved in metabolism, cell proliferation, and neural function exhibited consistent expression patterns during dormancy, indicating that the observed similarity between hibernation and aestivation may be attributable to convergent evolution. In conclusion, this study enhances our comprehension of the dormancy phenomenon and offers new insights into the molecular mechanisms underpinning vertebrate dormancy.
Collapse
Affiliation(s)
- Yu-Han Niu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, Qinghai Normal University, Xining, Qinghai 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai 810016, China
| | - Li-Hong Guan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Hai-Feng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Guo-Gang Li
- College of Life Sciences, Qinghai Normal University, Xining, Qinghai 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai 810016, China
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, Qinghai 810008, China. E-mail:
| | - Lian-Dong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai 810016, China. E-mail:
| | - Shun-Ping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai 810016, China. E-mail:
| |
Collapse
|
10
|
Carnahan AM, Pagano AM, Christian AL, Rode KD, Robbins CT. Ursids evolved dietary diversity without major alterations in metabolic rates. Sci Rep 2024; 14:4751. [PMID: 38413768 PMCID: PMC10899188 DOI: 10.1038/s41598-024-55549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/25/2024] [Indexed: 02/29/2024] Open
Abstract
The diets of the eight species of ursids range from carnivory (e.g., polar bears, Ursus maritimus) to insectivory (e.g., sloth bears, Melursus ursinus), omnivory (e.g., brown bears, U. arctos), and herbivory (e.g., giant pandas, Ailuropoda melanoleuca). Dietary energy availability ranges from the high-fat, highly digestible, calorically dense diet of polar bears (~ 6.4 kcal digestible energy/g fresh weight) to the high-fiber, poorly digestible, calorically restricted diet (~ 0.7) of giant pandas. Thus, ursids provide the opportunity to examine the extent to which dietary energy drives evolution of energy metabolism in a closely related group of animals. We measured the daily energy expenditure (DEE) of captive brown bears in a relatively large, zoo-type enclosure and compared those values to previously published results on captive brown bears, captive and free-ranging polar bears, and captive and free-ranging giant pandas. We found that all three species have similar mass-specific DEE when travel distances and energy intake are normalized even though their diets differ dramatically and phylogenetic lineages are separated by millions of years. For giant pandas, the ability to engage in low-cost stationary foraging relative to more wide-ranging bears likely provided the necessary energy savings to become bamboo specialists without greatly altering their metabolic rate.
Collapse
Affiliation(s)
- A M Carnahan
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| | - A M Pagano
- U. S. Geological Survey, Alaska Science Center, Anchorage, AK, 99508, USA
| | - A L Christian
- Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, TX, 77843, USA
| | - K D Rode
- U. S. Geological Survey, Alaska Science Center, Anchorage, AK, 99508, USA
| | - Charles T Robbins
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
- School of the Environment, Washington State University, Pullman, WA, 99164-2812, USA.
| |
Collapse
|
11
|
Vincent EP, Perry BW, Kelley JL, Robbins CT, Jansen HT. Circadian gene transcription plays a role in cellular metabolism in hibernating brown bears, Ursus arctos. J Comp Physiol B 2023; 193:699-713. [PMID: 37819371 DOI: 10.1007/s00360-023-01513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
Hibernation is a highly seasonal physiological adaptation that allows brown bears (Ursus arctos) to survive extended periods of low food availability. Similarly, daily or circadian rhythms conserve energy by coordinating body processes to optimally match the environmental light/dark cycle. Brown bears express circadian rhythms in vivo and their cells do in vitro throughout the year, suggesting that these rhythms may play important roles during periods of negative energy balance. Here, we use time-series analysis of RNA sequencing data and timed measurements of ATP production in adipose-derived fibroblasts from active and hibernation seasons under two temperature conditions to confirm that rhythmicity was present. Culture temperature matching that of hibernation body temperature (34 °C) resulted in a delay of daily peak ATP production in comparison with active season body temperatures (37 °C). The timing of peaks of mitochondrial gene transcription was altered as were the amplitudes of transcripts coding for enzymes of the electron transport chain. Additionally, we observed changes in mean expression and timing of key metabolic genes such as SIRT1 and AMPK which are linked to the circadian system and energy balance. The amplitudes of several circadian gene transcripts were also reduced. These results reveal a link between energy conservation and a functioning circadian system in hibernation.
Collapse
Affiliation(s)
- Ellery P Vincent
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Joanna L Kelley
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Charles T Robbins
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
- School of the Environment, Washington State University, Pullman, WA, 99163, USA
| | - Heiko T Jansen
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA.
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
12
|
Li A, Leng H, Li Z, Jin L, Sun K, Feng J. Temporal dynamics of the bat wing transcriptome: Insight into gene-expression changes that enable protection against pathogen. Virulence 2023; 14:2156185. [PMID: 36599840 PMCID: PMC9815227 DOI: 10.1080/21505594.2022.2156185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Skin acts as a mechanical barrier between the body and its surrounding environment and plays an important role in resistance to pathogens. However, we still know little regarding skin responses to physiological changes, particularly with regard to responses against potential pathogens. We herein executed RNA-seq on the wing of the Rhinolophus ferrumequinum to assess gene-expression variations at four physiological stages: pre-hibernation, hibernation (early-hibernation and late-hibernation), and post-hibernation, as well as the gene-expression patterns of infected and uninfected bats with the Pseudogymnoascus destructans (Pd). Our results showed that a greater number of differentially expressed genes between the more disparate physiological stages. Functional enrichment analysis showed that the down-regulated response pathways in hibernating bats included phosphorus metabolism and immune response, indicating metabolic suppression and decreased whole immune function. We also found up-regulated genes in post-hibernating bats that included C-type lectin receptor signalling, Toll-like receptor signalling pathway, and cell adhesion, suggesting that the immune response and skin integrity of the wing were improved after bats emerged from their hibernation and that this facilitated clearing Pd from the integument. Additionally, we found that the genes involved in cytokine or chemokine activity were up-regulated in late-hibernation compared to early-hibernation and that FOSB regulation of immune cell activation was differentially expressed in bats infected with Pd during late-hibernation, implying that the host's innate immune function was enhanced during late-hibernation so as to resist pathogenic infection. Our findings highlight the concept that maintenance of intrinsic immunity provides protection against pathogenic infections in highly resistant bats.
Collapse
Affiliation(s)
- Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,College of Life Science, Jilin Agricultural University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,CONTACT Keping Sun
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,College of Life Science, Jilin Agricultural University, Changchun, China,Jiang Feng
| |
Collapse
|
13
|
Li W, Chen Y, Zhang Y, Zhao N, Zhang W, Shi M, Zhao Y, Cai C, Lu C, Gao P, Guo X, Li B, Kim SW, Yang Y, Cao G. Transcriptome Analysis Revealed Potential Genes of Skeletal Muscle Thermogenesis in Mashen Pigs and Large White Pigs under Cold Stress. Int J Mol Sci 2023; 24:15534. [PMID: 37958518 PMCID: PMC10650474 DOI: 10.3390/ijms242115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pigs are susceptible to cold stress due to the absence of brown fat caused by the partial deletion of uncoupling protein 1 during their evolution. Some local pig breeds in China exhibit potential cold adaptability, but research has primarily focused on fat and intestinal tissues. Skeletal muscle plays a key role in adaptive thermogenesis in mammals, yet the molecular mechanism of cold adaptation in porcine skeletal muscle remains poorly understood. This study investigated the cold adaptability of two pig breeds, Mashen pigs (MS) and Large White pigs (LW), in a four-day cold (4 °C) or normal temperature (25 °C) environment. We recorded phenotypic changes and collected blood and longissimus dorsi muscle for transcriptome sequencing. Finally, the PRSS8 gene was randomly selected for functional exploration in porcine skeletal muscle satellite cells. A decrease in body temperature and body weight in both LW and MS pigs under cold stress, accompanied by increased shivering frequency and respiratory frequency, were observed. However, the MS pigs demonstrated stable physiological homeostasis, indicating a certain level of cold adaptability. The LW pigs primarily responded to cold stress by regulating their heat production and glycolipid energy metabolism. The MS pigs exhibited a distinct response to cold stress, involving the regulation of heat production, energy metabolism pathways, and robust mitochondrial activity, as well as a stronger immune response. Furthermore, the functional exploration of PRSS8 in porcine skeletal muscle satellite cells revealed that it affected cellular energy metabolism and thermogenesis by regulating ERK phosphorylation. These findings shed light on the diverse transcriptional responses of skeletal muscle in LW and MS pigs under cold stress, offering valuable insights into the molecular mechanisms underlying cold adaptation in pigs.
Collapse
Affiliation(s)
- Wenxia Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yufen Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yunting Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Ning Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Mingyue Shi
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Sung-Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| |
Collapse
|
14
|
Corkey BE. Reactive oxygen species: role in obesity and mitochondrial energy efficiency. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220210. [PMID: 37482778 PMCID: PMC10363708 DOI: 10.1098/rstb.2022.0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/29/2023] [Indexed: 07/25/2023] Open
Abstract
Changes correlating with increasing obesity include insulin resistance, hyperlipidaemia, hyperinsulinaemia, highly processed food and environmental toxins including plastics and air pollution. The relationship between the appearance of each of these potential causes and the onset of obesity is unknown. The cause(s) must precede obesity, the consequence, and temporally relate to its rising incidence. Macronutrients such as carbohydrates or fats are unlikely to cause obesity since these have long been constituents of human diets. Furthermore, food consumption and body weight have been well-regulated in most humans and other species until recent times. Thus, attention must focus on changes that have occurred in the last half-century and the relationship between such changes and specific populations that are impacted. The hypothesis presented here is that substances that have entered our bodies recently cause obesity by generating false and misleading information about energy status. We propose that this misinformation is caused by changes in the oxidation-reduction (redox) potential of metabolites that circulate and communicate to organs throughout the body. Examples are provided of food additives that generate reactive oxygen species and impact redox state, thereby, eliciting inappropriate tissue-specific functional changes, including insulin secretion. Reversal requires identification, neutralization, or removal of these compounds. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Barbara E. Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
15
|
Perry BW, McDonald AL, Trojahn S, Saxton MW, Vincent EP, Lowry C, Evans Hutzenbiler BD, Cornejo OE, Robbins CT, Jansen HT, Kelley JL. Feeding during hibernation shifts gene expression toward active season levels in brown bears ( Ursus arctos). Physiol Genomics 2023; 55:368-380. [PMID: 37486084 PMCID: PMC10642923 DOI: 10.1152/physiolgenomics.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states.
