1
|
Urquhart AS, Gluck-Thaler E, Vogan AA. Gene acquisition by giant transposons primes eukaryotes for rapid evolution via horizontal gene transfer. SCIENCE ADVANCES 2024; 10:eadp8738. [PMID: 39642232 PMCID: PMC11623301 DOI: 10.1126/sciadv.adp8738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024]
Abstract
Horizontal gene transfer (HGT) disseminates genetic information between species and is a powerful mechanism of adaptation. Yet, we know little about its underlying drivers in eukaryotes. Giant Starship transposons have been implicated as agents of fungal HGT, providing an unprecedented opportunity to reveal the evolutionary parameters behind this process. Here, we characterize the ssf gene cluster, which contributes to formaldehyde resistance, and use it to demonstrate how mobile element evolution shapes fungal adaptation. We found that ssf clusters have been acquired by various distantly related Starships, which each exhibit multiple instances of horizontal transfer across fungal species (at least nine events, including between different taxonomic orders). Many ssf clusters have subsequently integrated into their host's genome, illustrating how Starships shape the evolutionary trajectory of fungal hosts beyond any single transfer. Our results demonstrate the key role Starships play in mediating rapid and repeated adaptation via HGT, elevating the importance of mobile element evolution in eukaryotic biology.
Collapse
Affiliation(s)
- Andrew S. Urquhart
- Systematic Biology, Department of Organismal Biology, University of Uppsala, Uppsala 752 36, Sweden
- Commonwealth Scientific and Industrial Research Organisation, St. Lucia, Queensland 4067, Australia
- Applied Biosciences, Macquarie University, Macquarie Park, New South Wales 2113, Australia
| | - Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel 2000, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, Madison, WI 53706, USA
| | - Aaron A. Vogan
- Systematic Biology, Department of Organismal Biology, University of Uppsala, Uppsala 752 36, Sweden
| |
Collapse
|
2
|
Wang Y, Shi YN, Xiang H, Shi YM. Exploring nature's battlefield: organismic interactions in the discovery of bioactive natural products. Nat Prod Rep 2024; 41:1630-1651. [PMID: 39316448 DOI: 10.1039/d4np00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Covering: up to March 2024.Microbial natural products have historically been a cornerstone for the discovery of therapeutic agents. Advanced (meta)genome sequencing technologies have revealed that microbes harbor far greater biosynthetic capabilities than previously anticipated. However, despite the application of CRISPR/Cas-based gene editing and high-throughput technologies to activate silent biosynthetic gene clusters, the rapid identification of new natural products has not led to a proportional increase in the discovery rate of lead compounds or drugs. A crucial issue in this gap may be insufficient knowledge about the inherent biological and physiological functions of microbial natural products. Addressing this gap necessitates recognizing that the generation of functional natural products is deeply rooted in the interactions between the producing microbes and other (micro)organisms within their ecological contexts, an understanding that is essential for harnessing their potential therapeutic benefits. In this review, we highlight the discovery of functional microbial natural products from diverse niches, including those associated with humans, nematodes, insects, fungi, protozoa, plants, and marine animals. Many of these findings result from an organismic-interaction-guided strategy using multi-omic approaches. The current importance of this topic lies in its potential to advance drug discovery in an era marked by increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Yuyang Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yan-Ni Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hao Xiang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Shi
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Li H, Yang R, Xie F, Xie T, Tang L, Zhou H, Ding Z. Multioxidized polyketides from an endophytic Penicillium sp. YUD17006 associated with Gastrodia elata. Chin J Nat Med 2024; 22:1057-1064. [PMID: 39510638 DOI: 10.1016/s1875-5364(24)60724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 11/15/2024]
Abstract
Three novel, highly oxygenated polyketides, multioketides A-C (1-3), and three previously described multioxidized aromatic polyketides (4-6), were isolated from an endophytic Penicillium sp. YUD17006 associated with Gastrodia elata. Their chemical structures were elucidated using extensive spectroscopic data, electronic circular dichroism calculations, and single X-ray diffraction analysis. All metabolites were characterized by a typical α,β-unsaturated ketone fragment and exhibited a high degree of oxidation. Multioketides A and B were identified as a pair of epimers featuring a rare dihydroisobenzofuranone core. Multioketide C possessed a novel 5/6/6/6 heterotetracyclic chemical architecture with unusual 1,4-dioxin functionalities. Plausible biosynthetic pathways for 1-6 were proposed. Additionally, compound 3 demonstrated weak inhibitory activities against both acetylcholinesterase and protein tyrosine phosphatase 1B.
