1
|
Han S, Qin Y, Zhang D, Li C, Du X, Liu L, Yuan S, Wei F, Yang B, Ma Z. Fabrication of highly luminescent red-emissive carbon dots and their enhancement of cotton growth promoted by La 3. RSC Adv 2025; 15:10164-10169. [PMID: 40176827 PMCID: PMC11962864 DOI: 10.1039/d5ra00209e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
Red-emissive carbon dots (RCDs) were fabricated using a simple solvothermal method with Nile blue A sulphate and malic acid. The obtained RCDs exhibited good water solubility, excellent stability and a high luminescent quantum yield. The effect of RCDs on the growth of cotton sprouts was further explored, and it was found that the RCDs could effectively promote growth by enhancing root vitality. Furthermore, it was found that adding lanthanum to the RCD solutions could achieve better promotion, with the optimum concentration measured to be 0.02 mg mL-1 of RCDs for mixed solutions, which was much lower than that of the RCD solution alone (0.03 mg mL-1). Further analysis results showed that adding lanthanum could enhance the absorption of RCDs by the cotton sprouts, which might be induced by the enhancement of endocytosis in root cells triggered by lanthanum. This work not only provides novel long-wavelength emissive carbon dots with excellent biological activity but also holds positive significance for plant physiology and agricultural production.
Collapse
Affiliation(s)
- Shuai Han
- Hebei Key Laboratory of Crop Hybrid Advantage Research and Utilization, Handan Academy of Agricultural Sciences Handan P. R. China
- School of Agriculture, Agricultural University of Hebei Baoding Hebei P. R. China
- Handan Key Laboratory of Novel Nanobiomaterials, College of Materials Science and Engineering, Hebei University of Engineering Handan Hebei P. R. China
| | - Yunhan Qin
- School of Chemistry and Chemical Engineering, Shandong University Jinan P. R. China
| | - Dandan Zhang
- Handan Key Laboratory of Novel Nanobiomaterials, College of Materials Science and Engineering, Hebei University of Engineering Handan Hebei P. R. China
| | - Cuifang Li
- Hebei Key Laboratory of Crop Hybrid Advantage Research and Utilization, Handan Academy of Agricultural Sciences Handan P. R. China
| | - Xiaoxue Du
- Handan Key Laboratory of Novel Nanobiomaterials, College of Materials Science and Engineering, Hebei University of Engineering Handan Hebei P. R. China
| | - Lijuan Liu
- Handan Key Laboratory of Novel Nanobiomaterials, College of Materials Science and Engineering, Hebei University of Engineering Handan Hebei P. R. China
| | - Songbo Yuan
- Hebei Key Laboratory of Crop Hybrid Advantage Research and Utilization, Handan Academy of Agricultural Sciences Handan P. R. China
| | - Fangfang Wei
- Handan Key Laboratory of Novel Nanobiomaterials, College of Materials Science and Engineering, Hebei University of Engineering Handan Hebei P. R. China
| | - Baoxin Yang
- Hebei Key Laboratory of Crop Hybrid Advantage Research and Utilization, Handan Academy of Agricultural Sciences Handan P. R. China
| | - Zhiying Ma
- School of Agriculture, Agricultural University of Hebei Baoding Hebei P. R. China
| |
Collapse
|
2
|
İbiş Ö, Ük N, Nar I, Ünlü C. Manipulation of defect state emission in Zn chalcogenide quantum dots and their effects on chlorophyll spectral response. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125348. [PMID: 39481170 DOI: 10.1016/j.saa.2024.125348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Water soluble Zn based quantum dots (QDs) are of interest due to their biocompatibility and less toxic features. They have been frequently used in studies related to biotechnology, especially in agriculture studies. However, to control the optical properties of Zn based QDs has still been a challenge. In this work, the defect state emission of ZnSe QDs was successfully controlled through two different routes; 1) By creating a sulfur rich outer region around the Se rich core 2) By changing the capping agent. Gradient alloyed ZnSeS QDs with Se rich core and S rich outer region were successfully synthesized with two different capping agents; N-Acetyl-L-Cysteine (NAC) and 3-Mercaptopropionic Acid (3-MPA). The contribution of emission originated from surface-defects almost disappeared in NAC capped ZnSeS QDs, with causing a significant increase in photoluminescence quantum yield. The interaction between Zn based QDs with chlorophyll molecules was also investigated. The absorption capacity of chlorophylls significantly enhanced upon interaction with 3-MPA capped ZnSeS QDs. Also, the spectral response of chlorophylls could be modulated through interaction with 3-MPA capped ZnSeS QDs, which could be manipulated by using ZnSeS QDs with different chemical composition. Our results indicated that ZnSeS QDs have potential to be used in agriculture, which could act as a modulator of light-harvesting capacity of chlorophylls. The ability to modulate chlorophyll spectral responses through QD interaction opens new possibilities for optimizing light utilization in photosynthetic organisms, thereby contributing to enhanced crop yields and more efficient use of light energy in natural and artificial ecosystems.