Collapse
Affiliation(s)
- Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Anna L McDonald
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Shawn Trojahn
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Michael W Saxton
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Ellery P Vincent
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Courtney Lowry
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | | | - Omar E Cornejo
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Charles T Robbins
- School of the Environment, Washington State University, Pullman, Washington, United States
| | - Heiko T Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Joanna L Kelley
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| |
Collapse
|
16
|
Perry BW, Saxton MW, Jansen HT, Quackenbush CR, Evans Hutzenbiler BD, Robbins CT, Kelley JL, Cornejo OE. A multi-tissue gene expression dataset for hibernating brown bears. BMC Genom Data 2023; 24:33. [PMID: 37291509 PMCID: PMC10251632 DOI: 10.1186/s12863-023-01136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVES Complex physiological adaptations often involve the coordination of molecular responses across multiple tissues. Establishing transcriptomic resources for non-traditional model organisms with phenotypes of interest can provide a foundation for understanding the genomic basis of these phenotypes, and the degree to which these resemble, or contrast, those of traditional model organisms. Here, we present a one-of-a-kind gene expression dataset generated from multiple tissues of two hibernating brown bears (Ursus arctos). DATA DESCRIPTION This dataset is comprised of 26 samples collected from 13 tissues of two hibernating brown bears. These samples were collected opportunistically and are typically not possible to attain, resulting in a highly unique and valuable gene expression dataset. In combination with previously published datasets, this new transcriptomic resource will facilitate detailed investigation of hibernation physiology in bears, and the potential to translate aspects of this biology to treat human disease.
Collapse
Affiliation(s)
- Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Michael W Saxton
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Heiko T Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Corey R Quackenbush
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | | | - Charles T Robbins
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
- School of the Environment, Washington State University, Pullman, WA, 99164, USA
| | - Joanna L Kelley
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Omar E Cornejo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
17
|
Coussement L, Oosterhof MM, Guryev V, Reitsema VA, Bruintjes JJ, Goris M, Bouma HR, de Meyer T, Rots MG, Henning RH. Liver transcriptomic and methylomic analyses identify transcriptional mitogen-activated protein kinase regulation in facultative hibernation of Syrian hamster. Proc Biol Sci 2023; 290:20230368. [PMID: 37221849 PMCID: PMC10206468 DOI: 10.1098/rspb.2023.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
Hibernation consists of alternating torpor-arousal phases, during which animals cope with repetitive hypothermia and ischaemia-reperfusion. Due to limited transcriptomic and methylomic information for facultative hibernators, we here conducted RNA and whole-genome bisulfide sequencing in liver of hibernating Syrian hamster (Mesocricetus auratus). Gene ontology analysis was performed on 844 differentially expressed genes and confirmed the shift in metabolic fuel utilization, inhibition of RNA transcription and cell cycle regulation as found in seasonal hibernators. Additionally, we showed a so far unreported suppression of mitogen-activated protein kinase (MAPK) and protein phosphatase 1 pathways during torpor. Notably, hibernating hamsters showed upregulation of MAPK inhibitors (dual-specificity phosphatases and sproutys) and reduced levels of MAPK-induced transcription factors (TFs). Promoter methylation was found to modulate the expression of genes targeted by these TFs. In conclusion, we document gene regulation between hibernation phases, which may aid the identification of pathways and targets to prevent organ damage in transplantation or ischaemia-reperfusion.
Collapse
Affiliation(s)
- Louis Coussement
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Marloes M. Oosterhof
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Vera A. Reitsema
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Jojanneke J. Bruintjes
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Maaike Goris
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Hjalmar R. Bouma
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Tim de Meyer
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Marianne G. Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
18
|
Akingbesote ND, Leitner BP, Jovin DG, Desrouleaux R, Owusu D, Zhu W, Li Z, Pollak MN, Perry RJ. Gene and protein expression and metabolic flux analysis reveals metabolic scaling in liver ex vivo and in vivo. eLife 2023; 12:e78335. [PMID: 37219930 PMCID: PMC10205083 DOI: 10.7554/elife.78335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Metabolic scaling, the inverse correlation of metabolic rates to body mass, has been appreciated for more than 80 years. Studies of metabolic scaling have largely been restricted to mathematical modeling of caloric intake and oxygen consumption, and mostly rely on computational modeling. The possibility that other metabolic processes scale with body size has not been comprehensively studied. To address this gap in knowledge, we employed a systems approach including transcriptomics, proteomics, and measurement of in vitro and in vivo metabolic fluxes. Gene expression in livers of five species spanning a 30,000-fold range in mass revealed differential expression according to body mass of genes related to cytosolic and mitochondrial metabolic processes, and to detoxication of oxidative damage. To determine whether flux through key metabolic pathways is ordered inversely to body size, we applied stable isotope tracer methodology to study multiple cellular compartments, tissues, and species. Comparing C57BL/6 J mice with Sprague-Dawley rats, we demonstrate that while ordering of metabolic fluxes is not observed in in vitro cell-autonomous settings, it is present in liver slices and in vivo. Together, these data reveal that metabolic scaling extends beyond oxygen consumption to other aspects of metabolism, and is regulated at the level of gene and protein expression, enzyme activity, and substrate supply.
Collapse
Affiliation(s)
- Ngozi D Akingbesote
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Brooks P Leitner
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Daniel G Jovin
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Reina Desrouleaux
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Comparative Medicine, Yale UniversityNew HavenUnited States
| | - Dennis Owusu
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Wanling Zhu
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Zongyu Li
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Michael N Pollak
- Lady Davis Institute for Medical Research, Jewish General HospitalMontrealCanada
- Department of Oncology, McGill UniversityMontrealCanada
| | - Rachel J Perry
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| |
Collapse
|
19
|
Lin R, Wu J, You Z, Xu D, Li C, Wang W, Qian G. Induction of Hibernation and Changes in Physiological and Metabolic Indices in Pelodiscus sinensis. BIOLOGY 2023; 12:biology12050720. [PMID: 37237532 DOI: 10.3390/biology12050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Pelodiscus sinensis (P. sinensis) is a commonly cultivated turtle species with a habit of hibernation. To study the changes in histone expression and methylation of P. sinensis during hibernation induction, a model was established by artificial induction. Physiological and metabolic indices were measured, and the expression and localization of histone (H1, H2A, H2B, H3, and H4) and methylation-related genes (ASH2L, KMT2A, KMT2E, KDM1A, KDM1B, and KDM5A) were measured by quantitative PCR, immunohistochemistry, and Western blot analysis. The results indicated that the metabolism, antioxidation index, and relative expression of histone methyltransferase were significantly decreased (p < 0.05), whereas the activity and expression of histone demethyltransferase were significantly increased (p < 0.05). Although our results showed significant changes in physiological and gene expression after hibernation induction, we could not confirm that P. sinensis entered deep hibernation. Therefore, for the state after cooling-induced hibernation, cold torpor might be a more accurate description. The results indicate that the P. sinensis can enter cold torpor through artificial induction, and the expression of histones may promote gene transcription. Unlike histones expressed under normal conditions, histone methylation may activate gene transcription during hibernation induction. Western blot analysis revealed that the ASH2L and KDM5A proteins were differentially expressed in the testis at different months (p < 0.05), which may perform a role in regulating gene transcription. The immunohistochemical localization of ASH2L and KDM5A in spermatogonia and spermatozoa suggests that ASH2L and KDM5A may perform a role in mitosis and meiosis. In conclusion, this study is the first to report changes in histone-related genes in reptiles, which provides insight for further studies on the physiological metabolism and histone methylation regulation of P. sinensis during the hibernation induction and hibernation period.
