1
|
Yang H, He Z, Lai J, Yang J, Huang Q, Chang Y, Tian M, Huang H. Alterations of the paired maternal fecal microbiota and neonatal meconium microbiota in newborns from pregnant women with hypertensive disorders. Front Microbiol 2025; 16:1567721. [PMID: 40309113 PMCID: PMC12040906 DOI: 10.3389/fmicb.2025.1567721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background Hypertensive disorders of pregnancy (HDP) pose significant risks to both maternal and fetal health and have been associated with alterations in the maternal gut microbiota. However, the impact of HDP on neonatal microbiota remains poorly understood. This study aimed to characterize the gut microbiota of pregnant women with HDP and evaluate its potential influence on the meconium microbiota of their newborns. Methods A cohort of 67 pregnant women, including 36 diagnosed with HDP (HDP group) and 31 healthy, age-matched controls (HC group), along with their offspring, were recruited. Fecal samples collected during the third trimester and meconium samples from the newborns were subjected to microbial community profiling via 16S rRNA gene sequencing. Results Principal coordinate analysis (PCoA) based on Bray-Curtis distances revealed significant differences in microbial community composition between the HDP and HC groups in both maternal and neonatal samples. Subgroup analyses, stratified by HDP severity and medication use, further delineated distinct microbial profiles relative to controls. Notably, both maternal and neonatal microbiota in the HDP group exhibited increased abundances of Enterobacter, Klebsiella, and Sphingomonas, coupled with a reduction in Acidovorax, Azospirillum, Caulobacter, Flavobacterium, Magnetospirillum, and Rubrivivax compared to the HC group. Moreover, the P4-PWY pathway, which is involved in the biosynthesis of L-lysine, L-threonine, and L-methionine, was differentially represented in both maternal and neonatal microbiota in the HDP group. These parallel patterns suggest an intergenerational concordance associated with HDP. Conclusion This study demonstrates significant alterations in the microbial communities of both maternal fecal and neonatal meconium samples in the context of HDP. The findings highlight the importance of further research to elucidate the long-term health implications of HDP-associated microbiota shifts on offspring.
Collapse
Affiliation(s)
- Heng Yang
- Department of Obstetrics and Gynecology, Shenzhen Luohu Maternity and Child Health Hospital, Shenzhen, China
| | - Zhijiang He
- Department of Paediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Jianfen Lai
- Department of Obstetrics and Gynecology, Shenzhen Luohu Maternity and Child Health Hospital, Shenzhen, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Shenzhen Luohu Maternity and Child Health Hospital, Shenzhen, China
| | - Qianrong Huang
- Department of Obstetrics and Gynecology, Shenzhen Luohu Maternity and Child Health Hospital, Shenzhen, China
| | - Ying Chang
- Department of Geriatrics, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Mingyuan Tian
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongli Huang
- Department of Obstetrics and Gynecology, Shenzhen Luohu Maternity and Child Health Hospital, Shenzhen, China
| |
Collapse
|
2
|
Weitzman CL, Brown GP, Day K, Shilton CM, Gibb K, Christian K. Protection against anuran lungworm infection may be mediated by innate defenses rather than their microbiome. Int J Parasitol 2025:S0020-7519(25)00021-9. [PMID: 39909191 DOI: 10.1016/j.ijpara.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/22/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Host-associated microbiomes provide protection against disease in diverse systems, through both direct and indirect interactions with invaders, although these interactions are less understood in the context of non-gut helminth infections in wildlife. Here, we used a widespread, invasive host-parasite system to better understand helminth-amphibian-microbiome dynamics. We focus on cane toads and their lungworm parasites, which invade the host through the skin, to study the interactions between lungworm infection abundance and skin and gut (colon) bacterial microbiomes. Through two experiments, first reducing skin bacterial loads, and second reducing bacterial diversity, we found no evidence of protection by skin bacteria against infection. We also did not find divergent gut communities dependent on lungworm infection, signifying little to no immune modulation from infection causing changes to gut communities, at least in the first month after initial parasite exposure. In light of previous work in the system, these results underscore the contribution of toads' innate susceptibility (including possible protection provided by skin secretions) rather than skin microbes in determining the chance of infection by these macroparasites.
Collapse
Affiliation(s)
- Chava L Weitzman
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Brinkin, NT 0909, Australia.
| | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - Kimberley Day
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Brinkin, NT 0909, Australia
| | - Catherine M Shilton
- Berrimah Veterinary Laboratories, Northern Territory Department of Primary Industries and Fisheries, Berrimah, NT 0828, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Brinkin, NT 0909, Australia
| | - Keith Christian
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Brinkin, NT 0909, Australia
| |
Collapse
|
3
|
Oyono MG, Kenmoe S, Ebogo Belobo JT, Mbah Ntepe LJ, Kameni M, Kamguia LM, Mpotje T, Nono JK. Diagnostic, prognostic, and therapeutic potentials of gut microbiome profiling in human schistosomiasis: A comprehensive systematic review. PLoS Negl Trop Dis 2025; 19:e0012844. [PMID: 39899616 PMCID: PMC11844881 DOI: 10.1371/journal.pntd.0012844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/21/2025] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Several studies have highlighted alteration in the gut microbiome associated with the onset and progression of diseases. Recognizing the potential of gut microbiota as biomarkers, this systematic review seeks to synthesize current data on the intricate relationship between the host gut microbiome profiles and their usefulness for the development of diagnostic, prognostic and therapeutic approaches to control human schistosomiasis. METHODS A systematic literature review was carried out by searching for relevant studies published until date, that is May 2024, using Medline, Embase, Global Health, Web of Science, and Global Index Medicus databases. The keywords used to select articles were "Gut microbiome", "Gut Microbiota", "Schistosomiasis", "Bilharziasis ", and "Human". Extracted data were analysed qualitatively from the selected articles. RESULTS Of the 885 articles retrieved and screened, only 13 (1.47%) met the inclusion criteria and were included in this review. Of the included studies, 6 (46.2%) explored alterations of gut microbiome in schistosome-infected patients, 4 (30.7%) in patients with liver pathologies, and 3 (23.1%) in patients treated with praziquantel. Bacteria from the genera Bacteroides, Faecalibacterium, Blautia and Megasphaera were associated with S. japonicum and S. haematobium infection in school-aged children, whereas infection with S. mansoni rather associated with Klebsiella and Enterobacter. The gut microbiota signature in patient with schistosomiasis-induced liver pathology was reported only for S. japonicum, and the genus Prevotella appeared as a non-invasive biomarker of S. japonicum-associated liver fibrosis. For S. mansoni-infected school-aged children, it further appeared that the treatment outcome following praziquantel administration associated with the abundance in the gut microbiome of bacteria from the classes Fusobacteriales, Rickettsiales and Neisseriales. CONCLUSION The host gut microbiome appears to be a valuable, non-invasive, but still poorly utilized, source of host biomarkers potentially informative for better diagnosing, prognosing and treating schistosomiasis. Further studies are therefore needed to comprehensively define such gut microbial biomarkers of human schistosomiasis and catalyse the informed development of gut microbiome-based tools of schistosomiasis control.
Collapse
Affiliation(s)
- Martin Gael Oyono
- Laboratory of Microbiology, Infectious Diseases and Immunology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Laboratory of Parasitology and Ecology, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo Belobo
- Laboratory of Microbiology, Infectious Diseases and Immunology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Leonel Javeres Mbah Ntepe
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Mireille Kameni
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Department of Microbiology and Parasitology, University of Bamenda, Bamenda, Cameroon
| | - Leonel Meyo Kamguia
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Thabo Mpotje
- Africa Health Research Institute, Durban, Kwazulu-Natal, South Africa
| | - Justin Komguep Nono
- Unit of Immunobiology and helminth infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Mertelsmann AM, Bowers SF, Wright D, Maganga JK, Mazigo HD, Ndhlovu LC, Changalucha JM, Downs JA. Effects of Schistosoma haematobium infection and treatment on the systemic and mucosal immune phenotype, gene expression and microbiome: A systematic review. PLoS Negl Trop Dis 2024; 18:e0012456. [PMID: 39250522 PMCID: PMC11412685 DOI: 10.1371/journal.pntd.0012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/19/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Urogenital schistosomiasis caused by Schistosoma haematobium affects approximately 110 million people globally, with the majority of cases in low- and middle-income countries. Schistosome infections have been shown to impact the host immune system, gene expression, and microbiome composition. Studies have demonstrated variations in pathology between schistosome subspecies. In the case of S. haematobium, infection has been associated with HIV acquisition and bladder cancer. However, the underlying pathophysiology has been understudied compared to other schistosome species. This systematic review comprehensively investigates and assimilates the effects of S. haematobium infection on systemic and local host mucosal immunity, cellular gene expression and microbiome. METHODS We conducted a systematic review assessing the reported effects of S. haematobium infections and anthelmintic treatment on the immune system, gene expression and microbiome in humans and animal models. This review followed PRISMA guidelines and was registered prospectively in PROSPERO (CRD42022372607). Randomized clinical trials, cohort, cross-sectional, case-control, experimental ex vivo, and animal studies were included. Two reviewers performed screening independently. RESULTS We screened 3,177 studies and included 94. S. haematobium was reported to lead to: (i) a mixed immune response with a predominant type 2 immune phenotype, increased T and B regulatory cells, and select pro-inflammatory cytokines; (ii) distinct molecular alterations that would compromise epithelial integrity, such as increased metalloproteinase expression, and promote immunological changes and cellular transformation, specifically upregulation of genes p53 and Bcl-2; and (iii) microbiome dysbiosis in the urinary, intestinal, and genital tracts. CONCLUSION S. haematobium induces distinct alterations in the host's immune system, molecular profile, and microbiome. This leads to a diverse range of inflammatory and anti-inflammatory responses and impaired integrity of the local mucosal epithelial barrier, elevating the risks of secondary infections. Further, S. haematobium promotes cellular transformation with oncogenic potential and disrupts the microbiome, further influencing the immune system and genetic makeup. Understanding the pathophysiology of these interactions can improve outcomes for the sequelae of this devastating parasitic infection.