Collapse
Affiliation(s)
- Özge İbiş
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye
| | - Nida Ük
- Department of Polymer Science and Technology, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye
| | - Ilgın Nar
- Istanbul Technical University Nanotechnology Research and Application Center (ITUNano), Istanbul, Türkiye
| | - Caner Ünlü
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye; Department of Polymer Science and Technology, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye.
| |
Collapse
|
3
|
Annamalai J, Seetharaman B, Sellamuthu I. Nanomaterials in the environment and their pragmatic voyage at various trophic levels in an ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121307. [PMID: 38870799 DOI: 10.1016/j.jenvman.2024.121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
In the development of nanotechnology, nanomaterials (NMs) have a huge credential in advancing the existing follow-ups of analytical and diagnosis techniques, drug designing, agricultural science, electronics, cosmetics, sports, textiles and water purification. However, NMs have also grasped attention of researchers onto their toxicity. In the present review, initially the development of notable NMs such as metal and metal-oxide nanoparticles (NPs), magnetic NPs, carbon-based NMs and quantum dots intended to be commercialized along with their applications are discussed. This is followed by the current scenario of NMs in the environment to widen the outlook on the concentration of NPs in the environmental compartments and the frequency of organism exposed to NPs at varied trophic levels. In order to understand the physiochemical and morphological significance of NPs in exhibiting toxicity, fate of NPs in the environment is briefly deliberated. This is further geared-up to glance in-sightedly on the organisms starting from primary producer to primary consumer, secondary consumer, tertiary consumer and decomposers encountering NPs in their habitual niche. The state of NPs to which organisms are exposed, mechanism of NP uptake and toxicity, anomalies faced at each trophic level, concentration of NPs that is liable to cause toxicity and, biotransfer of NPs to the next generation and trophic level are detailed. Finally, the future prospects on bioaccumulation and biomagnification of NP-based products are conversed. Thus, the review would be noteworthy in unveiling the significance of NPs in forthcoming years combined with threat towards each organism in an ecosystem.
Collapse
Affiliation(s)
- Jayshree Annamalai
- Endocrine Disruption and Reproductive Toxicology (EDART) Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, India.
| | - Barathi Seetharaman
- Endocrine Disruption and Reproductive Toxicology (EDART) Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, India.
| | - Iyappan Sellamuthu
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, India.
| |
Collapse
|
4
|
Aykut S, Ük N, Coşkun İY, Keskin SŞ, Nar I, Trabzon L, Ünlü C. Modulating spectral response of raw photosynthetic pigments via ternary cadmium chalcogenide quantum dots: simultaneous enhancement at green spectrum and inhibition at UV region. PHOTOSYNTHESIS RESEARCH 2024; 160:1-16. [PMID: 38407778 PMCID: PMC11006769 DOI: 10.1007/s11120-024-01085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Photosynthesis relies on the absorption of sunlight by photosynthetic pigments (PPs) such as chlorophylls and carotenoids. While these pigments are outstanding at harvesting light, their natural structure restricts their ability to harvest light at specific wavelengths. In this study, Oleic acid-capped CdSeS and CdTeS ternary quantum dots (QDs) were synthesized using a novel two-phase synthesis method. Then, these QDs were used to interact with raw PPs, a mixture of chlorophylls and carotenoids isolated from spinach. Our findings revealed the following: (1) Interacting QDs with raw PPs effectively inhibited the chlorophyll fluorescence of the pigments upon excitation in UV light region (250-400 nm) without causing any damage to their structure. (2) By forming an interaction with QDs, the chlorophyll fluorescence of raw PPs could be induced through excitation with green-light spectrum. (3) The composition of the QDs played a fundamental role in their interaction with PPs. Our study demonstrated that the photophysical properties of isolated PPs could be modified by using cadmium-based QDs by preserving the structure of the pigments themselves.