Collapse
Affiliation(s)
- Runlan Lin
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Jiahao Wu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Ziyi You
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Dongjie Xu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Caiyan Li
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Wang
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
20
|
Cahill T, Chan S, Overton IM, Hardiman G. Transcriptome Profiling Reveals Enhanced Mitochondrial Activity as a Cold Adaptive Strategy to Hypothermia in Zebrafish Muscle. Cells 2023; 12:1366. [PMID: 37408201 PMCID: PMC10216211 DOI: 10.3390/cells12101366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 07/07/2023] Open
Abstract
The utilisation of synthetic torpor for interplanetary travel once seemed farfetched. However, mounting evidence points to torpor-induced protective benefits from the main hazards of space travel, namely, exposure to radiation and microgravity. To determine the radio-protective effects of an induced torpor-like state we exploited the ectothermic nature of the Danio rerio (zebrafish) in reducing their body temperatures to replicate the hypothermic states seen during natural torpor. We also administered melatonin as a sedative to reduce physical activity. Zebrafish were then exposed to low-dose radiation (0.3 Gy) to simulate radiation exposure on long-term space missions. Transcriptomic analysis found that radiation exposure led to an upregulation of inflammatory and immune signatures and a differentiation and regeneration phenotype driven by STAT3 and MYOD1 transcription factors. In addition, DNA repair processes were downregulated in the muscle two days' post-irradiation. The effects of hypothermia led to an increase in mitochondrial translation including genes involved in oxidative phosphorylation and a downregulation of extracellular matrix and developmental genes. Upon radiation exposure, increases in endoplasmic reticulum stress genes were observed in a torpor+radiation group with downregulation of immune-related and ECM genes. Exposing hypothermic zebrafish to radiation also resulted in a downregulation of ECM and developmental genes however, immune/inflammatory related pathways were downregulated in contrast to that observed in the radiation only group. A cross-species comparison was performed with the muscle of hibernating Ursus arctos horribilis (brown bear) to define shared mechanisms of cold tolerance. Shared responses show an upregulation of protein translation and metabolism of amino acids, as well as a hypoxia response with the shared downregulation of glycolysis, ECM, and developmental genes.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Sherine Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- JLABS at the Children’s National Research and Innovation Campus, Washington, DC 20012, USA
| | - Ian M. Overton
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK;
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
21
|
Pasaribu B, Acosta K, Aylward A, Liang Y, Abramson BW, Colt K, Hartwick NT, Shanklin J, Michael TP, Lam E. Genomics of turions from the Greater Duckweed reveal its pathways for dormancy and re-emergence strategy. THE NEW PHYTOLOGIST 2023. [PMID: 37149888 DOI: 10.1111/nph.18941] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/24/2023] [Indexed: 05/09/2023]
Abstract
Over 15 families of aquatic plants are known to use a strategy of developmental switching upon environmental stress to produce dormant propagules called turions. However, few molecular details for turion biology have been elucidated due to the difficulties in isolating high-quality nucleic acids from this tissue. We successfully developed a new protocol to isolate high-quality transcripts and carried out RNA-seq analysis of mature turions from the Greater Duckweed Spirodela polyrhiza. Comparison of turion transcriptomes to that of fronds, the actively growing leaf-like tissue, were carried out. Bioinformatic analysis of high confidence, differentially expressed transcripts between frond and mature turion tissues revealed major pathways related to stress tolerance, starch and lipid metabolism, and dormancy that are mobilized to reprogram frond meristems for turion differentiation. We identified the key genes that are likely to drive starch and lipid accumulation during turion formation, as well as those in pathways for starch and lipid utilization upon turion germination. Comparison of genome-wide cytosine methylation levels also revealed evidence for epigenetic changes in the formation of turion tissues. Similarities between turions and seeds provide evidence that key regulators for seed maturation and germination were retooled for their function in turion biology.
Collapse
Affiliation(s)
- Buntora Pasaribu
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Marine Science Department, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Bandung, 40600, Indonesia
| | - Kenneth Acosta
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Anthony Aylward
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Yuanxue Liang
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Bradley W Abramson
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Kelly Colt
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Nolan T Hartwick
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Eric Lam
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
22
|
Frøbert AM, Nielsen CG, Brohus M, Kindberg J, Fröbert O, Overgaard MT. Hypothyroidism in hibernating brown bears. Thyroid Res 2023; 16:3. [PMID: 36721203 PMCID: PMC9890737 DOI: 10.1186/s13044-022-00144-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/11/2022] [Indexed: 02/02/2023] Open
Abstract
Brown bears hibernate throughout half of the year as a survival strategy to reduce energy consumption during prolonged periods with scarcity of food and water. Thyroid hormones are the major endocrine regulators of basal metabolic rate in humans. Therefore, we aimed to determine regulations in serum thyroid hormone levels in hibernation compared to the active state to investigate if these are involved in the adaptions for hibernation.We used electrochemiluminescence immunoassay to quantify total triiodothyronine (T3) and thyroxine (T4) levels in hibernation and active state in paired serum samples from six subadult Scandinavian brown bears. Additionally, we determined regulations in the liver mRNA levels of three major thyroid hormone-binding proteins; thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin, by analysis of previously published grizzly bear RNA sequencing data.We found that bears were hypothyroid when hibernating with T4 levels reduced to less than 44% (P = 0.008) and T3 levels reduced to less than 36% (P = 0.016) of those measured in the active state. In hibernation, mRNA levels of TBG and albumin increased to 449% (P = 0.031) and 121% (P = 0.031), respectively, of those measured in the active state. TTR mRNA levels did not change.Hibernating bears are hypothyroid and share physiologic features with hypothyroid humans, including decreased basal metabolic rate, bradycardia, hypothermia, and fatigue. We speculate that decreased thyroid hormone signaling is a key mediator of hibernation physiology in bears. Our findings shed light on the translational potential of bear hibernation physiology to humans for whom a similar hypometabolic state could be of interest in specific conditions.
Collapse
Affiliation(s)
- Anne Mette Frøbert
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Claus G. Nielsen
- grid.27530.330000 0004 0646 7349Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Malene Brohus
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Jonas Kindberg
- grid.6341.00000 0000 8578 2742Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden ,grid.420127.20000 0001 2107 519XNorwegian Institute for Nature Research, Trondheim, Norway
| | - Ole Fröbert
- grid.154185.c0000 0004 0512 597XSteno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark ,grid.15895.300000 0001 0738 8966Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark ,grid.154185.c0000 0004 0512 597XDepartment of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael T. Overgaard
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| |
Collapse
|
23
|
Cahill T, da Silveira WA, Renaud L, Wang H, Williamson T, Chung D, Chan S, Overton I, Hardiman G. Investigating the effects of chronic low-dose radiation exposure in the liver of a hypothermic zebrafish model. Sci Rep 2023; 13:918. [PMID: 36650199 PMCID: PMC9845366 DOI: 10.1038/s41598-022-26976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Mankind's quest for a manned mission to Mars is placing increased emphasis on the development of innovative radio-protective countermeasures for long-term space travel. Hibernation confers radio-protective effects in hibernating animals, and this has led to the investigation of synthetic torpor to mitigate the deleterious effects of chronic low-dose-rate radiation exposure. Here we describe an induced torpor model we developed using the zebrafish. We explored the effects of radiation exposure on this model with a focus on the liver. Transcriptomic and behavioural analyses were performed. Radiation exposure resulted in transcriptomic perturbations in lipid metabolism and absorption, wound healing, immune response, and fibrogenic pathways. Induced torpor reduced metabolism and increased pro-survival, anti-apoptotic, and DNA repair pathways. Coupled with radiation exposure, induced torpor led to a stress response but also revealed maintenance of DNA repair mechanisms, pro-survival and anti-apoptotic signals. To further characterise our model of induced torpor, the zebrafish model was compared with hepatic transcriptomic data from hibernating grizzly bears (Ursus arctos horribilis) and active controls revealing conserved responses in gene expression associated with anti-apoptotic processes, DNA damage repair, cell survival, proliferation, and antioxidant response. Similarly, the radiation group was compared with space-flown mice revealing shared changes in lipid metabolism.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, Belfast, BT9 5DL, UK
| | - Willian Abraham da Silveira
- School of Health, Science and Wellbeing, Department of Biological Sciences, Science Centre, Staffordshire University, Leek Road, Stoke-On-Trent, ST4 2DF, UK
- International Space University, 1 Rue Jean-Dominique Cassini, 67400, Illkirch-Graffenstaden, France
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hao Wang
- School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, Belfast, BT9 5DL, UK
| | - Tucker Williamson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Sherine Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
- JLABS at the Children's National Research and Innovation Campus, Washington, DC, 20012, USA
| | - Ian Overton
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Gary Hardiman
- School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, Belfast, BT9 5DL, UK.
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
24
|
Perry BW, Armstrong EE, Robbins CT, Jansen HT, Kelley JL. Temporal Analysis of Gene Expression and Isoform Switching in Brown Bears (Ursus arctos). Integr Comp Biol 2022; 62:1802-1811. [PMID: 35709393 DOI: 10.1093/icb/icac093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 01/05/2023] Open
Abstract
Hibernation in brown bears is an annual process involving multiple physiologically distinct seasons-hibernation, active, and hyperphagia. While recent studies have characterized broad patterns of differential gene regulation and isoform usage between hibernation and active seasons, patterns of gene and isoform expression during hyperphagia remain relatively poorly understood. The hyperphagia stage occurs between active and hibernation seasons and involves the accumulation of large fat reserves in preparation for hibernation. Here, we use time-series analyses of gene expression and isoform usage to interrogate transcriptomic regulation associated with all three seasons. We identify a large number of genes with significant differential isoform usage (DIU) across seasons and show that these patterns of isoform usage are largely tissue-specific. We also show that DIU and differential gene-level expression responses are generally non-overlapping, with only a small subset of multi-isoform genes showing evidence of both gene-level expression changes and changes in isoform usage across seasons. Additionally, we investigate nuanced regulation of candidate genes involved in the insulin signaling pathway and find evidence of hyperphagia-specific gene expression and isoform regulation that may enhance fat accumulation during hyperphagia. Our findings highlight the value of using temporal analyses of both gene- and isoform-level gene expression when interrogating complex physiological phenotypes and provide new insight into the mechanisms underlying seasonal changes in bear physiology.
Collapse
Affiliation(s)
- Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ellie E Armstrong
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Charles T Robbins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.,School of the Environment, Washington State University, Pullman, WA 99164, USA
| | | | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
25
|
Willey C, Korstanje R. Sequencing and assembling bear genomes: the bare necessities. Front Zool 2022; 19:30. [PMID: 36451195 PMCID: PMC9710173 DOI: 10.1186/s12983-022-00475-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Unique genetic adaptations are present in bears of every species across the world. From (nearly) shutting down important organs during hibernation to preventing harm from lifestyles that could easily cause metabolic diseases in humans, bears may hold the answer to various human ailments. However, only a few of these unique traits are currently being investigated at the molecular level, partly because of the lack of necessary tools. One of these tools is well-annotated genome assemblies from the different, extant bear species. These reference genomes are needed to allow us to identify differences in genetic variants, isoforms, gene expression, and genomic features such as transposons and identify those that are associated with biomedical-relevant traits. In this review we assess the current state of the genome assemblies of the eight different bear species, discuss current gaps, and the future benefits these reference genomes may have in informing human biomedical applications, while at the same time improving bear conservation efforts.