Collapse
Affiliation(s)
- Anna M Mertelsmann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Sheridan F Bowers
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Drew Wright
- Samuel J. Wood Library & C.V. Starr Biomedical Information Center, Weill Cornell Medical College, New York, New York, United States of America
| | - Jane K Maganga
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Humphrey D Mazigo
- Department of Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - John M Changalucha
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Jennifer A Downs
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
- Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
5
|
O'Ferrall AM, Musaya J, Stothard JR, Roberts AP. Aligning antimicrobial resistance surveillance with schistosomiasis research: an interlinked One Health approach. Trans R Soc Trop Med Hyg 2024; 118:498-504. [PMID: 38842743 PMCID: PMC11299544 DOI: 10.1093/trstmh/trae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
One Health surveillance involves the analysis of human, animal and environmental samples, recognising their interconnectedness in health systems. Such considerations are crucial to investigate the transmission of many pathogens, including drug-resistant bacteria and parasites. The highest rates of antimicrobial resistance (AMR)-associated deaths are observed in sub-Saharan Africa, where concurrently the waterborne parasitic disease schistosomiasis can be highly endemic in both humans and animals. Although there is growing acknowledgment of significant interactions between bacteria and parasites, knowledge of relationships between schistosomes, microbes and AMR remains inadequate. In addition, newly emergent research has revealed the previously underappreciated roles of animals and the environment in both AMR and schistosomiasis transmission. We consider shared environmental drivers and colonisation linkage in this narrative review, with a focus on extended-spectrum beta-lactamase-mediated resistance among bacteria from the Enterobacteriaceae family, which is exceedingly prevalent and responsible for a high burden of AMR-associated deaths. Then we examine novel findings from Malawi, where the landscapes of AMR and schistosomiasis are rapidly evolving, and make comparisons to other geographic areas with similar co-infection epidemiology. We identify several knowledge gaps that could be addressed in future research, including the need to characterise the impact of intestinal schistosomiasis and freshwater contact on intestinal AMR colonisation, before proposing a rationale for connecting AMR surveillance and schistosomiasis research within a One Health framework.
Collapse
Affiliation(s)
- Angus M O'Ferrall
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096 Chichiri, Blantyre 3, Malawi
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
6
|
Munk P, Yang D, Röder T, Maier L, Petersen TN, Duarte ASR, Clausen PTLC, Brinch C, Van Gompel L, Luiken R, Wagenaar JA, Schmitt H, Heederik DJJ, Mevius DJ, Smit LAM, EFFORT Consortium GravelandHaitskeGonzalez-ZornBrunoMoyanoGabrielSandersPascalChauvinClaireBattistiAntonioDewulfJeroenWadepohlKatharinaWasylDariuszSkarzyńskaMagdalenaZajacMagdalenaPękala-SafińskaAgnieszkaDaskalovHristoStärkKatharina D. C., Bossers A, Aarestrup FM. The European livestock resistome. mSystems 2024; 9:e0132823. [PMID: 38501800 PMCID: PMC11019871 DOI: 10.1128/msystems.01328-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Metagenomic sequencing has proven to be a powerful tool in the monitoring of antimicrobial resistance (AMR). Here, we provide a comparative analysis of the resistome from pigs, poultry, veal calves, turkey, and rainbow trout, for a total of 538 herds across nine European countries. We calculated the effects of per-farm management practices and antimicrobial usage (AMU) on the resistome in pigs, broilers, and veal calves. We also provide an in-depth study of the associations between bacterial diversity, resistome diversity, and AMR abundances as well as co-occurrence analysis of bacterial taxa and antimicrobial resistance genes (ARGs) and the universality of the latter. The resistomes of veal calves and pigs clustered together, as did those of avian origin, while the rainbow trout resistome was different. Moreover, we identified clear core resistomes for each specific food-producing animal species. We identified positive associations between bacterial alpha diversity and both resistome alpha diversity and abundance. Network analyses revealed very few taxa-ARG associations in pigs but a large number for the avian species. Using updated reference databases and optimized bioinformatics, previously reported significant associations between AMU, biosecurity, and AMR in pig and poultry farms were validated. AMU is an important driver for AMR; however, our integrated analyses suggest that factors contributing to increased bacterial diversity might also be associated with higher AMR load. We also found that dispersal limitations of ARGs are shaping livestock resistomes, and future efforts to fight AMR should continue to emphasize biosecurity measures.IMPORTANCEUnderstanding the occurrence, diversity, and drivers for antimicrobial resistance (AMR) is important to focus future control efforts. So far, almost all attempts to limit AMR in livestock have addressed antimicrobial consumption. We here performed an integrated analysis of the resistomes of five important farmed animal populations across Europe finding that the resistome and AMR levels are also shaped by factors related to bacterial diversity, as well as dispersal limitations. Thus, future studies and interventions aimed at reducing AMR should not only address antimicrobial usage but also consider other epidemiological and ecological factors.