Collapse
Affiliation(s)
- Sümeyye Aykut
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Nida Ük
- Polymer Science and Technology, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - İbrahim Yağız Coşkun
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Sultan Şahin Keskin
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
- MEMS Research Center, Istanbul Technical University, Istanbul, Turkey
| | - Ilgın Nar
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
- Istanbul Technical University Nanotechnology Research and Application Center (ITUNano), Istanbul, Turkey
| | - Levent Trabzon
- MEMS Research Center, Istanbul Technical University, Istanbul, Turkey
- Faculty of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Caner Ünlü
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
- Polymer Science and Technology, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
5
|
Bhowmick M, Christensen J, Adjorlolo R, Ullrich B. Photoluminescence from Two-Phase Nanocomposites Embedded in Polymers. MICROMACHINES 2024; 15:111. [PMID: 38258230 PMCID: PMC10820105 DOI: 10.3390/mi15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
A set of polymer-embedded, two-colored nanocomposites were prepared where the co-existing emission peaks (~578 nm and ~650 nm) had different ratios at their emission thresholds. The nanocomposite samples were simultaneously excited by a 405 nm laser, and the growth of photoluminescence intensities was studied as a function of excitation intensity. The two peaks showed different growth evolution mechanisms. The factors impacting this difference could be (1) energy transfer between the two sized nanoparticles; (2) relaxation mechanism of smaller nanoparticles; and (3) material properties of the polymer.
Collapse
Affiliation(s)
- Mithun Bhowmick
- Mathematical and Physical Sciences, Miami University Regionals, Middletown, OH 45042, USA
| | - James Christensen
- Construction Engineering Research Laboratory, United States Army Corps of Engineers, Champaign, IL 61822, USA
| | - Richard Adjorlolo
- Mathematical and Physical Sciences, Miami University Regionals, Middletown, OH 45042, USA
| | | |
Collapse
|
6
|
Wei L, Liu J, Hou X, Chen W, Feng Y, Kong W, Tang Y, Zhong C, Zhang S, Wang T, Zhao G, Jiao S, Jiang G. Rice Seedlings and Microorganisms Mediate Biotransformation of Se in CdSe/ZnS Quantum Dots to Volatile Alkyl Selenides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20261-20271. [PMID: 37992251 DOI: 10.1021/acs.est.3c07094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Quantum dots (QDs) are widely applied and inevitably released into the environment. The biotransformation of Se in typical CdSe/ZnS QDs coated with glutathione (CdSe/ZnS-GSH) to volatile alkyl selenides and the fate of alkyl selenides in the hydroponically grown rice system were investigated herein. After a 10-day exposure to CdSe/ZnS-GSH (100 nmol L-1), seven alkyl selenides, dimethyl selenide (DMSe), dimethyl diselenide (DMDSe), methyl selenol (MSeH), ethylmethyl selenide (EMSe), ethylmethyl diselenide (EMDSe), dimethyl selenenyl sulfide (DMSeS), and ethylmethyl selenenyl sulfide (EMSeS), were detected in the exposure system using the suspect screening strategy. CdSe/ZnS-GSH was first biotransformed to DMSe and DMDSe by plant and microorganisms. The generated DMSe was volatilized to the gas phase, adsorbed and absorbed by leaves and stems, downward transported, and released into the hydroponic solution, whereas DMDSe tended to be adsorbed/absorbed by roots and upward transported to stems. The airborne DMSe and DMDSe also partitioned from the gas phase to the hydroponic solution. DMSe and DMDSe in the exposure system were further transformed to DMSeS, EMSeS, EMSe, EMDSe, and MSeH. This study gives a comprehensive understanding on the behaviors of Se in CdSe/ZnS-GSH in a rice plant system and provides new insights into the environmental fate of CdSe/ZnS QDs.