Collapse
|
26
|
Miyazaki M, Shimozuru M, Kitaoka Y, Takahashi K, Tsubota T. Regulation of protein and oxidative energy metabolism are down-regulated in the skeletal muscles of Asiatic black bears during hibernation. Sci Rep 2022; 12:19723. [PMID: 36385156 PMCID: PMC9668988 DOI: 10.1038/s41598-022-24251-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hibernating animals exhibit an unexplained physiological characteristic of skeletal muscles being atrophy resistance, in which case muscle mass and strength remain almost unchanged both before and after hibernation. In this study, we examined the alterations in the regulatory systems of protein and energy metabolism in the skeletal muscles of Asiatic black bears during hibernation. Skeletal muscle samples (vastus lateralis muscle) were collected from identical individuals (n = 8) during the active (July) and hibernating (February) periods, while histochemical and biochemical analyses were performed. We observed no significant alterations in body weight, muscle fiber size, and fiber type composition during the active and hibernating periods, indicating that the skeletal muscles of bears are very well preserved during hibernation. In hibernating bear skeletal muscles, both regulatory pathways of muscle protein synthesis (Akt/mechanistic target of rapamycin and mitogen-activated protein kinase systems) and proteolysis (ubiquitin-proteasome and autophagy systems) were down-regulated. Gene expression levels of factors regulating oxidative metabolism were also decreased in hibernating bear skeletal muscles. This is likely an adaptive strategy to minimize the energy wasting of amino acids and lipids during hibernation, which is accompanied by a prolonged period of disuse and starvation.
Collapse
Affiliation(s)
- Mitsunori Miyazaki
- grid.257022.00000 0000 8711 3200Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553 Japan ,grid.412021.40000 0004 1769 5590Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Michito Shimozuru
- grid.39158.360000 0001 2173 7691Laboratory of Wildlife Biology and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Yu Kitaoka
- grid.411995.10000 0001 2155 9872Department of Human Sciences, Kanagawa University, Kanagawa, Japan
| | - Kenya Takahashi
- grid.26999.3d0000 0001 2151 536XDepartment of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Tsubota
- grid.39158.360000 0001 2173 7691Laboratory of Wildlife Biology and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
27
|
Saxton MW, Perry BW, Evans Hutzenbiler BD, Trojahn S, Gee A, Brown AP, Merrihew GE, Park J, Cornejo OE, MacCoss MJ, Robbins CT, Jansen HT, Kelley JL. Serum plays an important role in reprogramming the seasonal transcriptional profile of brown bear adipocytes. iScience 2022; 25:105084. [PMID: 36317158 PMCID: PMC9617460 DOI: 10.1016/j.isci.2022.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding how metabolic reprogramming happens in cells will aid the progress in the treatment of a variety of metabolic disorders. Brown bears undergo seasonal shifts in insulin sensitivity, including reversible insulin resistance in hibernation. We performed RNA-sequencing on brown bear adipocytes and proteomics on serum to identify changes possibly responsible for reversible insulin resistance. We observed dramatic transcriptional changes, which depended on both the cell and serum season of origin. Despite large changes in adipocyte gene expression, only changes in eight circulating proteins were identified as related to the seasonal shifts in insulin sensitivity, including some that have not previously been associated with glucose homeostasis. The identified serum proteins may be sufficient for shifting hibernation adipocytes to an active-like state.
Collapse
Affiliation(s)
- Michael W. Saxton
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Blair W. Perry
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Shawn Trojahn
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Alexia Gee
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Anthony P. Brown
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Jea Park
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Omar E. Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Charles T. Robbins
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
- School of the Environment, Washington State University, Pullman, WA 99163, USA
| | - Heiko T. Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99163, USA
| | - Joanna L. Kelley
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
28
|
Ruf T, Bieber C. Why hibernate? Predator avoidance in the edible dormouse. MAMMAL RES 2022; 68:1-11. [PMID: 36624745 PMCID: PMC9816287 DOI: 10.1007/s13364-022-00652-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
We address the question of ultimate selective advantages of hibernation. Biologists generally seem to accept the notion that multiday torpor is primarily a response to adverse environmental conditions, namely cold climate and low food abundance. We closely examine hibernation, and its summer equivalent estivation, in the edible dormouse, Glis glis. We conclude that in this species, hibernation is not primarily driven by poor conditions. Dormice enter torpor with fat reserves in years that are unfavourable for reproduction but provide ample food supply for animals to sustain themselves and even gain body energy reserves. While staying in hibernacula below ground, hibernators have much higher chances of survival than during the active season. We think that dormice enter prolonged torpor predominantly to avoid predation, mainly nocturnal owls. Because estivation in summer is immediately followed by hibernation, this strategy requires a good body condition in terms of fat reserves. As dormice age, they encounter fewer occasions to reproduce when calorie-rich seeds are available late in the year, and phase advance the hibernation season. By early emergence from hibernation, the best territories can be occupied and the number of mates maximised. However, this advantage comes at the cost of increased predation pressure that is maximal in spring. We argue the predator avoidance is generally one of the primary reasons for hibernation, as increased perceived predation pressure leads to an enhanced torpor use. The edible dormouse may be just an example where this behaviour becomes most obvious, on the population level and across large areas.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
29
|
Frøbert AM, Brohus M, Roesen TS, Kindberg J, Fröbert O, Conover CA, Overgaard MT. Circulating insulin-like growth factor system adaptations in hibernating brown bears indicate increased tissue IGF availability. Am J Physiol Endocrinol Metab 2022; 323:E307-E318. [PMID: 35830688 DOI: 10.1152/ajpendo.00429.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brown bears conserve muscle and bone mass during 6 mo of inactive hibernation. The molecular mechanisms underlying hibernation physiology may have translational relevance for human therapeutics. We hypothesize that protective mechanisms involve increased tissue availability of insulin-like growth factors (IGFs). In subadult Scandinavian brown bears, we observed that mean plasma IGF-1 and IGF-2 levels during hibernation were reduced to 36 ± 10% and 56 ± 15%, respectively, compared with the active state (n = 12). Western ligand blotting identified IGF-binding protein (IGFBP)-3 as the major IGFBP in the active state, whereas IGFBP-2 was codominant during hibernation. Acid labile subunit (ALS) levels in hibernation were reduced to 41±16% compared with the active state (n = 6). Analysis of available grizzly bear RNA sequencing data revealed unaltered liver mRNA IGF-1, IGFBP-2, and IGFBP-3 levels, whereas ALS levels were significantly reduced during hibernation (n = 6). Reduced ALS synthesis and circulating levels during hibernation should prompt a shift from ternary IGF/IGFBP/ALS to smaller binary IGF/IGFBP complexes, thereby increasing IGF tissue availability. Indeed, size-exclusion chromatography of bear plasma demonstrated a shift to lower molecular weight IGF-containing complexes in the hibernating versus the active state. Furthermore, we note that the major IGF-2 mRNA isoform expressed in livers in both Scandinavian brown bears and grizzly bears was an alternative splice variant in which Ser29 is replaced with a tetrapeptide possessing a positively charged Arg residue. Homology modeling of the bear IGF-2/IGFBP-2 complex showed the tetrapeptide in proximity to the heparin-binding domain involved in bone-specific targeting of this complex. In conclusion, this study provides data which suggest that increased IGF tissue availability combined with tissue-specific targeting contribute to tissue preservation in hibernating bears.NEW & NOTEWORTHY Brown bears shift from circulating ternary IGF/IGFBP/ALS complexes in the active state to binary IGF/IGFBP complexes during hibernation, indicating increased tissue IGF-bioactivity. Furthermore, brown bears use a splice variant of IGF-2, suggesting increased bone-specific targeting of IGF anabolic signaling.
Collapse
Affiliation(s)
- Anne Mette Frøbert
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Malene Brohus
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Tinna S Roesen
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
- Department of Clinical Medicine, Aarhus University Health, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Cheryl A Conover
- Division of Endocrinology, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| |
Collapse
|
30
|
Frøbert AM, Toews JNC, Nielsen CG, Brohus M, Kindberg J, Jessen N, Fröbert O, Hammond GL, Overgaard MT. Differential Changes in Circulating Steroid Hormones in Hibernating Brown Bears: Preliminary Conclusions and Caveats. Physiol Biochem Zool 2022; 95:365-378. [PMID: 35839518 DOI: 10.1086/721154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Brown bears are obese when they enter the den, and after 6 mo of hibernation and physical inactivity, bears show none of the adverse consequences of a sedentary lifestyle in humans, such as cardiovascular disease, type 2 diabetes, and kidney failure. The metabolic mechanisms that drive hibernation physiology in bears are poorly defined, but systemic endocrine regulators are likely involved. To investigate the potential role of steroid hormones, we quantified the total levels of 12 steroid hormones, the precursor cholesterol, sex hormone-binding globulin (SHBG), and corticosterone-binding globulin (CBG) in paired serum samples from subadult free-ranging Scandinavian brown bears during the active and hibernation states. During hibernation, androstenedione and testosterone were significantly decreased in subadult female bears (n=13), whereas they increased in all males but one (n=6) and therefore did not reach a significant difference. Despite this difference, SHBG increased more than 20-fold during hibernation for all bears. Compared with SHBG concentrations in humans, bear levels were very low in the active state, but during hibernation, levels equaled high levels in humans. The increased SHBG levels likely maintain a state of relative quiescence of the reproductive hormones in hibernating bears. Interestingly, the combination of SHBG and testosterone levels results in similar free bioavailable testosterone levels of 70-80 pM in both subadult and adult sexually active male bears, suggesting a role for SHBG in controlling androgen action during hibernation in males. Dehydroepiandrosterone sulfate, dihydrotestosterone, and estradiol levels were below the detection limit in all but one animal. The metabolically active glucocorticoids were significantly higher in both sexes during hibernation, whereas the inactive metabolite cortisone was reduced and CBG was low approaching the detection limit. A potential caveat is that the glucocorticoid levels might be affected by the ketamine applied in the anesthetic mixture for hibernating bears. However, increased hibernating cortisol levels have consistently been reported in both black bears and brown bears. Thus, we suggest that high glucocorticoid activity may support the hibernation state, likely serving to promote lipolysis and gluconeogenesis while limiting tissue glucose uptake to maintain a continuous glucose supply to the brain.