Collapse
Affiliation(s)
- Patrick Munk
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Dongsheng Yang
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Timo Röder
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Leonie Maier
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
| | | | | | | | - Christian Brinch
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Liese Van Gompel
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Roosmarijn Luiken
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Dick J. J. Heederik
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Dik J. Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - EFFORT ConsortiumGravelandHaitskeGonzalez-ZornBrunoMoyanoGabrielSandersPascalChauvinClaireBattistiAntonioDewulfJeroenWadepohlKatharinaWasylDariuszSkarzyńskaMagdalenaZajacMagdalenaPękala-SafińskaAgnieszkaDaskalovHristoStärkKatharina D. C.
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Alex Bossers
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Frank M. Aarestrup
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
7
|
Hong A, Umar A, Chen H, Yu Z, Huang J. Advances in the study of the interaction between schistosome infections and the host's intestinal microorganisms. Parasit Vectors 2024; 17:185. [PMID: 38600604 PMCID: PMC11007984 DOI: 10.1186/s13071-024-06245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Schistosomiasis, also called bilharziasis, is a neglected tropical disease induced by schistosomes that infects hundreds of millions of people worldwide. In the life cycle of schistosomiasis, eggs are regarded as the main pathogenic factor, causing granuloma formation in the tissues and organs of hosts, which can cause severe gastrointestinal and liver granulomatous immune responses and irreversible fibrosis. Increasing evidence suggests that the gut microbiome influences the progression of schistosomiasis and plays a central role in liver disease via the gut-liver axis. When used as pharmaceutical supplements or adjunctive therapy, probiotics have shown promising results in preventing, mitigating, and even treating schistosomiasis. This review elucidates the potential mechanisms of this three-way parasite-host-microbiome interaction by summarizing schistosome-mediated intestinal flora disorders, local immune changes, and host metabolic changes, and elaborates the important role of the gut microbiome in liver disease after schistosome infection through the gut-liver axis. Understanding the mechanisms behind this interaction may aid in the discovery of probiotics as novel therapeutic targets and sustainable control strategies for schistosomiasis.
Collapse
Affiliation(s)
- Ao Hong
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Gand M, Navickaite I, Bartsch LJ, Grützke J, Overballe-Petersen S, Rasmussen A, Otani S, Michelacci V, Matamoros BR, González-Zorn B, Brouwer MSM, Di Marcantonio L, Bloemen B, Vanneste K, Roosens NHCJ, AbuOun M, De Keersmaecker SCJ. Towards facilitated interpretation of shotgun metagenomics long-read sequencing data analyzed with KMA for the detection of bacterial pathogens and their antimicrobial resistance genes. Front Microbiol 2024; 15:1336532. [PMID: 38659981 PMCID: PMC11042533 DOI: 10.3389/fmicb.2024.1336532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/29/2024] [Indexed: 04/26/2024] Open
Abstract
Metagenomic sequencing is a promising method that has the potential to revolutionize the world of pathogen detection and antimicrobial resistance (AMR) surveillance in food-producing environments. However, the analysis of the huge amount of data obtained requires performant bioinformatics tools and databases, with intuitive and straightforward interpretation. In this study, based on long-read metagenomics data of chicken fecal samples with a spike-in mock community, we proposed confidence levels for taxonomic identification and AMR gene detection, with interpretation guidelines, to help with the analysis of the output data generated by KMA, a popular k-mer read alignment tool. Additionally, we demonstrated that the completeness and diversity of the genomes present in the reference databases are key parameters for accurate and easy interpretation of the sequencing data. Finally, we explored whether KMA, in a two-step procedure, can be used to link the detected AMR genes to their bacterial host chromosome, both detected within the same long-reads. The confidence levels were successfully tested on 28 metagenomics datasets which were obtained with sequencing of real and spiked samples from fecal (chicken, pig, and buffalo) or food (minced beef and food enzyme products) origin. The methodology proposed in this study will facilitate the analysis of metagenomics sequencing datasets for KMA users. Ultimately, this will contribute to improvements in the rapid diagnosis and surveillance of pathogens and AMR genes in food-producing environments, as prioritized by the EU.