Collapse
Affiliation(s)
- Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Yue Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanji Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ganghui Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Suning Jiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
7
|
Le N, Chand A, Okafor O, Kim K. The Impact of Cadmium Selenide Zinc Sulfide Quantum Dots on the Proteomic Profile of Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:16332. [PMID: 38003523 PMCID: PMC10671624 DOI: 10.3390/ijms242216332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Quantum dots (QDs) have been highly sought after in the past few decades for their potential to be used in many biomedical applications. However, QDs' cytotoxicity is still a major concern that limits the incorporation of QDs into cutting-edge technologies. Thus, it is important to study and understand the mechanism by which QDs exert their toxicity. Although many studies have explored the cytotoxicity of quantum dots through the transcriptomic level and reactive species generation, the impact of quantum dots on the expression of cellular protein remains unclear. Using Saccharomyces cerevisiae as a model organism, we studied the effect of cadmium selenide zinc sulfide quantum dots (CdSe/ZnS QDs) on the proteomic profile of budding yeast cells. We found a total of 280 differentially expressed proteins after 6 h of CdSe/ZnS QDs treatment. Among these, 187 proteins were upregulated, and 93 proteins were downregulated. The majority of upregulated proteins were found to be associated with transcription/RNA processing, intracellular trafficking, and ribosome biogenesis. On the other hand, many of the downregulated proteins are associated with cellular metabolic pathways and mitochondrial components. Through this study, the cytotoxicity of CdSe/ZnS QDs on the proteomic level was revealed, providing a more well-rounded knowledge of QDs' toxicity.
Collapse
Affiliation(s)
| | | | | | - Kyoungtae Kim
- Department of Biology, Missouri State University, Springfield, MO 65897, USA; (N.L.); (A.C.); (O.O.)
| |
Collapse
|
8
|
Trisno J, Neo DCJ, Ong MMX, Ng RJH, Tan CYL, Lee ISH, Chu HS, Teo EJ. Enhancing LED spectral output with perylene dye-based remote phosphor. Sci Rep 2023; 13:10841. [PMID: 37407616 DOI: 10.1038/s41598-023-37956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
LEDs offer a wide range of spectral output with high efficiencies. However, the efficiencies of solid-state LEDs with green and yellow wavelengths are rather low due to the lack of suitable direct bandgap materials. Here, we introduce and develop perylene-enhanced green LEDs that produce a higher wall-plug efficiency of 48% compared to 38% for a solid-state green LED. While the wall-plug efficiency of the perylene-enhanced red LED is still lower than that of a solid-state red LED, we demonstrate that remote phosphor colour converters are effective solutions for targeted spectral tuning across the visible spectrum for horticultural lighting. In this work, we retrofit existing white LEDs and augment photosynthesis via spectral output tuning to achieve a higher red-to-blue ratio. Our results show a significant improvement in plant growth by up to 39%, after a 4-month growth cycle. We observe no visible degradation of the colour converter even under continuous illumination with a current of 400 mA. This opens up new opportunities for using perylene-based colour converters for tuneable illumination with high brightness.
