1
|
Hussain S, Day D, Ellenbroek BA. Preconceptual paternal ethanol drinking induces sexually dimorphic behavioural changes across 2 generations. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06807-w. [PMID: 40389584 DOI: 10.1007/s00213-025-06807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 05/03/2025] [Indexed: 05/21/2025]
Abstract
This study aimed to assess both the inter and transgenerational impacts of preconceptual paternal ethanol Exposure (PPEE) using a rat model. Sprague Dawley male rats (F0) underwent chronic voluntary ethanol intake and at the end of the drinking paradigm were kept for one spermatogenesis cycle before being mated with ethanol naïve females. The litters and matched controls were behaviourally assessed, and a cohort of F1 males mated to observe a F2 generation. PPEE caused behavioural changes in both the F1 and F2 generations, including altering litter sizes and delaying development. The F1 also show a reduction in sensitivity to the motor impairing effects of ethanol compared to controls. Sexually dimorphic effects were seen with female offspring having a reduced preference to ethanol in both the F1 and F2, while tolerance to ethanol induced motor coordination was seen in the F2 females but not F2 males. Likewise, F1 males presented reductions in locomotor activity but these effects did not persist in the F2. The findings show PPEE induces transgenerational changes in development, drinking behaviour and ethanol sensitivity in a sexually dimorphic manner. These changes may be protective to the female offspring of PPEE to modify their ethanol intake. The alterations demonstrate potential far-reaching consequences for the metabolism of xenotoxic substances extending beyond ethanol and provides evidence to support developmental and behavioural changes across generations due to paternal alcohol consumption.
Collapse
Affiliation(s)
- Sahir Hussain
- School of Psychological Sciences, Te Herenga Waka - Victoria University of Wellington, Wellington, New Zealand
| | - Darren Day
- School of Biological Sciences, Te Herenga Waka - Victoria University of Wellington, Wellington, New Zealand
| | - Bart A Ellenbroek
- School of Psychological Sciences, Te Herenga Waka - Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
2
|
Forner-Piquer I, Giommi C, Sella F, Lombó M, Montik N, Dalla Valle L, Carnevali O. Endocannabinoid System and Metabolism: The Influences of Sex. Int J Mol Sci 2024; 25:11909. [PMID: 39595979 PMCID: PMC11593739 DOI: 10.3390/ijms252211909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The endocannabinoid system (ECS) is a lipid signaling system involved in numerous physiological processes, such as endocrine homeostasis, appetite control, energy balance, and metabolism. The ECS comprises endocannabinoids, their cognate receptors, and the enzymatic machinery that tightly regulates their levels within tissues. This system has been identified in various organs, including the brain and liver, in multiple mammalian and non-mammalian species. However, information regarding the sex-specific regulation of the ECS remains limited, even though increasing evidence suggests that interactions between sex steroid hormones and the ECS may ultimately modulate hepatic metabolism and energy homeostasis. Within this framework, we will review the sexual dimorphism of the ECS in various animal models, providing evidence of the crosstalk between endocannabinoids and sex hormones via different metabolic pathways. Additionally, we will underscore the importance of understanding how endocrine-disrupting chemicals and exogenous cannabinoids influence ECS-dependent metabolic pathways in a sex-specific manner.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Christian Giommi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Fiorenza Sella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Marta Lombó
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
- Department of Molecular Biology, Universidad de León, 24071 León, Spain
| | - Nina Montik
- Department of Odontostomatological and Specialized Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy;
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| |
Collapse
|
3
|
Paradis NJ, Wu C. Enhanced detection and molecular modeling of adaptive mutations in SARS-CoV-2 coding and non-coding regions using the c/µ test. Virus Evol 2024; 10:veae089. [PMID: 39584063 PMCID: PMC11584280 DOI: 10.1093/ve/veae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Accurately identifying mutations under beneficial selection in viral genomes is crucial for understanding their molecular evolution and pathogenicity. Traditional methods like the Ka/Ks test, which assesses non-synonymous (Ka) versus synonymous (Ks) substitution rates, assume that synonymous substitutions at synonymous sites are neutral and thus is equal to the mutation rate (µ). Yet, evidence suggests that synonymous sites in translated regions (TRs) and untranslated regions (UTRs) can be under strong beneficial selection (Ks > µ) and strongly conserved (Ks ≈ 0), leading to false predictions of adaptive mutations from codon-by-codon Ka/Ks analysis. Our previous work used a relative substitution rate test (c/µ, c: substitution rate in UTR/TR, and µ: mutation rate) to identify adaptive mutations in SARS-CoV-2 genome without the neutrality assumption of the synonymous sites. This study refines the c/µ test by optimizing µ value, leading to a smaller set of nucleotide and amino acid sites under beneficial selection in both UTR (11 sites with c/µ > 3) and TR (69 nonsynonymous sites: c/µ > 3 and Ka/Ks > 2.5; 107 synonymous sites: Ks/µ > 3). Encouragingly, the top two mutations in UTR and 70% of the top nonsynonymous mutations in TR had reported or predicted effects in the literature. Molecular modeling of top adaptive mutations for some critical proteins (S, NSP11, and NSP5) was carried out to elucidate the possible molecular mechanism of their adaptivity.