Collapse
Affiliation(s)
- Hongtao Li
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Ruining Yang
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Fei Xie
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Tianpeng Xie
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Linhuan Tang
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Hao Zhou
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Zhongtao Ding
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
4
|
Yang J, Yao FH, Xu SF, Shi JY, Li XY, Yi XX, Gao CH. Mauritone A, a new polyketide from a fungal-bacterial symbiont Aspergillus spelaeus GXIMD 04541/ Sphingomonas echinoides GXIMD 04532. Nat Prod Res 2024:1-6. [PMID: 38980006 DOI: 10.1080/14786419.2024.2377313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
A new polyketide, mauritone A (1) with six known polyketides curvulone B (2), curvularin (3), 12-oxocurvularin (4), (10E,15S)-10,11-dehydrocurvularin (5), (11R,15S)-11-hydroxycurvularin (6), and (11S,15S)-11-hydroxycurvularin (7) were isolated from the fungal-bacterial symbiont Aspergillus spelaeus GXIMD 04541/Sphingomonas echinoides GXIMD 04532 derived from Mauritia arabica. Their structures were elucidated by extensive spectral analysis. All compounds (1-7) were evaluated for their anti-inflammatory effects. The inhibitory effects of 4, 5, and 7 on nitric oxide (NO) production were found to be significant, with IC50 values of 5.5 ± 0.26, 2.0 ± 0.31, and 8.3 ± 0.62 μM, respectively, surpassing that of the positive control quercetin (10.6 ± 0.64 μM). Compounds 3 and 6 exhibited moderate inhibition of NO, with IC50 values of 18.6 ± 0.53 and 12.7 ± 0.45 μM, respectively.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Fei-Hua Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Shu-Fen Xu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Jie-Yu Shi
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiao-Yan Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiang-Xi Yi
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Cheng-Hai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
5
|
Yurchenko AN, Nesterenko LE, Popov RS, Kirichuk NN, Chausova VE, Chingizova EA, Isaeva MP, Yurchenko EA. The Metabolite Profiling of Aspergillus fumigatus KMM4631 and Its Co-Cultures with Other Marine Fungi. Metabolites 2023; 13:1138. [PMID: 37999234 PMCID: PMC10673247 DOI: 10.3390/metabo13111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
An Aspergillus fumigatus KMM 4631 strain was previously isolated from a Pacific soft coral Sinularia sp. sample and was found to be a source of a number of bioactive secondary metabolites. The aims of this work are the confirmation of this strain' identification based on ITS, BenA, CaM, and RPB2 regions/gene sequences and the investigation of secondary metabolite profiles of Aspergillus fumigatus KMM 4631 culture and its co-cultures with Penicillium hispanicum KMM 4689, Amphichorda sp. KMM 4639, Penicillium sp. KMM 4672, and Asteromyces cruciatus KMM 4696 from the Collection of Marine Microorganisms (PIBOC FEB RAS, Vladivostok, Russia). Moreover, the DPPH-radical scavenging activity, urease inhibition, and cytotoxicity of joint fungal cultures' extracts on HepG2 cells were tested. The detailed UPLC MS qTOF investigation resulted in the identification and annotation of indolediketopiperazine, quinazoline, and tryptoquivaline-related alkaloids as well as a number of polyketides (totally 20 compounds) in the extract of Aspergillus fumigatus KMM 4631. The metabolite profiles of the co-cultures of A. fumigatus with Penicillium hispanicum, Penicillium sp., and Amphichorda sp. were similar to those of Penicillium hispanicum, Penicillium sp., and Amphichorda sp. monocultures. The metabolite profile of the co-culture of A. fumigatus with Asteromyces cruciatus differed from that of each monoculture and may be more promising for the isolation of new compounds.