Collapse
Affiliation(s)
- Jonathan Trisno
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Darren C J Neo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Republic of Singapore
| | - Maxine M X Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Republic of Singapore
| | - Ray J H Ng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Christina Y L Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Republic of Singapore
| | - Isabelle S H Lee
- Arianetech Pte. Ltd, 102E Pasir Panjang Road, #08-02 Citilink, Singapore, 118529, Republic of Singapore
| | - Hong Son Chu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore.
| | - Ee Jin Teo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Republic of Singapore.
| |
Collapse
|
9
|
Xue H, Dong Y, Li Z, Wang J, Yuan X, He F, Li Z, Gao X, Liu J. Transcriptome analysis reveals the molecular mechanisms by which carbon dots regulate the growth of Chlamydomonas reinhardtii. J Colloid Interface Sci 2023; 649:22-35. [PMID: 37331107 DOI: 10.1016/j.jcis.2023.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Carbon dots (CDs) have attracted increasing attention for their ability to artificially improve photosynthesis. Microalgal bioproducts have emerged as promising sources of sustainable nutrition and energy. However, the gene regulation mechanism of CDs on microalgae remains unexplored. The study synthesized red-emitting CDs and applied them to Chlamydomonas reinhardtii. Results showed that 0.5 mg/L-CDs acted as light supplements to promote cell division and biomass in C. reinhardtii. CDs improved the energy transfer of PS II, photochemical efficiency of PS II, and photosynthetic electron transfer. The pigment content and carbohydrate production slightly increased, while protein and lipid contents significantly increased (by 28.4% and 27.7%, respectively) in a short cultivation time. Transcriptome analysis identified 1166 differentially expressed genes. CDs resulted in faster cell growth by up-regulating the expression of genes associated with cell growth and death, promoting sister chromatid separation, accelerating the mitotic process and shortening the cell cycle. CDs improved the ability of energy conversion by up-regulating photosynthetic electron transfer-related genes. Carbohydrate metabolism-related genes were regulated and provided more available pyruvate for the citrate cycle. The study provides evidence for the genetic regulation of microalgal bioresources by artificially synthesized CDs.
Collapse
Affiliation(s)
- Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China.
| | - Yibei Dong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhihuan Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fei He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhengke Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
10
|
Park Y, Runkle ES. Spectral-conversion film potential for greenhouses: Utility of green-to-red photons conversion and far-red filtration for plant growth. PLoS One 2023; 18:e0281996. [PMID: 36821557 PMCID: PMC9949677 DOI: 10.1371/journal.pone.0281996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Although green (G, 500 to 600 nm) and far-red (FR, 700 to 800 nm) light play important roles in regulating plant growth and development, they are often considered less useful at stimulating photosynthesis than red (R, 600 to 700 nm) and blue (B, 400 to 500 nm) light. Based on this perception, approaches to modifying the transmission of greenhouse glazing materials include (1) conversion of G photons from sunlight into R photons and (2) exclusion of the near-infrared (>700 nm) fraction of sunlight. We evaluated these approaches using simulated scenarios with light-emitting diodes to determine how partial and complete substitution of G with R light and exclusion of FR light affected the growth of lettuce and tomato grown indoors. The substitution of G with R light had little or no effect on fresh and dry mass of tomato. However, with the presence of FR light, fresh and dry mass of lettuce increased by 22-26% as G light was increasingly substituted with R light. In tomato, excluding FR inhibited plant height, leaf area, and dry mass by 60-71%, 10-37%, and 20-44%, respectively. Similarly, in lettuce, excluding FR inhibited plant diameter, leaf length, and dry mass by 15-23%, 23-33%, or 28-48%, respectively. We conclude that the spectral conversion of G-to-R photons can promote plant growth in at least some crop species, such as lettuce, while the exclusion of FR decreases crop growth and yield.
Collapse
Affiliation(s)
- Yujin Park
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
- College of Integrative Sciences and Arts, Arizona State University, Tempe, Arizona, United States of America
| | - Erik S. Runkle
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
11
|
Paskhin M, Kazantseva D, Ermakova J, Grigorieva D, Yanykin D. Activation of Tomato Growth Under Photoconversion Coatings with Nanoluminophor Sr 0.76Ba 0.20Yb 0.02Er 0.02F 2.04. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235706004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The effect of coatings containing upconversion luminescent nanoparticles on the cultivation of Solanum lycopersicum has been studied. Sr0.76Ba0.20Yb0.02Er0.02F2.04 particles capable of converting infrared radiation into visible light (λem = 660 nm, 545 nm, and 525 nm) were used as the phosphor. It was shown that the cultivation of tomatoes under photoconversion coatings accelerated the adaptation of plants to ultraviolet radiation. A more efficient distribution of the energy of absorbed light between the processes of photosynthesis and thermal dissipation under upconversion coatings was revealed. As a result, plants grown under photoconversion coatings increased the number and total leaf area, stem length, and leaf chlorophyll content.