Collapse
Affiliation(s)
- Nicholas J Paradis
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
- Department of Biological & Biomedical Sciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, United States
| |
Collapse
|
4
|
Arroyo-Carmona RE, Mitre-Velasco Y, Martinez-Laguna Y, Torres-Jácome J, Albarado-Ibañez A. A maternal diet high in carbohydrates causes bradyarrhythmias and changes in heart rate variability in the offspring sex-dependent in mice. Lab Anim Res 2024; 40:34. [PMID: 39334462 PMCID: PMC11428337 DOI: 10.1186/s42826-024-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Maternal obesity prepregnancy, as well as gestational overweight produced by high-sucrose diet, could be evolved to the cardiometabolic diseases in offspring during adulthood. Until then, the cardiometabolic diseases were ignored that have been presented or inherited in the offspring for overnutrition were ignored, depend on gender. We proposed that maternal prepregnancy obesity in CD1 mice, as well as gestational overweight produced by a high sucrose diet, develop to cardiometabolic disease in offspring and even if gender. For detection of the cardiometabolic diseases in a Murine model with a high sucrose diet (HSD), the time series formed by the RR intervals taken from lead I of the ECG has used the corresponding Poincare plot. The heart rate variability was characterized by the standard deviation of width and length SD1, SD2 respectively of the Poincare plot and the SD1/SD2 correlation index in addition was calculated between to gender and body weight. RESULTS A maternal diet was based high sucrose diet and produced overweight on progeny in both sexes, but the cardiac arrhythmias depended on gender. Other results were due to the chronic effect of high sucrose diet in offspring with this intrauterine ambiance that contributes to changes in HRV, arrhythmias, and sinus pauses, also these phenomena were observed just in the male mice offspring with high sucrose diet during adulthood. CONCLUSIONS We propose, that the arrhythmias originated from fetal programming due to the maternal diet in mice model and produced alterations in the offspring female more than in the male, probably due to hormones.
Collapse
Affiliation(s)
- Rosa Elena Arroyo-Carmona
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Benemérita Universidad Autónoma de Puebla, Senda Química, Cd Universitaria, Jardines de San Manuel, Heroica Puebla de Zaragoza, 72570, México
- Laboratorio de Fisiopatología Cardiovascular, Centro de Investigaciones de Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla 2 Sur 50, San Pedro Zacachimalpa, Heroica Puebla de Zaragoza, 72960, México
| | - Yareth Mitre-Velasco
- Laboratorio de Fisiopatología Cardiovascular, Centro de Investigaciones de Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla 2 Sur 50, San Pedro Zacachimalpa, Heroica Puebla de Zaragoza, 72960, México
| | - Ygnacio Martinez-Laguna
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Heroica Puebla de Zaragoza, México
| | - Julián Torres-Jácome
- Laboratorio de Fisiopatología Cardiovascular, Centro de Investigaciones de Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla 2 Sur 50, San Pedro Zacachimalpa, Heroica Puebla de Zaragoza, 72960, México
| | - Alondra Albarado-Ibañez
- Laboratorio de Fisiopatología Cardiovascular, Centro de Investigaciones de Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla 2 Sur 50, San Pedro Zacachimalpa, Heroica Puebla de Zaragoza, 72960, México.