Collapse
Affiliation(s)
- Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (L.E.N.); (R.S.P.); (N.N.K.); (V.E.C.); (E.A.C.); (M.P.I.)
| | | | | | | | | | | | | | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (L.E.N.); (R.S.P.); (N.N.K.); (V.E.C.); (E.A.C.); (M.P.I.)
| |
Collapse
|
6
|
Cai C, Chen Y, Zhou L, Gong N, Zhang H, Sun C, Ma J, Ju J. Antimicrobial Polyketides from the Marine-Derived Fungus Spiromastix sp. SCSIO F190. JOURNAL OF NATURAL PRODUCTS 2023; 86:589-595. [PMID: 36563017 DOI: 10.1021/acs.jnatprod.2c00900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Three diphenyl ethers (1-3) and a cyclopentenone (4), together with seven known compounds (5-11), were isolated from the fermentation broth of the marine sediment-derived fungus Spiromastix sp. SCSIO F190. Compounds 3 and 4 were found to exist as a pair of atropisomers (3a, 3b) and racemates (4a, 4b), respectively. The planar structures of compounds 1-4 were elucidated on the basis of NMR and HRESIMS data sets. The absolute configurations of 2 and 3 were determined by spectroscopic and single-crystal X-ray diffraction analyses, whereas the configuration of 4 was determined by spectroscopic and chiral analyses. All compounds, except for 4 and 11, displayed activities against various pathogenic bacteria. Notably, compounds 1-4, especially 1, exhibited strong activity against Gram-positive bacteria, including methicillin-resistant bacterial strains of Staphylococcus aureus (MRSA), Enterococcus faecalis ATCC 29212, and Bacillus subtilis BS01, with MIC values ranging from 0.5 to 4 μg/mL. Moreover, the structure-activity relationship analyses of the active compounds and their analogues revealed the critical structural features correlating to the observed antimicrobial activities, herein providing insights for antimicrobial drug development.
Collapse
Affiliation(s)
- Cunlei Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
| | - Yingying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Le Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Naying Gong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Changli Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
| |
Collapse
|
7
|
Chen Y, Yang J, Cai C, Shi J, Song Y, Ma J, Ju J. Development of Marker Recycling Systems for Sequential Genetic Manipulation in Marine-Derived Fungi Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7. J Fungi (Basel) 2023; 9:jof9030302. [PMID: 36983470 PMCID: PMC10059709 DOI: 10.3390/jof9030302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Marine-derived fungi are emerging as prolific workhorses of structurally novel natural products (NPs) with diverse bioactivities. However, the limitation of available selection markers hampers the exploration of cryptic NPs. Recyclable markers are therefore valuable assets in genetic engineering programs for awaking silent SM clusters. Here, both pyrG and amdS-based recyclable marker cassettes were established and successfully applied in marine-derived fungi Aspergillus sp. SCSIO SX7S7 and Spiromastix sp. SCSIO F190, respectively. Using pyrG recyclable marker, a markerless 7S7-∆depH strain with a simplified HPLC background was built by inactivating a polyketide synthase (PKS) gene depH and looping out the pyrG recyclable marker after depH deletion. Meanwhile, an amdS recyclable marker system was also developed to help strains that are difficult to use pyrG marker. By employing the amdS marker, a backbone gene spm11 responsible for one major product of Spiromastix sp. SCSIO F190 was inactivated, and the amdS marker was excised after using, generating a relatively clean F190-∆spm11 strain for further activation of novel NPs. The collection of two different recycle markers will guarantee flexible application in marine-derived fungi with different genetic backgrounds, enabling the exploitation of novel structures in various fungi species with different genome mining strategies.
Collapse
Affiliation(s)
- Yingying Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jiafan Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Cunlei Cai
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Junjie Shi
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Correspondence: (J.M.); (J.J.); Tel.: +86-20-8902-3028 (J.J.)