Collapse
|
12
|
Hebert D, Boonekamp J, Parrish CH, Ramasamy K, Makarov NS, Castañeda C, Schuddebeurs L, McDaniel H, Bergren MR. Luminescent quantum dot films improve light use efficiency and crop quality in greenhouse horticulture. Front Chem 2022; 10:988227. [PMID: 36339045 PMCID: PMC9631427 DOI: 10.3389/fchem.2022.988227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
The spectral quality of sunlight reaching plants remains a path for optimization in greenhouse cultivation. Quantum dots represent a novel, emission-tunable luminescent material for optimizing the sunlight spectrum in greenhouses with minimal intensity loss, ultimately enabling improved light use efficiency of plant growth without requiring electricity. In this study, greenhouse films containing CuInS2/ZnS quantum dots were utilized to absorb and convert ultraviolet and blue photons from sunlight to a photoluminescent emission centered at 600 nm. To analyze the effects of the quantum dot film spectrum on plant production, a 25-week tomato trial was conducted in Dutch glass greenhouses. Plants under the quantum dot film experienced a 14% reduction in overall daily light integral, resulting from perpendicular photosynthetically active radiation transmission of 85.3%, mainly due to reflection losses. Despite this reduction in intensity, the modified sunlight spectrum and light diffusion provided by the quantum dot film gave rise to 5.7% improved saleable production yield, nearly identical total fruiting biomass production, 23% higher light use efficiency (g/mol), 10% faster vegetative growth rate, and 36% reduced tomato waste compared to the control, which had no additional films. Based on this result, materials incorporating quantum dots show promise in enabling passive, electricity-free spectrum modification for improving crop production in greenhouse cultivation, but extensive controlled crop studies are needed to further validate their effectiveness.
Collapse
|
13
|
Shen L, Yin X. Solar spectral management for natural photosynthesis: from photonics designs to potential applications. NANO CONVERGENCE 2022; 9:36. [PMID: 35930145 PMCID: PMC9356122 DOI: 10.1186/s40580-022-00327-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis is the most important biological process on Earth that converts solar energy to chemical energy (biomass) using sunlight as the sole energy source. The yield of photosynthesis is highly sensitive to the intensity and spectral components of light received by the photosynthetic organisms. Therefore, photon engineering has the potential to increase photosynthesis. Spectral conversion materials have been proposed for solar spectral management and widely investigated for photosynthesis by modifying the quality of light reaching the organisms since the 1990s. Such spectral conversion materials manage the photon spectrum of light by a photoconversion process, and a primary challenge faced by these materials is increasing their efficiencies. This review focuses on emerging spectral conversion materials for augmenting the photosynthesis of plants and microalgae, with a special emphasis on their fundamental design and potential applications in both greenhouse settings and microalgae cultivation systems. Finally, a discussion about the future perspectives in this field is made to overcome the remaining challenges.
Collapse
Affiliation(s)
- Lihua Shen
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Xiaobo Yin
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA.
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80309, USA.
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Plant Photochemistry under Glass Coated with Upconversion Luminescent Film. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has been shown that the cultivation of plants under glass coated with nano-sized upconversion luminophores led to an increase in plant productivity and the acceleration of plant adaptation to ultraviolet radiation. In the present work, we examined the effect of upconversion nanopowders with the nominal composition Sr0.955Yb0.020Er0.025F2.045 on plant (Solanum lycopersicum) photochemistry. The composition, structure and size of nanoparticles were tested using X-ray pattern diffraction, scanning electron microscopy, and dynamic light scattering. Nanoparticles are capable of converting infrared radiation into red and green photons. Glasses coated with upconversion luminophores increase the intensity of photosynthetically active radiation and absorb the ultraviolet and far-red radiation. The chlorophyll a fluorescence method showed that plants growing under photoconversion and those growing under common film demonstrate different ability to utilize excitation energy via photosynthesis. It was shown that under ultraviolet and high light conditions, the efficiency of the photochemical reactions, the non-photochemical fluorescence quenching, and the electron transport remained relatively stable in plants growing under photoconversion film in contrast to plants growing under common film. Thus, cultivation of Solanum lycopersicum under photoconversion glasses led to the acceleration in plant growth due to greater efficiency of plant photochemistry under stress conditions.