Collapse
|
31
|
Hibernation slows epigenetic ageing in yellow-bellied marmots. Nat Ecol Evol 2022; 6:418-426. [PMID: 35256811 PMCID: PMC8986532 DOI: 10.1038/s41559-022-01679-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/20/2022] [Indexed: 01/02/2023]
Abstract
Species that hibernate generally live longer than would be expected based solely on their body size. Hibernation is characterized by long periods of metabolic suppression (torpor) interspersed by short periods of increased metabolism (arousal). The torpor–arousal cycles occur multiple times during hibernation, and it has been suggested that processes controlling the transition between torpor and arousal states cause ageing suppression. Metabolic rate is also a known correlate of longevity; we thus proposed the ‘hibernation–ageing hypothesis’ whereby ageing is suspended during hibernation. We tested this hypothesis in a well-studied population of yellow-bellied marmots (Marmota flaviventer), which spend 7–8 months per year hibernating. We used two approaches to estimate epigenetic age: the epigenetic clock and the epigenetic pacemaker. Variation in epigenetic age of 149 samples collected throughout the life of 73 females was modelled using generalized additive mixed models (GAMM), where season (cyclic cubic spline) and chronological age (cubic spline) were fixed effects. As expected, the GAMM using epigenetic ages calculated from the epigenetic pacemaker was better able to detect nonlinear patterns in epigenetic ageing over time. We observed a logarithmic curve of epigenetic age with time, where the epigenetic age increased at a higher rate until females reached sexual maturity (two years old). With respect to circannual patterns, the epigenetic age increased during the active season and essentially stalled during the hibernation period. Taken together, our results are consistent with the hibernation–ageing hypothesis and may explain the enhanced longevity in hibernators. Species that hibernate generally have longer lifespans than expected based on their body size. The authors show epigenetic ageing patterns from a natural population of hibernating yellow-bellied marmots consistent with the hypothesis that ageing is suspended during hibernation.
Collapse
|
32
|
The biology of beauty sleep. Nat Ecol Evol 2022; 6:351-352. [PMID: 35256810 DOI: 10.1038/s41559-022-01683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Tseng E, Underwood JG, Evans Hutzenbiler BD, Trojahn S, Kingham B, Shevchenko O, Bernberg E, Vierra M, Robbins CT, Jansen HT, Kelley JL. Long-read isoform sequencing reveals tissue-specific isoform expression between active and hibernating brown bears (Ursus arctos). G3 (BETHESDA, MD.) 2022; 12:6472356. [PMID: 35100340 PMCID: PMC9210309 DOI: 10.1093/g3journal/jkab422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022]
Abstract
Understanding hibernation in brown bears (Ursus arctos) can provide insight into some human diseases. During hibernation, brown bears experience periods of insulin resistance, physical inactivity, extreme bradycardia, obesity, and the absence of urine production. These states closely mimic aspects of human diseases such as type 2 diabetes, muscle atrophy, as well as renal and heart failure. The reversibility of these states from hibernation to active season enables the identification of mediators with possible therapeutic value for humans. Recent studies have identified genes and pathways that are differentially expressed between active and hibernation seasons in bears. However, little is known about the role of differential expression of gene isoforms on hibernation physiology. To identify both distinct and novel mRNA isoforms, full-length RNA-sequencing (Iso-Seq) was performed on adipose, skeletal muscle, and liver from three individual bears sampled during both active and hibernation seasons. The existing reference genome annotation was improved by combining it with the Iso-Seq data. Short-read RNA-sequencing data from six individuals were mapped to the new reference annotation to quantify differential isoform usage (DIU) between tissues and seasons. We identified differentially expressed isoforms in all three tissues, to varying degrees. Adipose had a high level of DIU with isoform switching, regardless of whether the genes were differentially expressed. Our analyses revealed that DIU, even in the absence of differential gene expression, is an important mechanism for modulating genes during hibernation. These findings demonstrate the value of isoform expression studies and will serve as the basis for deeper exploration into hibernation biology.
Collapse
Affiliation(s)
| | | | - Brandon D Evans Hutzenbiler
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.,School of the Environment, Washington State University, Pullman, WA 99164, USA
| | - Shawn Trojahn
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Brewster Kingham
- Sequencing & Genotyping Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Olga Shevchenko
- Sequencing & Genotyping Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Erin Bernberg
- Sequencing & Genotyping Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | | - Charles T Robbins
- School of the Environment, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Heiko T Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
34
|
Golpich M, Amini E, Kefayat A, Fesharaki M, Moshtaghian J. In vitro and in vivo anti-cancer effects of hibernating common carp (Cyprinus carpio) plasma on metastatic triple-negative breast cancer. Sci Rep 2022; 12:2855. [PMID: 35190572 PMCID: PMC8861139 DOI: 10.1038/s41598-022-06368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Uncontrollable proliferation is a hallmark of cancer cells. Cell proliferation and migration are significantly depressed during hibernation state. Many studies believe some factors in the plasma of hibernating animals cause these effects. This study aimed to assess the anti-cancer effects of hibernating common carp (Cyprinus carpio) plasma on 4T1 cancer cells in vitro and in vivo. The effect of hibernating plasma on cell viability, morphology, migration, apoptosis rate, and cell cycle distribution of 4T1 cells was investigated in vitro and in vivo. Hibernating plasma at a concentration of 16 mg/ml significantly reduced the viability of 4T1 cancer cells, without any toxicity on L929 normal fibroblast cells. It could change the morphology of cancer cells, induced apoptosis and cell cycle arrest at the G2/M phase, and inhibited migration. Furthermore, intratumoral injection of hibernating plasma (200 µl, 16 mg/ml) in the tumor-bearing mice caused a significant inhibition of 4T1 breast tumors volume (46.9%) and weight (58.8%) compared with controls. A significant decrease in the number of metastatic colonies at the lungs (80%) and liver (52.8%) of hibernating plasma-treated animals was detected which increased the survival time (21.9%) compared to the control groups. Immunohistochemical analysis revealed a considerable reduction in the Ki-67-positive cells in the tumor section of the hibernating plasma-treated animals compared with controls. Taken together, the SDS-PAGE and mass spectrometry analysis indicated the alpha-2-macroglobulin level in the hibernating fish plasma was significantly increased. It could exert an anti-cancer effect on breast cancer cells and suggested as a novel cancer treatment strategy.
Collapse
|
35
|
Stephan T, Burgess SM, Cheng H, Danko CG, Gill CA, Jarvis ED, Koepfli KP, Koltes JE, Lyons E, Ronald P, Ryder OA, Schriml LM, Soltis P, VandeWoude S, Zhou H, Ostrander EA, Karlsson EK. Darwinian genomics and diversity in the tree of life. Proc Natl Acad Sci U S A 2022; 119:e2115644119. [PMID: 35042807 PMCID: PMC8795533 DOI: 10.1073/pnas.2115644119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genomics encompasses the entire tree of life, both extinct and extant, and the evolutionary processes that shape this diversity. To date, genomic research has focused on humans, a small number of agricultural species, and established laboratory models. Fewer than 18,000 of ∼2,000,000 eukaryotic species (<1%) have a representative genome sequence in GenBank, and only a fraction of these have ancillary information on genome structure, genetic variation, gene expression, epigenetic modifications, and population diversity. This imbalance reflects a perception that human studies are paramount in disease research. Yet understanding how genomes work, and how genetic variation shapes phenotypes, requires a broad view that embraces the vast diversity of life. We have the technology to collect massive and exquisitely detailed datasets about the world, but expertise is siloed into distinct fields. A new approach, integrating comparative genomics with cell and evolutionary biology, ecology, archaeology, anthropology, and conservation biology, is essential for understanding and protecting ourselves and our world. Here, we describe potential for scientific discovery when comparative genomics works in close collaboration with a broad range of fields as well as the technical, scientific, and social constraints that must be addressed.