Collapse
Affiliation(s)
- Mathieu Gand
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Indre Navickaite
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Lee-Julia Bartsch
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Josephine Grützke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Astrid Rasmussen
- Bacterial Reference Center, Statens Serum Institute, Copenhagen, Denmark
| | - Saria Otani
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valeria Michelacci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Bruno González-Zorn
- Department of Animal Health, Complutense University of Madrid, Madrid, Spain
| | - Michael S. M. Brouwer
- Wageningen Bioveterinary Research Part of Wageningen University and Research, Lelystad, Netherlands
| | - Lisa Di Marcantonio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Bram Bloemen
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | | |
Collapse
|
9
|
Martiny HM, Pyrounakis N, Petersen TN, Lukjančenko O, Aarestrup FM, Clausen PTLC, Munk P. ARGprofiler-a pipeline for large-scale analysis of antimicrobial resistance genes and their flanking regions in metagenomic datasets. Bioinformatics 2024; 40:btae086. [PMID: 38377397 PMCID: PMC10918635 DOI: 10.1093/bioinformatics/btae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/11/2023] [Accepted: 02/19/2024] [Indexed: 02/22/2024] Open
Abstract
MOTIVATION Analyzing metagenomic data can be highly valuable for understanding the function and distribution of antimicrobial resistance genes (ARGs). However, there is a need for standardized and reproducible workflows to ensure the comparability of studies, as the current options involve various tools and reference databases, each designed with a specific purpose in mind. RESULTS In this work, we have created the workflow ARGprofiler to process large amounts of raw sequencing reads for studying the composition, distribution, and function of ARGs. ARGprofiler tackles the challenge of deciding which reference database to use by providing the PanRes database of 14 078 unique ARGs that combines several existing collections into one. Our pipeline is designed to not only produce abundance tables of genes and microbes but also to reconstruct the flanking regions of ARGs with ARGextender. ARGextender is a bioinformatic approach combining KMA and SPAdes to recruit reads for a targeted de novo assembly. While our aim is on ARGs, the pipeline also creates Mash sketches for fast searching and comparisons of sequencing runs. AVAILABILITY AND IMPLEMENTATION The ARGprofiler pipeline is a Snakemake workflow that supports the reuse of metagenomic sequencing data and is easily installable and maintained at https://github.com/genomicepidemiology/ARGprofiler.
Collapse
Affiliation(s)
- Hannah-Marie Martiny
- Research Group for Genomic Epidemiology, Technical University of Denmark, Henrik Danms Allé, Bygning 204, Kongens Lyngby 2800, Denmark
| | - Nikiforos Pyrounakis
- Research Group for Genomic Epidemiology, Technical University of Denmark, Henrik Danms Allé, Bygning 204, Kongens Lyngby 2800, Denmark
| | - Thomas N Petersen
- Research Group for Genomic Epidemiology, Technical University of Denmark, Henrik Danms Allé, Bygning 204, Kongens Lyngby 2800, Denmark
| | - Oksana Lukjančenko
- Research Group for Genomic Epidemiology, Technical University of Denmark, Henrik Danms Allé, Bygning 204, Kongens Lyngby 2800, Denmark
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Henrik Danms Allé, Bygning 204, Kongens Lyngby 2800, Denmark
| | - Philip T L C Clausen
- Research Group for Genomic Epidemiology, Technical University of Denmark, Henrik Danms Allé, Bygning 204, Kongens Lyngby 2800, Denmark
| | - Patrick Munk
- Research Group for Genomic Epidemiology, Technical University of Denmark, Henrik Danms Allé, Bygning 204, Kongens Lyngby 2800, Denmark
| |
Collapse
|
10
|
Bogri A, Jensen EEB, Borchert AV, Brinch C, Otani S, Aarestrup FM. Transmission of antimicrobial resistance in the gut microbiome of gregarious cockroaches: the importance of interaction between antibiotic exposed and non-exposed populations. mSystems 2024; 9:e0101823. [PMID: 38095429 PMCID: PMC10805027 DOI: 10.1128/msystems.01018-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global health concern, further complicated by its spread via the microbiome bacterial members. While mathematical models discuss AMR transmission through the symbiotic microbiome, experimental studies are scarce. Herein, we used a gregarious cockroach, Pycnoscelus surinamensis, as an in vivo animal model for AMR transmission investigations. We explored whether the effect of antimicrobial treatment is detectable with metagenomic sequencing, and whether AMR genes can be spread and established in unchallenged (not treated with antibiotics) individuals following contact with treated donors, and under various frequencies of interaction. Gut and soil substrate microbiomes were investigated by metagenomic sequencing for bacterial community composition and resistome profiling. We found that tetracycline treatment altered the treated gut microbiome by decreasing bacterial diversity and increasing the abundance of tetracycline resistance genes. Untreated cockroaches that interacted with treated donors also had elevated tetracycline resistance. The levels of resistance differed depending on the magnitude and frequency of donor transfer. Additionally, treated donors showed signs of microbiome recovery due to their interaction with the untreated ones. Similar patterns were also recorded in the soil substrate microbiomes. Our results shed light on how interacting microbiomes facilitate AMR gene transmission to previously unchallenged hosts, a dynamic influenced by the interaction frequencies, using an in vivo model to validate theoretical AMR transmission models.IMPORTANCEAntimicrobial resistance is a rising threat to human and animal health. The spread of resistance through the transmission of the symbiotic gut microbiome is of concern and has been explored in theoretical modeling studies. In this study, we employ gregarious insect populations to examine the emergence and transmission of antimicrobial resistance in vivo and validate modeling hypotheses. We find that antimicrobial treatment increases the levels of resistance in treated populations. Most importantly, we show that resistance increased in untreated populations after interacting with the treated ones. The level of resistance transmission was affected by the magnitude and frequency of population mixing. Our results highlight the importance of microbial transmission in the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Amalia Bogri