Collapse
|
15
|
Ünlü C, Budak E, Kestir SM. Altering natural photosynthesis through quantum dots: effect of quantum dots on viability, light harvesting capacity and growth of photosynthetic organisms. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:444-451. [PMID: 35184797 DOI: 10.1071/fp21136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Quantum dots are versatile fluorescent semiconductor nanocrystals with unique photophysical properties. They have been used in various research fields of biotechnology effectively for almost three decades including cell imaging, protein tracking, energy transfer, etc. With their great potential as energy donors or acceptors, quantum dots have also been used in many studies about altering growth rate and photosynthetic activity of photosynthetic organisms by manipulating their light harvesting capacity. In this review, effect of quantum dots on growth rate of photosynthetic organisms and light harvesting capacity of photosynthetic organisms were discussed in details together with toxic effects of cadmium-based and carbon-based quantum dots on photosynthetic organisms. In short, as one of the promising materials of nanotechnology, quantum dots have become one of the essential research topics in photosynthesis research area and will help researchers to manipulate natural photosynthesis in future.
Collapse
Affiliation(s)
- Caner Ünlü
- Istanbul Technical University, Department of Nanoscience and Nanoengineering, Maslak, 34469 Istanbul, Turkey; and Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, 34469 Istanbul, Turkey; and Istanbul Technical University Nanotechnology Research and Application Centre (ITUNano), Istanbul, Turkey
| | - Esranur Budak
- Istanbul Technical University, Department of Nanoscience and Nanoengineering, Maslak, 34469 Istanbul, Turkey
| | - Sacide Melek Kestir
- Istanbul Technical University, Department of Nanoscience and Nanoengineering, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
16
|
Abstract
Well-intentioned regulations to protect Canada’s most productive farmland restrict large-scale solar photovoltaic (PV) development. The recent innovation of agrivoltaics, which is the co-development of land for both PV and agriculture, makes these regulations obsolete. Burgeoning agrivoltaics research has shown agricultural benefits, including increased yield for a wide range of crops, plant protection from excess solar energy and hail, and improved water conservation, while maintaining agricultural employment and local food supplies. In addition, the renewable electricity generation decreases greenhouse gas emissions while increasing farm revenue. As Canada, and Ontario in particular, is at a strategic disadvantage in agriculture without agrivoltaics, this study investigates the policy changes necessary to capitalize on the benefits of using agrivoltaics in Ontario. Land-use policies in Ontario are reviewed. Then, three case studies (peppers, sweet corn, and winter wheat) are analysed for agrivoltaic potential in Ontario. These results are analysed in conjunction with potential policies that would continue to protect the green-belt of the Golden Horseshoe, while enabling agrivoltaics in Ontario. Four agrivoltaic policy areas are discussed: increased research and development, enhanced education/public awareness, mechanisms to support Canada’s farmers converting to agrivoltaics, and using agrivoltaics as a potential source of trade surplus with the U.S.
Collapse
|
17
|
Effect of Photoconversion Coatings for Greenhouses on Electrical Signal-Induced Resistance to Heat Stress of Tomato Plants. PLANTS 2022; 11:plants11020229. [PMID: 35050117 PMCID: PMC8779642 DOI: 10.3390/plants11020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/22/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
Abstract
The use of photoconversion coatings is a promising approach to improving the quality of light when growing plants in greenhouses in low light conditions. In this work, we studied the effect of fluoropolymer coatings, which produce photoconversion of UV-A radiation and violet light into blue and red light, on the growth and resistance to heat stress of tomato plants (Solanum lycopersicum L.). The stimulating effect of the spectrum obtained as a result of photoconversion on plant growth and the activity of the photosynthesis process are shown. At the same time, the ability to withstand heat stress is reduced in plants grown under a photoconversion coating. Stress electrical signals, which normally increase resistance, in such plants have a much weaker protective effect on the photosynthetic apparatus. The observed effects are apparently explained by a decrease in the concentration of H2O2 in plants grown using photoconversion technologies, which leads to a shift in the development program towards increased productivity to the detriment of the protective function. Thus, when using photoconversion technologies in agricultural practice, it is necessary to pay increased attention to maintaining stable conditions during plant cultivation.