Collapse
Affiliation(s)
- Taylorlyn Stephan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817
| | - Shawn M Burgess
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817
| | - Hans Cheng
- Avian Disease and Oncology Laboratory, Agricultural Research Service, US Department of Agriculture, East Lansing, MI 48823
| | - Charles G Danko
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY 14850
| | - Clare A Gill
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065
- HHMI, Chevy Chase, MD 20815
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Eric Lyons
- School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, AZ 85721
| | - Pamela Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Innovative Genomics Institute, University of California, Berkeley, CA 94720
- Grass Genetics, Joint Bioenergy Institute, Emeryville, CA 94608
| | - Oliver A Ryder
- San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Department of Evolution, Behavior, and Ecology, University of California San Diego, La Jolla, CA 92093
| | - Lynn M Schriml
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Pamela Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
| | - Sue VandeWoude
- Department of Micro-, Immuno-, and Pathology, Colorado State University, Fort Collins, CO 80532
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655;
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
36
|
Hogan HRH, Hutzenbiler BDE, Robbins CT, Jansen HT. Changing lanes: seasonal differences in cellular metabolism of adipocytes in grizzly bears (Ursus arctos horribilis). J Comp Physiol B 2022; 192:397-410. [PMID: 35024905 DOI: 10.1007/s00360-021-01428-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022]
Abstract
Obesity is among the most prevalent of health conditions in humans leading to a multitude of metabolic pathologies such as type 2 diabetes and hyperglycemia. However, there are many wild animals that have large seasonal cycles of fat accumulation and loss that do not result in the health consequences observed in obese humans. One example is the grizzly bear (Ursus arctos horribilis) that can have body fat content > 40% that is then used as the energy source for hibernation. Previous in vitro studies found that hibernation season adipocytes exhibit insulin resistance and increased lipolysis. Yet, other aspects of cellular metabolism were not addressed, leaving this in vitro model incomplete. Thus, the current studies were performed to determine if the cellular energetic phenotype-measured via metabolic flux-of hibernating bears was retained in cultured adipocytes and to what extent that was due to serum or intrinsic cellular factors. Extracellular acidification rate and oxygen consumption rate were used to calculate proton efflux rate and total ATP defined as both ATP from glycolysis and from mitochondrial respiration. Hibernation adipocytes treated with hibernation serum produced less ATP and exhibited lower maximal respiration and glycolysis rates than active season adipocytes. These effects were reversed with serum from the opposite season. Insulin had little influence on total ATP production and lipolysis in both hibernation and active serum-treated adipocytes. Together, these results suggest that the metabolic suppression occurring in hibernation adipocytes are downstream of insulin signaling and likely due to a combined reduction in mitochondria number and/or function and glycolytic processes. Future elucidation of the serum components and the cellular mechanisms that enable alterations in mitochondrial function could provide a novel avenue for the development of treatments for human metabolic diseases.
Collapse
Affiliation(s)
- Hannah R Hapner Hogan
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - Brandon D E Hutzenbiler
- Department Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.,School of the Environment, College of Agricultural, Human and Natural Resource Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Charles T Robbins
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA, 99164, USA.,School of the Environment, College of Agricultural, Human and Natural Resource Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Heiko T Jansen
- Department Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
37
|
Xie Z, Ahmad IM, Zuo L, Xiao F, Wang Y, Li D. Hibernation with rhythmicity: the circadian clock and hormonal adaptations of the hibernating Asiatic toads (Bufo gargarizans). Integr Zool 2021; 17:656-669. [PMID: 34791783 DOI: 10.1111/1749-4877.12613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hibernation is one of the fundamental strategies in response to cold environmental temperatures. During hibernation, the endocrine and circadian systems ensure minimal expenditure of energy for survival. The circadian rhythms of key hormones, melatonin (MT), corticosterone (CORT), triiodothyronine (T3 ), and thyroxine (T4 ), and the underlying molecular regulatory mechanisms of hibernation have been well determined in mammals but not in ectotherms. Here, a terrestrial hibernating species, Asiatic toad (Bufo gargarizans), was employed to investigate the plasma CORT, MT, T3 , and T4 ; and the retina, brain, and liver mRNA expression of the core clock genes, including circadian locomotor output cycles kaput (Clock), brain and muscle ARNT-like 1 (Bmal1), cryptochrome (Cry) 1 and 2, and period (Per) 1 and 2, at 7-time points over a 24-h period under acute cold (1 day at 4°C), and hibernation (45 days at 4°C). Our results showed that the circadian rhythms of the core clock genes were rather unaffected by acute cold exposure in the retina, unlike the brain and liver. In contrast, during hibernation, the liver clock genes displayed significant circadian oscillations, while those in the retina and brain stopped ticking. Furthermore, plasma CORT expressed circadian oscillations in both groups, and T3 in acute cold exposure group, whereas T4 and MT did not. Our results reveal that the plasma CORT and the liver sustain rhythmicity when the brain was not, indicating that the liver clock along with the adrenal clock synergistically maintains the metabolic requirements to ensure basic survival in hibernating Asiatic toads.
Collapse
Affiliation(s)
- Zhigang Xie
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Ibrahim M Ahmad
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lirong Zuo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Feng Xiao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Yongpeng Wang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Dongming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
38
|
Cussonneau L, Boyer C, Brun C, Deval C, Loizon E, Meugnier E, Gueret E, Dubois E, Taillandier D, Polge C, Béchet D, Gauquelin-Koch G, Evans AL, Arnemo JM, Swenson JE, Blanc S, Simon C, Lefai E, Bertile F, Combaret L. Concurrent BMP Signaling Maintenance and TGF-β Signaling Inhibition Is a Hallmark of Natural Resistance to Muscle Atrophy in the Hibernating Bear. Cells 2021; 10:cells10081873. [PMID: 34440643 PMCID: PMC8393865 DOI: 10.3390/cells10081873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Muscle atrophy arises from a multiplicity of physio-pathological situations and has very detrimental consequences for the whole body. Although knowledge of muscle atrophy mechanisms keeps growing, there is still no proven treatment to date. This study aimed at identifying new drivers for muscle atrophy resistance. We selected an innovative approach that compares muscle transcriptome between an original model of natural resistance to muscle atrophy, the hibernating brown bear, and a classical model of induced atrophy, the unloaded mouse. Using RNA sequencing, we identified 4415 differentially expressed genes, including 1746 up- and 2369 down-regulated genes, in bear muscles between the active versus hibernating period. We focused on the Transforming Growth Factor (TGF)-β and the Bone Morphogenetic Protein (BMP) pathways, respectively, involved in muscle mass loss and maintenance. TGF-β- and BMP-related genes were overall down- and up-regulated in the non-atrophied muscles of the hibernating bear, respectively, and the opposite occurred for the atrophied muscles of the unloaded mouse. This was further substantiated at the protein level. Our data suggest TGF-β/BMP balance is crucial for muscle mass maintenance during long-term physical inactivity in the hibernating bear. Thus, concurrent activation of the BMP pathway may potentiate TGF-β inhibiting therapies already targeted to prevent muscle atrophy.
Collapse
Affiliation(s)
- Laura Cussonneau
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
- Correspondence: (L.C.); (L.C.); Tel.: +(33)4-7362-4824 (Lydie Combaret)
| | - Christian Boyer
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Charlotte Brun
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; (C.B.); (S.B.); (F.B.)
| | - Christiane Deval
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Emmanuelle Loizon
- CarMen Laboratory, INSERM 1060, INRAE 1397, University of Lyon, F-69600 Oullins, France; (E.L.); (E.M.); (C.S.)
| | - Emmanuelle Meugnier
- CarMen Laboratory, INSERM 1060, INRAE 1397, University of Lyon, F-69600 Oullins, France; (E.L.); (E.M.); (C.S.)
| | - Elise Gueret
- Institut de Génomique Fonctionnelle (IGF), University Montpellier, CNRS, INSERM, 34094 Montpellier, France; (E.G.); (E.D.)
- Montpellier GenomiX, France Génomique, 34095 Montpellier, France
| | - Emeric Dubois
- Institut de Génomique Fonctionnelle (IGF), University Montpellier, CNRS, INSERM, 34094 Montpellier, France; (E.G.); (E.D.)
- Montpellier GenomiX, France Génomique, 34095 Montpellier, France
| | - Daniel Taillandier
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Cécile Polge
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Daniel Béchet
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | | | - Alina L. Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway; (A.L.E.); (J.M.A.)
| | - Jon M. Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO-2480 Koppang, Norway; (A.L.E.); (J.M.A.)
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Jon E. Swenson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway;
| | - Stéphane Blanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; (C.B.); (S.B.); (F.B.)
| | - Chantal Simon
- CarMen Laboratory, INSERM 1060, INRAE 1397, University of Lyon, F-69600 Oullins, France; (E.L.); (E.M.); (C.S.)
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; (C.B.); (S.B.); (F.B.)
| | - Lydie Combaret
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France; (C.B.); (C.D.); (D.T.); (C.P.); (D.B.); (E.L.)
- Correspondence: (L.C.); (L.C.); Tel.: +(33)4-7362-4824 (Lydie Combaret)
| |
Collapse
|
39
|
Tessier SN, Ingelson-Filpula WA, Storey KB. Epigenetic regulation by DNA methyltransferases during torpor in the thirteen-lined ground squirrel Ictidomys tridecemlineatus. Mol Cell Biochem 2021; 476:3975-3985. [PMID: 34191233 DOI: 10.1007/s11010-021-04214-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 06/21/2021] [Indexed: 12/31/2022]
Abstract
The thirteen-lined ground squirrel, Ictidomys tridecemlineatus, is a mammal capable of lowering its Tb to almost 0 °C while undergoing deep torpor bouts over the winter. To decrease its metabolic rate to such a drastic extent, the squirrel must undergo multiple physiological, biological, and molecular alterations including downregulation of almost all nonessential processes. Epigenetic regulation allows for a dynamic range of transient phenotypes, allowing the squirrel to downregulate energy-expensive and nonessential pathways during torpor. DNA methylation is a prominent form of epigenetic regulation; therefore, the DNA methyltransferase (DNMT) family of enzymes were studied by measuring expression and activity levels of the five major proteins during torpor bouts. Additionally, specific cytosine marks on genomic DNA were quantified to further elucidate DNA methylation during hibernation. A tissue-specific response was observed that highlighted variant degrees of DNA methylation and DNMT expression/activity, demonstrating that DNA methylation is a highly complex form of epigenetic regulation and likely one of many regulatory mechanisms that enables metabolic rate depression in response to torpor.