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Correspondence: (J.M.); (J.J.); Tel.: +86-20-8902-3028 (J.J.)
| |
Collapse
|
8
|
Liu C, Han M, Lv F, Gao Y, Wang X, Zhang X, Guo Y, Cheng Y, Qian H. Study on the Cellular Anti-Inflammatory Effect of Torularhodin Produced by Sporidiobolus pararoseus ZQHL Isolated from Vinegar Fungus. Molecules 2023; 28:molecules28031436. [PMID: 36771110 PMCID: PMC9920945 DOI: 10.3390/molecules28031436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The red stretcher bacterium Sporidiobolus pararoseus is a high producer of carotenoids such as torularhodin, but its presence in vinegar has not been detected. Moreover, torularhodin has several biological activities, but its effect on the LPS-induced RAW 264.7 inflammatory cell model has also yet to be elucidated. In this study, S. pararoseus was identified in different vinegar samples from China by ITS sequencing. Meanwhile, one of the strains was deeply resolved by whole genome sequencing and functional annotation and named S. pararoseus ZQHL. Subsequently, the antioxidant effect of the fungal carotenoid torularhodin was investigated using in vitro DPPH, ABTS, and cellular models. Finally, LPS-induced RAW 264.7 cells were used as an inflammation model to assess torularhodin's protective effect on inflammatory cells and to determine whether the TLR4 pathway is associated with this process. The results indicate that torularhodin has good free radical scavenging ability in vitro and can contribute to cell viability. More importantly, torularhodin alleviated LPS-induced cellular inflammatory damage and reduced the expression of inflammatory factors such as TLR4, MyD88, and TNF-a. The mechanism may attenuate the cellular inflammatory response by inhibiting the TLR4 inflammatory pathway. In conclusion, torularhodin produced by S. pararoseus fungi in vinegar samples significantly scavenged free radicals in vitro and alleviated RAW 264.7 cellular inflammation by modulating the TLR4 pathway.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Mei Han
- Department of Food Science, Shanghai Business School, Shanghai 200235, China
| | - Fuqiang Lv
- Jiangsu Hengshun Vinegar-Industry Co., Ltd., No. 66 Hengshun Road, Zhenjiang 212143, China
| | - Yaobin Gao
- Shanxi Mature Vinegar Group Co., Ltd., No. 26 Madaopo, Xinghua District, Taiyuan 030013, China
| | - Xiaoyun Wang
- Shanxi Mature Vinegar Group Co., Ltd., No. 26 Madaopo, Xinghua District, Taiyuan 030013, China
| | - Xujiao Zhang
- Shanxi Zilin Vinegar Industry Co., Ltd., No. 550 Gaohua Duan, Taimao Road, Taiyuan 030100, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Correspondence: (Y.C.); (H.Q.)
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Correspondence: (Y.C.); (H.Q.)
| |
Collapse
|
9
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Development of the CRISPR-Cas9 System for the Marine-Derived Fungi Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7. J Fungi (Basel) 2022; 8:jof8070715. [PMID: 35887470 PMCID: PMC9322911 DOI: 10.3390/jof8070715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Marine-derived fungi are emerging as attractive producers of structurally novel secondary metabolites with diverse bioactivities. However, the lack of efficient genetic tools limits the discovery of novel compounds and the elucidation of biosynthesis mechanisms. Here, we firstly established an effective PEG-mediated chemical transformation system for protoplasts in two marine-derived fungi, Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7. Next, we developed a simple and versatile CRISPR-Cas9-based gene disruption strategy by transforming a target fungus with a single plasmid. We found that the transformation with a circular plasmid encoding cas9, a single-guide RNA (sgRNA), and a selectable marker resulted in a high frequency of targeted and insertional gene mutations in both marine-derived fungal strains. In addition, the histone deacetylase gene rpd3 was mutated using the established CRISPR-Cas9 system, thereby activating novel secondary metabolites that were not produced in the wild-type strain. Taken together, a versatile CRISPR-Cas9-based gene disruption method was established, which will promote the discovery of novel natural products and further biological studies.