Collapse
|
18
|
Cultivation of Solanum lycopersicum under Glass Coated with Nanosized Upconversion Luminophore. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of upconverting luminescent nanoparticles coated on glass on the productivity of Solanum lycopersicum was studied. The cultivation of tomatoes under photoconversion glass led to an increase in plant productivity and an acceleration of plant adaptation to ultraviolet radiation. An increase in the total leaf area and chlorophyll content in the leaves was revealed in plants growing under the photoconversion glass. Plants growing under the photoconversion glass were able to more effectively utilize the absorbed light energy. The results of this study suggest that the spectral changes induced by photoconversion glass can accelerate the adaptation of plants to the appearance of ultraviolet radiation.
Collapse
|
19
|
Abstract
There is an intense need to optimize agrivoltaic systems. This article describes the invention of a new testing system: the parametric open source cold-frame agrivoltaic system (POSCAS). POSCAS is an adapted gardening cold-frame used in cold climates as it acts as a small greenhouse for agricultural production. POSCAS is designed to test partially transparent solar photovoltaic (PV) modules targeting the agrivoltaic market. It can both function as a traditional cold frame, but it can also be automated to function as a full-service greenhouse. The integrated PV module roof can be used to power the controls or it can be attached to a microinverter to produce power. POSCAS can be placed in an experimental array for testing agricultural and power production. It can be easily adapted for any type of partially transparent PV module. An array of POSCAS systems allows for the testing of agrivoltaic impacts from the percent transparency of the modules by varying the thickness of a thin film PV material or the density of silicon-based cells, and various forms of optical enhancement, anti-reflection coatings and solar light spectral shifting materials in the back sheet. All agrivoltaic variables can be customized to identify ideal PV designs for a given agricultural crop.
Collapse
|
20
|
Bantis F. Light Spectrum Differentially Affects the Yield and Phytochemical Content of Microgreen Vegetables in a Plant Factory. PLANTS 2021; 10:plants10102182. [PMID: 34685989 PMCID: PMC8549008 DOI: 10.3390/plants10102182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Light quality exerts considerable effects on crop development and phytochemical content. Moreover, crops grown as microgreens are ideal for plant factories with artificial lighting, since they contain greater amounts of bioactive compounds compared to fully-grown plants. The aim of the present study was to evaluate the effect of broad-spectra light with different red/blue ratios on the yield, morphology, and phytochemical content of seven microgreens. Mustard, radish, green basil, red amaranth, garlic chives, borage, and pea shoots were grown in a vertical farming system under three light sources emitting red/blue ratios of about 2, 5, and 9 units (RB2, RB5, and RB9, respectively). Mustard exhibited the most profound color responses. The yield was enhanced in three microgreens under RB9 and in garlic under RB2. Both the hypocotyl length and the leaf and cotyledon area were significantly enhanced by increasing the red light in three microgreens each. Total soluble solids (Brix) were reduced in 4 microgreens under RB2. The total phenolic content and antioxidant capacity were reduced under RB2 in 6 and 5 microgreens, respectively. The chlorophylls were variably affected but total the carotenoid content was reduced in RB9 in three microgreens. Overall, light wavelength differentially affected the microgreens' quality, while small interplays in spectral bands enhanced their phytochemical content.
Collapse
Affiliation(s)
- Filippos Bantis
- Department of Horticulture, Faculty of Agriculture, Forestry, and Natural Environment, Aristotle University, 54124 Thessaloniki, Greece
| |
Collapse
|