Collapse
Affiliation(s)
- Shannon N Tessier
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.,BioMEMS Resource Center & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - W Aline Ingelson-Filpula
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
40
|
Jansen HT, Evans Hutzenbiler B, Hapner HR, McPhee ML, Carnahan AM, Kelley JL, Saxton MW, Robbins CT. Can offsetting the energetic cost of hibernation restore an active season phenotype in grizzly bears (Ursus arctos horribilis)? J Exp Biol 2021; 224:269178. [PMID: 34137891 DOI: 10.1242/jeb.242560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/12/2021] [Indexed: 01/14/2023]
Abstract
Hibernation is characterized by depression of many physiological processes. To determine if this state is reversible in a non-food caching species, we fed hibernating grizzly bears (Ursus arctos horribilis) dextrose for 10 days to replace 53% or 100% of the estimated minimum daily energetic cost of hibernation. Feeding caused serum concentrations of glycerol and ketones (β-hydroxybutyrate) to return to active season levels irrespective of the amount of glucose fed. By contrast, free fatty acids (FFAs) and indices of metabolic rate, such as general activity, heart rate, strength of heart rate circadian rhythm, and insulin sensitivity were restored to approximately 50% of active season levels. Body temperature was unaffected by feeding. To determine the contribution of adipose to the metabolic effects observed after glucose feeding, we cultured bear adipocytes collected at the beginning and end of the feeding and performed metabolic flux analysis. We found a ∼33% increase in energy metabolism after feeding. Moreover, basal metabolism before feeding was 40% lower in hibernation cells compared with fed cells or active cells cultured at 37°C, thereby confirming the temperature independence of metabolic rate. The partial depression of circulating FFAs with feeding likely explains the incomplete restoration of insulin sensitivity and other metabolic parameters in hibernating bears. Further depression of metabolic function is likely to be an active process. Together, the results provide a highly controlled model to examine the relationship between nutrient availability and metabolism on the hibernation phenotype in bears.
Collapse
Affiliation(s)
- Heiko T Jansen
- Dept. Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Brandon Evans Hutzenbiler
- Dept. Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Hannah R Hapner
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Madeline L McPhee
- Dept. Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Anthony M Carnahan
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Joanna L Kelley
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Michael W Saxton
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Charles T Robbins
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA.,School of the Environment, College of Agricultural, Human and Natural Resource Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
41
|
Wilson AE, Wismer D, Stenhouse G, Coops NC, Janz DM. Landscape condition influences energetics, reproduction, and stress biomarkers in grizzly bears. Sci Rep 2021; 11:12124. [PMID: 34108541 PMCID: PMC8190091 DOI: 10.1038/s41598-021-91595-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
Environmental change has been shown to influence mammalian distribution, habitat use, and behavior; however, few studies have investigated the impact on physiological function. This study aimed to determine the influence of landscape condition on the expression of target proteins related to energetics, reproduction, and stress in grizzly bears. We hypothesized that changes in landscape condition explains protein expression. Skin biopsies were collected from free-ranging grizzly bears in Alberta, Canada from 2013-2019 (n = 86 individuals). We used an information theoretic approach to develop 11 a priori candidate generalized linear mixed models to explain protein expression. We compared models using Akaike Information Criteria (AICc) weights and averaged models with ΔAICc < 2 for each protein. Food resources, represented by increased distance to coal mines and decreased crown closure, positively influenced energetic proteins (adiponectin and alpha-1-acid glycoprotein). Proteins related to reproduction (ceruloplasmin and serpin B5) were positively associated with increased wetland and upland food resources in addition to movement, but negatively associated with increased distance to roads. One stress related protein, complement C3, was positively influenced by increased percent conifer. Given the need to detect emerging threats to wildlife, we suggest the assessment of physiological function will lead to improved monitoring of species in rapidly changing landscapes.
Collapse
Affiliation(s)
- Abbey E. Wilson
- grid.25152.310000 0001 2154 235XDepartment of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada ,Toxicology Centre, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| | - Dan Wismer
- fRI Research, Grizzly Bear Program, 1176 Switzer Drive, Hinton, AB T7V 1V3 Canada
| | - Gordon Stenhouse
- fRI Research, Grizzly Bear Program, 1176 Switzer Drive, Hinton, AB T7V 1V3 Canada
| | - Nicholas C. Coops
- grid.17091.3e0000 0001 2288 9830Department of Forest Resource Management, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - David M. Janz
- grid.25152.310000 0001 2154 235XDepartment of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada ,Toxicology Centre, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| |
Collapse
|
42
|
Gillen AE, Fu R, Riemondy KA, Jager J, Fang B, Lazar MA, Martin SL. Liver Transcriptome Dynamics During Hibernation Are Shaped by a Shifting Balance Between Transcription and RNA Stability. Front Physiol 2021; 12:662132. [PMID: 34093224 PMCID: PMC8176218 DOI: 10.3389/fphys.2021.662132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Hibernators dramatically lower metabolism to save energy while fasting for months. Prolonged fasting challenges metabolic homeostasis, yet small-bodied hibernators emerge each spring ready to resume all aspects of active life, including immediate reproduction. The liver is the body's metabolic hub, processing and detoxifying macromolecules to provide essential fuels to brain, muscle and other organs throughout the body. Here we quantify changes in liver gene expression across several distinct physiological states of hibernation in 13-lined ground squirrels, using RNA-seq to measure the steady-state transcriptome and GRO-seq to measure transcription for the first time in a hibernator. Our data capture key timepoints in both the seasonal and torpor-arousal cycles of hibernation. Strong positive correlation between transcription and the transcriptome indicates that transcriptional control dominates the known seasonal reprogramming of metabolic gene expression in liver for hibernation. During the torpor-arousal cycle, however, discordance develops between transcription and the steady-state transcriptome by at least two mechanisms: 1) although not transcribed during torpor, some transcripts are unusually stable across the torpor bout; and 2) unexpectedly, on some genes, our data suggest continuing, slow elongation with a failure to terminate transcription across the torpor bout. While the steady-state RNAs corresponding to these read through transcripts did not increase during torpor, they did increase shortly after rewarming despite their simultaneously low transcription. Both of these mechanisms would assure the immediate availability of functional transcripts upon rewarming. Integration of transcriptional, post-transcriptional and RNA stability control mechanisms, all demonstrated in these data, likely initiate a serial gene expression program across the short euthermic period that restores the tissue and prepares the animal for the next bout of torpor.
Collapse
Affiliation(s)
- Austin E. Gillen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kent A. Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jennifer Jager
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Genetics, and The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bin Fang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Genetics, and The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mitchell A. Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Genetics, and The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sandra L. Martin
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
43
|
Transcriptional changes and preservation of bone mass in hibernating black bears. Sci Rep 2021; 11:8281. [PMID: 33859306 PMCID: PMC8050052 DOI: 10.1038/s41598-021-87785-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
Physical inactivity leads to losses of bone mass and strength in most mammalian species. In contrast, hibernating bears show no bone loss over the prolonged periods (4–6 months) of immobility during winter, which suggests that they have adaptive mechanisms to preserve bone mass. To identify transcriptional changes that underlie molecular mechanisms preventing disuse osteoporosis, we conducted a large-scale gene expression screening in the trabecular bone and bone marrow, comparing hibernating and summer active bears through sequencing of the transcriptome. Gene set enrichment analysis showed a coordinated down-regulation of genes involved in bone resorption, osteoclast differentiation and signaling, and apoptosis during hibernation. These findings are consistent with previous histological findings and likely contribute to the preservation of bone during the immobility of hibernation. In contrast, no significant enrichment indicating directional changes in gene expression was detected in the gene sets of bone formation and osteoblast signaling in hibernating bears. Additionally, we revealed significant and coordinated transcriptional induction of gene sets involved in aerobic energy production including fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, and mitochondrial metabolism. Mitochondrial oxidation was likely up-regulated by transcriptionally induced AMPK/PGC1α pathway, an upstream stimulator of mitochondrial function.
Collapse
|
44
|
Saleem R, Al-Attar R, Storey KB. The Activation of Prosurvival Pathways in Myotis lucifugus during Torpor. Physiol Biochem Zool 2021; 94:180-187. [PMID: 33835909 DOI: 10.1086/714219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractHibernation is a strategy used by some mammals to survive harsh winter conditions. Many small mammals, such as the little brown bat, Myotis lucifugus, enter a long-term state of hibernation characterized by a period of deep torpor that can range from days to weeks. Torpid bats undergo metabolic rate depression that not only results in physiological changes but also promotes biochemical changes that favor survival. The present study utilizes multiplex technology to assess key early apoptosis markers and a select group of antioxidant enzymes in muscle, heart, and liver in euthermic controls and torpid bats. Muscle showed a significant decrease in the proapoptotic c-Jun N-terminal kinase and p53 and the antioxidant enzyme catalase but a significant increase in peroxiredoxin 2 levels. The heart responded similarly, with most proapoptotic proteins (caspase 8/9 and p53) remaining at low levels, while the antiapoptotic Bcl-2 protein significantly increased during torpor. There was no significant change in the antioxidant enzymes measured during torpor in the heart compared with the controls. The liver showed increases in catalase and Mn superoxide dismutase 2 enzymes during torpor, which correlated with activation of select antiapoptotic proteins and suppression of levels of proapoptotic ones. Overall, our data demonstrate that antiapoptotic and antioxidant defense responses have organ-specific regulation during torpor in bats. The induction of key antioxidant enzymes and antiapoptotic proteins may function as protective mechanisms that are necessary for surviving torpor.