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | | | - Asbjørn Vedel Borchert
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Christian Brinch
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Saria Otani
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| |
Collapse
|
11
|
Zhou DT, Mudhluli TE, Hall LJ, Manasa J, Munyati S. A Scoping Review of Gut Microbiome and Bifidobacterium Research in Zimbabwe: Implications for Future Studies. Pediatric Health Med Ther 2023; 14:483-496. [PMID: 38145055 PMCID: PMC10743709 DOI: 10.2147/phmt.s414766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 12/26/2023] Open
Abstract
Background Gut microbiota play a key role in host health, with certain Bifidobacterium strains critical for immune development. The healthy gut of breastfed infants is dominated by these pioneer microbes, especially the strains that feed on human milk oligosaccharides. Objective This is a scoping review of gut microbiome research from Zimbabwe. It focuses on distribution and dynamic changes of bifidobacteria, and milk components that promote growth of microbes in infants, together with the distribution of associated gut microbes in adults. Design Online databases were searched for publications from 2000 to 2023. Results and Analysis Fourteen publications on microbiota of infants and adults were included in this scoping review. Most were cross-sectional, while three were clinical trials/cohort protocols. Publications focused on pediatrics (78.5%), pregnant women (14.3%), and men (7.2%). Zimbabwe has a high burden of HIV; hence 35.7% of study populations were delineated by HIV status. The laboratory methods used included shotgun metagenomics (62%) or 16S rRNA gene amplicon sequencing. Almost 85% of the studies focused on total microbiome profiles and rarely reported the distribution of different Bifidobacterium species and variants. None of the papers studied human breast milk composition. There were reports of reduced abundance of beneficial genera in pregnant women, children, and adolescents living with HIV. Additionally, gut microbiota was reported to be poorly predictive of child growth and vaccine response, though this was not conclusive. Conclusion There are few studies that characterize the gut microbiome by Zimbabwe-based researchers. However, studies on strain level diversity of Bifidobacterium and other key microbes, and their role in health during and beyond infancy, lag behind in Zimbabwe and other low- and middle-income countries. Such cohorts are needed to inform future mechanistic studies and downstream translational work such as next-generation probiotics and prebiotics.
Collapse
Affiliation(s)
- Danai T Zhou
- Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Taona E Mudhluli
- Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe, Harare, Zimbabwe
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Intestinal Microbiome, Technical University of Munich, Freising, Germany
| | - Justen Manasa
- Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe, Harare, Zimbabwe
- Department of Laboratory Sciences, Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Shungu Munyati
- Department of Laboratory Sciences, Biomedical Research and Training Institute, Harare, Zimbabwe
| |
Collapse
|
12
|
Yersin S, Garneau JR, Schneeberger PHH, Osman KA, Cercamondi CI, Muhummed AM, Tschopp R, Zinsstag J, Vonaesch P. Gut microbiomes of agropastoral children from the Adadle region of Ethiopia reflect their unique dietary habits. Sci Rep 2023; 13:21342. [PMID: 38049420 PMCID: PMC10696028 DOI: 10.1038/s41598-023-47748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
The composition and function of the intestinal microbiota are major determinants of human health and are strongly influenced by diet, antibiotic treatment, lifestyle and geography. Nevertheless, we currently have only little data on microbiomes of non-westernized communities. We assess the stool microbiota composition in 59 children aged 2-5 years from the Adadle district of Ethiopia, Somali Regional State. Here, milk and starch-rich food are predominant components of the local diet, where the inhabitants live a remote, traditional agropastoral lifestyle. Microbiota composition, function and the resistome were characterized by both 16S rRNA gene amplicon and shotgun metagenomic sequencing and compared to 1471 publicly available datasets from children living in traditional, transitional, and industrial communities with different subsistence strategies. Samples from the Adadle district are low in Bacteroidaceae, and Prevotellaceae, the main bacterial representatives in the feces of children living in industrialized and non-industrialized communities, respectively. In contrast, they had a higher relative abundance in Streptococcaceae, Bifidobacteriaceae and Erysipelatoclostridiaceae. Further, genes involved in degradation pathways of lactose, D-galactose and simple carbohydrates were enriched. Overall, our study revealed a unique composition of the fecal microbiota of these agropastoral children, highlighting the need to further characterize the fecal bacterial composition of human populations living different lifestyles.