Collapse
|
11
|
Abstract
AbstractThe order Onygenales is classified in the class Eurotiomycetes of the subphylum Pezizomycotina. Families in this order have classically been isolated from soil and dung, and two lineages contain causative agents of superficial, cutaneous and systemic infections in mammals. The ecology and habitat choices of the species are driven mainly by the keratin and cellulose degradation abilities. The present study aimed to investigate whether the ecological trends of the members of Onygenales can be interpreted in an evolutionary sense, linking phylogenetic parameters with habitat preferences, to achieve polyphasic definitions of the main taxonomic groups. Evolutionary processes were estimated by multiple gene genealogies and divergence time analysis. Previously described families, namely, Arthrodermataceae, Ajellomycetaceae, Ascosphaeraceae, Eremascaceae, Gymnoascaceae, Onygenaceae and Spiromastigoidaceae, were accepted in Onygenales, and two new families, Malbrancheaceae and Neogymnomycetaceae, were introduced. A number of species could not be assigned to any of the defined families. Our study provides a revised overview of the main lines of taxonomy of Onygenales, supported by multilocus analyses of ITS, LSU, TUB, TEF1, TEF3, RPB1, RPB2, and ribosomal protein 60S L10 (L1) (RP60S) sequences, combined with available data on ecology, physiology, morphology, and genomics.
Collapse
|
12
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
13
|
Xu H, Zhou L, Wang M, Wei L, Qu H, Ma J, Ju J, Han Z. Chemical constituents from marine derived fungus Talaromyces cellulolyticus SHJ-3 and its chemotaxonomic significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2021.104377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Almeida C. A potential third-order role of the host endoplasmic reticulum as a contact site in interkingdom microbial endosymbiosis and viral infection. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:255-271. [PMID: 33559322 DOI: 10.1111/1758-2229.12938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The normal functioning of eukaryotic cells depends on the compartmentalization of metabolic processes within specific organelles. Interactions among organelles, such as those between the endoplasmic reticulum (ER) - considered the largest single structure in eukaryotic cells - and other organelles at membrane contact sites (MCSs) have also been suggested to trigger synergisms, including intracellular immune responses against pathogens. In addition to the ER-endogenous functions and ER-organelle MCSs, we present the perspective of a third-order role of the ER as a host contact site for endosymbiotic microbial non-pathogens and pathogens, from endosymbiont bacteria to parasitic protists and viruses. Although understudied, ER-endosymbiont interactions have been observed in a range of eukaryotic hosts, including protists, plants, algae, and metazoans. Host ER interactions with endosymbionts could be an ER function built from ancient, conserved mechanisms selected for communicating with mutualistic endosymbionts in specific life cycle stages, and they may be exploited by pathogens and parasites. The host ER-'guest' interactome and traits in endosymbiotic biology are briefly discussed. The acknowledgment and understanding of these possible mechanisms might reveal novel evolutionary perspectives, uncover the causes of unexplained cellular disorders and suggest new pharmacological targets.
Collapse
Affiliation(s)
- Celso Almeida
- ENDOBIOS Biotech®, Praceta Progresso Clube n° 6, 2725-110 Mem-Martins, Portugal
| |
Collapse
|
15
|
Metabolites of Marine Sediment-Derived Fungi: Actual Trends of Biological Activity Studies. Mar Drugs 2021; 19:md19020088. [PMID: 33557071 PMCID: PMC7913796 DOI: 10.3390/md19020088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Marine sediments are characterized by intense degradation of sedimenting organic matter in the water column and near surface sediments, combined with characteristically low temperatures and elevated pressures. Fungi are less represented in the microbial communities of sediments than bacteria and archaea and their relationships are competitive. This results in wide variety of secondary metabolites produced by marine sediment-derived fungi both for environmental adaptation and for interspecies interactions. Earlier marine fungal metabolites were investigated mainly for their antibacterial and antifungal activities, but now also as anticancer and cytoprotective drug candidates. This review aims to describe low-molecular-weight secondary metabolites of marine sediment-derived fungi in the context of their biological activity and covers research articles published between January 2016 and November 2020.
Collapse
|