| |
Collapse
|
5
|
Shrestha A, Dellett SK, Yang J, Sharma U, Ramalingam L. Effects of Fish Oil Supplementation on Reducing the Effects of Paternal Obesity and Preventing Fatty Liver in Offspring. Nutrients 2023; 15:5038. [PMID: 38140297 PMCID: PMC10745816 DOI: 10.3390/nu15245038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious public health concern, which calls for appropriate diet/nutrition intervention. Fish oil (FO) has several benefits in reducing obesity, but its intergenerational role in reducing the effects of paternal obesity has not been established. Hence, we hypothesized that FO supplementation to an obese father during the pre-conceptional period could improve the metabolic health of the offspring, specifically in the liver. Three groups of male mice were fed with a low-fat (LF), high-fat (HF), or high-fat diet supplemented with FO (HF-FO) for 10 weeks and were then allowed to mate with female mice fed a chow diet. Offspring were sacrificed at 16 weeks. The liver tissue was harvested for genomic and histological analyses. The offspring of HF and HF-FO fathers were heavier compared to that of the LF mice during 9-16 weeks. The glucose tolerance of the offspring of HF-FO fathers were significantly improved as compared to the offspring of HF fathers. Paternal FO supplementation significantly lowered inflammation and fatty acid synthesis biomarkers and increased fatty acid oxidation biomarkers in the offspring liver. In summary, FO supplementation in fathers shows the potential to reduce metabolic and cardiovascular diseases through genetic means in offspring.
Collapse
Affiliation(s)
- Akriti Shrestha
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| | - Sarah Katherine Dellett
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| | - Junhui Yang
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Latha Ramalingam
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| |
Collapse
|
6
|
Whatley EG, Truong TT, Harvey AJ, Gardner DK. Preimplantation embryo exposure to ketone bodies exerts sex-specific effects on mouse fetal and placental transcriptomes. Reprod Biomed Online 2023; 47:103320. [PMID: 37748369 DOI: 10.1016/j.rbmo.2023.103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 09/27/2023]
Abstract
RESEARCH QUESTION Does in vitro exposure of preimplantation mouse embryos to the ketone bodies β-hydroxybutyrate (βOHB) and acetoacetate (AcAc) impact post-transfer fetal and placental gene expression? DESIGN Blastocysts cultured in vitro with or without 2 mmol/l βOHB alone ('βOHB') or combined with 0.8 mmol/l AcAc ('Keto') underwent embryo transfer. Transcriptional profiles of sexed placenta, liver and brain at gestational day 14.5 were examined via RNA sequencing and DAVID functional analysis. RESULTS A sexually dimorphic response to in vitro ketone exposure was observed. Both βOHB and Keto exposure down-regulated genes related to oxidative phosphorylation specifically in female liver. βOHB down-regulated female placental steroid biosynthetic processes, while Keto treatment up-regulated genes relevant to blood vessel formation and cell migration in male placenta. Brain transcriptomes were minimally affected. X-linked genes and chromatin modifiers were identified as differentially expressed in both liver and placenta, alluding to a sex-specific regulatory mechanism. CONCLUSIONS Transient preimplantation ketone exposure perturbs sex-specific fetal liver and placental gene expression, demonstrating a developmental programming effect that warrants future investigation of the postnatal metabolic health of male and female offspring.
Collapse
Affiliation(s)
- Emma G Whatley
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne IVF, East Melbourne, VIC 3002, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne IVF, East Melbourne, VIC 3002, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne IVF, East Melbourne, VIC 3002, Australia.