Collapse
Affiliation(s)
- Simon Yersin
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pierre H H Schneeberger
- Helminth Drug Development Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | | | - Colin Ivano Cercamondi
- Department of Health Sciences and Technology, ETHZ, Rämistrasse 101, 8092, Zurich, Switzerland
| | - Abdifatah Muktar Muhummed
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Jigjiga University, Jigjiga, Ethiopia
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Rea Tschopp
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- Armauer Hansen Research Institute, Jimma Road, 1005, Addis Ababa, Ethiopia
| | - Jakob Zinsstag
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
13
|
Pheeha SM, Tamuzi JL, Chale-Matsau B, Manda S, Nyasulu PS. A Scoping Review Evaluating the Current State of Gut Microbiota Research in Africa. Microorganisms 2023; 11:2118. [PMID: 37630678 PMCID: PMC10458939 DOI: 10.3390/microorganisms11082118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The gut microbiota has emerged as a key human health and disease determinant. However, there is a significant knowledge gap regarding the composition, diversity, and function of the gut microbiota, specifically in the African population. This scoping review aims to examine the existing literature on gut microbiota research conducted in Africa, providing an overview of the current knowledge and identifying research gaps. A comprehensive search strategy was employed to identify relevant studies. Databases including MEDLINE (PubMed), African Index Medicus (AIM), CINAHL (EBSCOhost), Science Citation index (Web of Science), Embase (Ovid), Scopus (Elsevier), WHO International Clinical Trials Registry Platform (ICTRP), and Google Scholar were searched for relevant articles. Studies investigating the gut microbiota in African populations of all age groups were included. The initial screening included a total of 2136 articles, of which 154 were included in this scoping review. The current scoping review revealed a limited number of studies investigating diseases of public health significance in relation to the gut microbiota. Among these studies, HIV (14.3%), colorectal cancer (5.2%), and diabetes mellitus (3.9%) received the most attention. The top five countries that contributed to gut microbiota research were South Africa (16.2%), Malawi (10.4%), Egypt (9.7%), Kenya (7.1%), and Nigeria (6.5%). The high number (n = 66) of studies that did not study any specific disease in relation to the gut microbiota remains a gap that needs to be filled. This scoping review brings attention to the prevalent utilization of observational study types (38.3%) in the studies analysed and emphasizes the importance of conducting more experimental studies. Furthermore, the findings reflect the need for more disease-focused, comprehensive, and population-specific gut microbiota studies across diverse African regions and ethnic groups to better understand the factors shaping gut microbiota composition and its implications for health and disease. Such knowledge has the potential to inform targeted interventions and personalized approaches for improving health outcomes in African populations.
Collapse
Affiliation(s)
- Sara M. Pheeha
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Department of Chemical Pathology, Faculty of Medicine and Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa
| | - Jacques L. Tamuzi
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
| | - Bettina Chale-Matsau
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- National Health Laboratory Service, Steve Biko Academic Hospital, Pretoria 0002, South Africa
| | - Samuel Manda
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter S. Nyasulu
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
14
|
Ajibola O, Penumutchu S, Gulumbe B, Aminu U, Belenky P. Longitudinal Analysis of the Impacts of Urogenital Schistosomiasis on the Gut microbiota of Adolescents in Nigeria. RESEARCH SQUARE 2023:rs.3.rs-2832346. [PMID: 37163079 PMCID: PMC10168446 DOI: 10.21203/rs.3.rs-2832346/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The gut microbiome is important for many host physiological processes and helminths and these interactions may lead to microbial changes. We carried out a longitudinal study of the impacts of S. haematobium infection on the gut microbiome of adolescents (11-15 years) in northern Nigeria pre and post praziquantel treatment. Using 16S sequencing a total of 267 DNA from faecal samples of infected versus uninfected adolescents were amplified and sequenced on an Illumina Miseq. We assessed the diversity of the taxa using alpha diversity metrices and observed that using Shannon index we obtained significant differences when we compared infected samples at 3, 9 and 12 months to baseline uninfected controls (P= <0.0001, P=0.0342 and P=0.0003 respectively). Microbial community composition analysis revealed that there were only significant differences at 3, 9 and 12 months (P=0.001, P=0.001, P=0.001 and P=0.001, respectively). We also demonstrated that the effects of the infection on the gut was more significant than praziquantel. Overall, our data suggests that S. haematobium, a non-gut resident parasite has indirect interactions with the gut. The bacterial taxa changes we have identified opens up the opportunity to investigate their role in human health, especially in urogenital schistosomiasis endemic communities.