Collapse
|
45
|
Dias IB, Bouma HR, Henning RH. Unraveling the Big Sleep: Molecular Aspects of Stem Cell Dormancy and Hibernation. Front Physiol 2021; 12:624950. [PMID: 33867999 PMCID: PMC8047423 DOI: 10.3389/fphys.2021.624950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident stem cells may enter a dormant state, also known as quiescence, which allows them to withstand metabolic stress and unfavorable conditions. Similarly, hibernating mammals can also enter a state of dormancy used to evade hostile circumstances, such as food shortage and low ambient temperatures. In hibernation, the dormant state of the individual and its cells is commonly known as torpor, and is characterized by metabolic suppression in individual cells. Given that both conditions represent cell survival strategies, we here compare the molecular aspects of cellular quiescence, particularly of well-studied hematopoietic stem cells, and torpor at the cellular level. Critical processes of dormancy are reviewed, including the suppression of the cell cycle, changes in metabolic characteristics, and cellular mechanisms of dealing with damage. Key factors shared by hematopoietic stem cell quiescence and torpor include a reversible activation of factors inhibiting the cell cycle, a shift in metabolism from glucose to fatty acid oxidation, downregulation of mitochondrial activity, key changes in hypoxia-inducible factor one alpha (HIF-1α), mTOR, reversible protein phosphorylation and autophagy, and increased radiation resistance. This similarity is remarkable in view of the difference in cell populations, as stem cell quiescence regards proliferating cells, while torpor mainly involves terminally differentiated cells. A future perspective is provided how to advance our understanding of the crucial pathways that allow stem cells and hibernating animals to engage in their 'great slumbers.'
Collapse
Affiliation(s)
- Itamar B. Dias
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hjalmar R. Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
46
|
Nishida K, Shimozuru M, Okamatsu-Ogura Y, Miyazaki M, Soma T, Sashika M, Tsubota T. Changes in liver microRNA expression and their possible regulatory role in energy metabolism-related genes in hibernating black bears. J Comp Physiol B 2021; 191:397-409. [PMID: 33459845 DOI: 10.1007/s00360-020-01337-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 01/12/2023]
Abstract
Hibernating bears survive up to 6 months without feeding while yet maintaining metabolic homeostasis. We previously reported expression changes in energy metabolism-related genes in the liver of hibernating Japanese black bears. The present study examined the role of microRNAs in the regulation of hepatic gene expression during hibernation. The quantitative analyses revealed significant increases in the expression of 4 microRNAs (miR-221-3p, miR-222-3p, miR-455-3p, and miR-195a-5p) and decreases of 2 microRNAs (miR-122-5p and miR-7a-1-5p) during hibernation. RNA sequencing and in silico target prediction regarding 3 upregulated microRNAs (miR-221-3p, miR-222-3p and miR-455-3p) found 13 target mRNAs with significantly decreased expression during hibernation. The transfection of microRNA mimics into cells showed that miR-222 and miR-455 reduced solute carrier family 16 member 4 (SLC16A4) and fatty acid synthase (FASN) mRNA expression, respectively. Our results suggest that the increased levels of hepatic miRNA during hibernation (miR-222-3p and miR-455-3p) negatively regulate the expression of targeted genes predicted to be involved in the transport of energy source and de novo fatty acid synthesis, is consistent with a regulatory role of these miRNAs in energy metabolism in hibernating black bears.
Collapse
Affiliation(s)
- Kazuhei Nishida
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Michito Shimozuru
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Mitsunori Miyazaki
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Tsukasa Soma
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Mariko Sashika
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
47
|
Bertile F, Habold C, Le Maho Y, Giroud S. Body Protein Sparing in Hibernators: A Source for Biomedical Innovation. Front Physiol 2021; 12:634953. [PMID: 33679446 PMCID: PMC7930392 DOI: 10.3389/fphys.2021.634953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Proteins are not only the major structural components of living cells but also ensure essential physiological functions within the organism. Any change in protein abundance and/or structure is at risk for the proper body functioning and/or survival of organisms. Death following starvation is attributed to a loss of about half of total body proteins, and body protein loss induced by muscle disuse is responsible for major metabolic disorders in immobilized patients, and sedentary or elderly people. Basic knowledge of the molecular and cellular mechanisms that control proteostasis is continuously growing. Yet, finding and developing efficient treatments to limit body/muscle protein loss in humans remain a medical challenge, physical exercise and nutritional programs managing to only partially compensate for it. This is notably a major challenge for the treatment of obesity, where therapies should promote fat loss while preserving body proteins. In this context, hibernating species preserve their lean body mass, including muscles, despite total physical inactivity and low energy consumption during torpor, a state of drastic reduction in metabolic rate associated with a more or less pronounced hypothermia. The present review introduces metabolic, physiological, and behavioral adaptations, e.g., energetics, body temperature, and nutrition, of the torpor or hibernation phenotype from small to large mammals. Hibernating strategies could be linked to allometry aspects, the need for periodic rewarming from torpor, and/or the ability of animals to fast for more or less time, thus determining the capacity of individuals to save proteins. Both fat- and food-storing hibernators rely mostly on their body fat reserves during the torpid state, while minimizing body protein utilization. A number of them may also replenish lost proteins during arousals by consuming food. The review takes stock of the physiological, molecular, and cellular mechanisms that promote body protein and muscle sparing during the inactive state of hibernation. Finally, the review outlines how the detailed understanding of these mechanisms at play in various hibernators is expected to provide innovative solutions to fight human muscle atrophy, to better help the management of obese patients, or to improve the ex vivo preservation of organs.
Collapse
Affiliation(s)
- Fabrice Bertile
- University of Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Spectrométrie de Masse Bio-Organique, Strasbourg, France
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
| | - Yvon Le Maho
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
48
|
Skeletal muscle RBM3 expression is associated with extended lifespan in Ames Dwarf and calorie restricted mice. Exp Gerontol 2020; 146:111214. [PMID: 33385482 DOI: 10.1016/j.exger.2020.111214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/23/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022]
Abstract
RNA binding protein motif 3 (RBM3) is an RNA-binding and cold shock protein that protects myoblasts and promotes skeletal muscle hypertrophy by enhancing mRNA stability and translation. Muscle size is decreased during aging; however, it is typically delayed in models of extended lifespan such as the long-lived Ames Dwarf (df/df) mice and calorie restricted (CR) animals compared to age-matched controls. In light of the protective and anabolic effects of RBM3 in muscle, we hypothesized that RBM3 expression is higher in long-lived animal models. Young and old df/df mice, and adult and old UM-HET3 CR mice were used to test this hypothesis. Gastrocnemius muscles were harvested and protein was isolated for RBM3 protein measurements. CR induced a 1.7 and 1.3-fold elevation in RBM3 protein abundance compared to adult and old male mice fed ad libitum (AL) diets, respectively; this effect was shared between males and females. Ames dwarfism induced a 4.6 and 2.7-fold elevation in RBM3 protein abundance in young and old df/df mice compared to normal control littermates, respectively. In contrast, there was an age-associated decrease in cold-inducible RNA-binding protein (CIRP), suggesting these effects are specific for RBM3. Lastly, there was an age-associated increase in RNA degradation marker decapping enzyme 2 (DCP2) in UM-HET3 mice that was mitigated by CR. These results show that muscle RBM3 expression is correlated with extended lifespan in both df/df and CR animals. Identifying how RBM3 exerts protective effects in muscle may yield new insights into healthy aging of skeletal muscle.
Collapse
|
49
|
Horowitz BN, Kutinsky IB, Linde A. Species-Spanning Echocardiography: Cardiovascular Insights from Across the Animal Kingdom. Curr Cardiol Rep 2020; 22:165. [PMID: 33037937 DOI: 10.1007/s11886-020-01417-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW The objective of this review is to present comparative echocardiography as a source of insights for human cardiovascular medicine. RECENT FINDINGS We present echocardiographic examples of high impact human cardiovascular pathologies, including valvular, vascular, conduction, and myocardial disorders, in a wide range of species in varying environments. Unique features associated with comparative echocardiographic assessments are linked to human cardiology, including natural animal models of resistance and vulnerability. The cardiovascular vulnerabilities and strengths of other species can be a source of invaluable insights for human healthcare professionals. Echocardiography is playing a key role in bridging human and veterinary cardiology. Consequently, species-spanning echocardiography can deliver novel insights for human medicine.
Collapse
Affiliation(s)
- B N Horowitz
- Department of Medicine, Harvard Medical School, Boston, MA, USA. .,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA. .,David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Ilana B Kutinsky
- William Beaumont School of Medicine, Oakland University, Rochester, MI, USA
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
50
|
Khalil AS, Jaenisch R, Mooney DJ. Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev 2020; 158:116-139. [PMID: 32987094 PMCID: PMC7518978 DOI: 10.1016/j.addr.2020.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Current preclinical studies in drug development utilize high-throughput in vitro screens to identify drug leads, followed by both in vitro and in vivo models to predict lead candidates' pharmacokinetic and pharmacodynamic properties. The goal of these studies is to reduce the number of lead drug candidates down to the most likely to succeed in later human clinical trials. However, only 1 in 10 drug candidates that emerge from preclinical studies will succeed and become an approved therapeutic. Lack of efficacy or undetected toxicity represents roughly 75% of the causes for these failures, despite these parameters being the primary exclusion criteria in preclinical studies. Recently, advances in both biology and engineering have created new tools for constructing new preclinical models. These models can complement those used in current preclinical studies by helping to create more realistic representations of human tissues in vitro and in vivo. In this review, we describe current preclinical models to identify their value and limitations and then discuss select areas of research where improvements in preclinical models are particularly needed to advance drug development. Following this, we discuss design considerations for constructing preclinical models and then highlight recent advances in these efforts. Taken together, we aim to review the advances as of 2020 surrounding the prospect of biological and engineering tools for adding enhanced biological relevance to preclinical studies to aid in the challenges of failed drug candidates and the burden this poses on the drug development enterprise and thus healthcare.
Collapse
Affiliation(s)
- Andrew S Khalil
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA.
| |
Collapse
|