| |
Collapse
|
7
|
Radford-Smith DE, Anthony DC. Mechanisms of Maternal Diet-Induced Obesity Affecting the Offspring Brain and Development of Affective Disorders. Metabolites 2023; 13:455. [PMID: 36984895 PMCID: PMC10053489 DOI: 10.3390/metabo13030455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and metabolic disease are common disorders that share a bidirectional relationship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly influence the developmental trajectory of offspring during the perinatal period. At an epidemiological level, both maternal depression and obesity during pregnancy have been shown to increase the risk of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to understand the mechanisms by which maternal obesity disrupts the developing offspring gut-brain axis, priming offspring for the development of affective disorders. This review outlines such mechanisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to developing gut-brain interaction disorders with concomitant changes to brain energy metabolism, neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key modifiable, and therefore treatable, feature of the relationship between maternal obesity and the offspring brain function. Further studies examining the relationship between maternal nutrition, the maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Daniel E. Radford-Smith
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX37JX, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| |
Collapse
|
8
|
Savva C, Helguero LA, González-Granillo M, Melo T, Couto D, Angelin B, Domingues MR, Li X, Kutter C, Korach-André M. Molecular programming modulates hepatic lipid metabolism and adult metabolic risk in the offspring of obese mothers in a sex-specific manner. Commun Biol 2022; 5:1057. [PMID: 36195702 PMCID: PMC9532402 DOI: 10.1038/s42003-022-04022-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Male and female offspring of obese mothers are known to differ extensively in their metabolic adaptation and later development of complications. We investigate the sex-dependent responses in obese offspring mice with maternal obesity, focusing on changes in liver glucose and lipid metabolism. Here we show that maternal obesity prior to and during gestation leads to hepatic steatosis and inflammation in male offspring, while female offspring are protected. Females from obese mothers display important changes in hepatic transcriptional activity and triglycerides profile which may prevent the damaging effects of maternal obesity compared to males. These differences are sustained later in life, resulting in a better metabolic balance in female offspring. In conclusion, sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in offspring liver, explaining the sexual dimorphism in obesity-associated metabolic risk. Sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in the livers of female and male offspring, contributing to the sexual dimorphism in obesity-associated metabolic risk.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden.,Clinical Department of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | | | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bo Angelin
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden.,Clinical Department of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Xidan Li
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marion Korach-André
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden. .,Department of Gene Technology, Science for Life Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden.
| |
Collapse
|
9
|
Sandovici I, Fernandez-Twinn DS, Hufnagel A, Constância M, Ozanne SE. Sex differences in the intergenerational inheritance of metabolic traits. Nat Metab 2022; 4:507-523. [PMID: 35637347 DOI: 10.1038/s42255-022-00570-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/05/2022] [Indexed: 02/02/2023]
Abstract
Strong evidence suggests that early-life exposures to suboptimal environmental factors, including those in utero, influence our long-term metabolic health. This has been termed developmental programming. Mounting evidence suggests that the growth and metabolism of male and female fetuses differ. Therefore, sexual dimorphism in response to pre-conception or early-life exposures could contribute to known sex differences in susceptibility to poor metabolic health in adulthood. However, until recently, many studies, especially those in animal models, focused on a single sex, or, often in the case of studies performed during intrauterine development, did not report the sex of the animal at all. In this review, we (a) summarize the evidence that male and females respond differently to a suboptimal pre-conceptional or in utero environment, (b) explore the potential biological mechanisms that underlie these differences and (c) review the consequences of these differences for long-term metabolic health, including that of subsequent generations.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonia Hufnagel
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Savva C, Helguero LA, González-Granillo M, Melo T, Couto D, Buyandelger B, Gustafsson S, Liu J, Domingues MR, Li X, Korach-André M. Maternal high-fat diet programs white and brown adipose tissue lipidome and transcriptome in offspring in a sex- and tissue-dependent manner in mice. Int J Obes (Lond) 2022; 46:831-842. [PMID: 34997206 PMCID: PMC8960419 DOI: 10.1038/s41366-021-01060-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The prevalence of overweight and obesity among children has drastically increased during the last decades and maternal obesity has been demonstrated as one of the ultimate factors. Nutrition-stimulated transgenerational regulation of key metabolic genes is fundamental to the developmental origins of the metabolic syndrome. Fetal nutrition may differently influence female and male offspring. METHODS Mice dam were fed either a control diet or a high-fat diet (HFD) for 6-week prior mating and continued their respective diet during gestation and lactation. At weaning, female and male offspring were fed the HFD until sacrifice. White (WAT) and brown (BAT) adipose tissues were investigated in vivo by nuclear magnetic resonance at two different timepoints in life (midterm and endterm) and tissues were collected at endterm for lipidomic analysis and RNA sequencing. We explored the sex-dependent metabolic adaptation and gene programming changes by maternal HFD in visceral AT (VAT), subcutaneous AT (SAT) and BAT of offspring. RESULTS We show that the triglyceride profile varies between adipose depots, sexes and maternal diet. In female offspring, maternal HFD remodels the triglycerides profile in SAT and BAT, and increases thermogenesis and cell differentiation in BAT, which may prevent metabolic complication later in life. Male offspring exhibit whitening of BAT and hyperplasia in VAT when born from high-fat mothers, with impaired metabolic profile. Maternal HFD differentially programs gene expression in WAT and BAT of female and male offspring. CONCLUSION Maternal HFD modulates metabolic profile in offspring in a sex-dependent manner. A sex- and maternal diet-dependent gene programming exists in VAT, SAT, and BAT which may be key player in the sexual dimorphism in the metabolic adaptation later in life.
Collapse
Affiliation(s)
- Christina Savva
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Marcela González-Granillo
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Byambajav Buyandelger
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sonja Gustafsson
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jianping Liu
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Xidan Li
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Marion Korach-André
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden.
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden.
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
11
|
Excess Vitamins or Imbalance of Folic Acid and Choline in the Gestational Diet Alter the Gut Microbiota and Obesogenic Effects in Wistar Rat Offspring. Nutrients 2021; 13:nu13124510. [PMID: 34960062 PMCID: PMC8705167 DOI: 10.3390/nu13124510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Excess vitamin intake during pregnancy leads to obesogenic phenotypes, and folic acid accounts for many of these effects in male, but not in female, offspring. These outcomes may be modulated by another methyl nutrient choline and attributed to the gut microbiota. Pregnant Wistar rats were fed an AIN-93G diet with recommended vitamin (RV), high 10-fold multivitamin (HV), high 10-fold folic acid with recommended choline (HFol) or high 10-fold folic acid without choline (HFol-C) content. Male and female offspring were weaned to a high-fat RV diet for 12 weeks post-weaning. Removing choline from the HFol gestational diet resulted in obesogenic phenotypes that resembled more closely to HV in male and female offspring with higher body weight, food intake, glucose response to a glucose load and body fat percentage with altered activity, concentrations of short-chain fatty acids and gut microbiota composition. Gestational diet and sex of the offspring predicted the gut microbiota differences. Differentially abundant microbes may be important contributors to obesogenic outcomes across diet and sex. In conclusion, a gestational diet high in vitamins or imbalanced folic acid and choline content contributes to the gut microbiota alterations consistent with the obesogenic phenotypes of in male and female offspring.
Collapse
|
12
|
La Rosa F, Guiducci L, Guzzardi MA, Cacciato Insilla A, Burchielli S, Brunetto MR, Bonino F, Campani D, Iozzo P. Maternal High-Fat Feeding Affects the Liver and Thymus Metabolic Axis in the Offspring and Some Effects Are Attenuated by Maternal Diet Normalization in a Minipig Model. Metabolites 2021; 11:800. [PMID: 34940559 PMCID: PMC8703533 DOI: 10.3390/metabo11120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Maternal high-fat diet (HFD) affects metabolic and immune development. We aimed to characterize the effects of maternal HFD, and the subsequent diet-normalization of the mothers during a second pregnancy, on the liver and thymus metabolism in their offspring, in minipigs. Offspring born to high-fat (HFD) and normal diet (ND) fed mothers were studied at week 1 and months 1, 6, 12 of life. Liver and thymus glucose uptake (GU) was measured with positron emission tomography during hyperinsulinemic-isoglycemia. Histological analyses were performed to quantify liver steatosis, inflammation, and hepatic hematopoietic niches (HHN), and thymocyte size and density in a subset. The protocol was repeated after maternal-diet-normalization in the HFD group. At one week, HFDoff were characterized by hyperglycemia, hyperinsulinemia, severe insulin resistance (IR), and high liver and thymus GU, associating with thymocyte size and density, with elevated weight-gain, liver IR, and steatosis in the first 6 months of life. Maternal diet normalization reversed thymus and liver hypermetabolism, and increased HHN at one week. It also normalized systemic insulin-sensitivity and liver fat content at all ages. Instead, weight-gain excess, hyperglycemia, and hepatic IR were still observed at 1 month, i.e., end-lactation. We conclude that intra-uterine HFD exposure leads to time-changing metabolic and immune-correlated abnormalities. Maternal diet-normalization reversed most of the effects in the offspring.
Collapse
Affiliation(s)
- Federica La Rosa
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (L.G.); (M.A.G.)
| | - Letizia Guiducci
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (L.G.); (M.A.G.)
| | - Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (L.G.); (M.A.G.)
| | - Andrea Cacciato Insilla
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (A.C.I.); (D.C.)
| | | | - Maurizia Rossana Brunetto
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
- Hepatology Unit, Department of Medical Specialties, Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, 56124 Pisa, Italy
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Daniela Campani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (A.C.I.); (D.C.)
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (L.G.); (M.A.G.)
| |
Collapse
|