Collapse
|
15
|
Piazzesi A, Putignani L. Impact of helminth-microbiome interactions on childhood health and development-A clinical perspective. Parasite Immunol 2023; 45:e12949. [PMID: 36063358 DOI: 10.1111/pim.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Humans have co-existed with parasites for virtually the entirety of our existence as a species. Today, nearly one third of the human population is infected with at least one helminthic species, most of which reside in the intestinal tract, where they have co-evolved alongside the human gut microbiota (GM). Appreciation for the interconnected relationship between helminths and GM has increased in recent years. Here, we review the evidence of how helminths and GM can influence various aspects of childhood development and the onset of paediatric diseases. We discuss the emerging evidence of how many of the changes that parasitic worms inflict on their host is enacted through gut microbes. In this light, we argue that helminth-induced microbiota modifications are of great importance in both facing the global challenge of overcoming parasitic infections, and in replicating helminthic protective effects against inflammatory diseases. We propose that deepening our knowledge of helminth-microbiota interactions will uncover novel, safer and more effective therapeutic strategies in combatting an array of childhood disorders.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
16
|
Midzi H, Vengesai A, Muleya V, Kasambala M, Mduluza-Jokonya TL, Chipako I, Siamayuwa CE, Mutapi F, Naicker T, Mduluza T. Metabolomics for biomarker discovery in schistosomiasis: A systematic scoping review. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BackgroundMetabolomic based approaches are essential tools in the discovery of unique biomarkers for infectious diseases via high-throughput global assessment of metabolites and metabolite pathway dysregulation. This in-turn allows the development of diagnostic tools and provision of therapeutics. In this review, we aimed to give an overview of metabolite biomarkers and metabolic pathway alterations during Schistosoma haematobium and Schistosoma mansoni infections.MethodsWe conducted the review by systematically searching electronic databases and grey literature to identify relevant metabolomics studies on schistosomiasis. Arksey and O’Malley methodology for conducting systematic scoping reviews was applied. A narrative summary of results was conducted following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for scoping review guidelines.ResultsTwelve articles included in the review identified 127 metabolites, whose concentrations were considerably altered during S. mansoni and S. haematobium infections. The metabolites were assigned to metabolic pathways involved in energy (34.6%), gut microbial (11.0%), amino acid (25.2%), nucleic acids (6.3%), immune proteins (8.7%) hormones (2.4%) and structural proteins/lipids (11.8%). Energy related metabolic pathways were the most affected during schistosome infections with metabolites such as succinate, citrate, aconitate and fumarate of the tricarbocylic acid cycle being significantly altered in organ, serum and plasma samples. Amino acid metabolism was also impacted during schistosome infections as phenylacetylglycine, alanine, taurine, 2-oxoisocaproate and 2-oxoisovalerate emerged as potent biomarkers. Elevated structural proteins such as actin, collagen and keratin concentrations were identified as biomarkers of liver fibrosis, a common pathological feature in chronic schistosomiasis infections. Hippurate was a major metabolite biomarker in the gut microbial related pathway.ConclusionsThe analysis of the literature revealed that energy related metabolic pathways are considerably altered during S. mansoni and S. haematobium infections. Therefore, their metabolites may provide biomarkers for diagnosis and prognosis in addition to providing therapeutics for parasitic infections. This scoping review has identified a need to replicate more schistosomiasis metabolomic studies in humans to complement animal-model based studies.
Collapse
|
17
|
Early-life chemical exposome and gut microbiome development: African research perspectives within a global environmental health context. Trends Microbiol 2022; 30:1084-1100. [PMID: 35697586 DOI: 10.1016/j.tim.2022.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023]
Abstract
The gut microbiome of neonates, infants, and toddlers (NITs) is very dynamic, and only begins to stabilize towards the third year of life. Within this period, exposure to xenobiotics may perturb the gut environment, thereby driving or contributing to microbial dysbiosis, which may negatively impact health into adulthood. Despite exposure of NITs globally, but especially in Africa, to copious amounts and types of xenobiotics - such as mycotoxins, pesticide residues, and heavy metals - little is known about their influence on the early-life microbiome or their effects on acute or long-term health. Within the African context, the influence of fermented foods, herbal mixtures, and the delivery environment on the early-life microbiome are often neglected, despite being potentially important factors that influence the microbiome. Consequently, data on in-depth understanding of the microbiome-exposome interactions is lacking in African cohorts. Collecting and evaluating such data is important because exposome-induced gut dysbiosis could potentially favor disease progression.
Collapse
|
18
|
Cortés A, Martin J, Rosa BA, Stark KA, Clare S, McCarthy C, Harcourt K, Brandt C, Tolley C, Lawley TD, Mitreva M, Berriman M, Rinaldi G, Cantacessi C. The gut microbial metabolic capacity of microbiome-humanized vs. wild type rodents reveals a likely dual role of intestinal bacteria in hepato-intestinal schistosomiasis. PLoS Negl Trop Dis 2022; 16:e0010878. [PMID: 36279280 PMCID: PMC9633004 DOI: 10.1371/journal.pntd.0010878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/03/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence shows that the host gut microbiota might be involved in the immunological cascade that culminates with the formation of tissue granulomas underlying the pathophysiology of hepato-intestinal schistosomiasis. In this study, we investigated the impact of Schistosoma mansoni infection on the gut microbial composition and functional potential of both wild type and microbiome-humanized mice. In spite of substantial differences in microbiome composition at baseline, selected pathways were consistently affected by parasite infection. The gut microbiomes of infected mice of both lines displayed, amongst other features, enhanced capacity for tryptophan and butyrate production, which might be linked to the activation of mechanisms aimed to prevent excessive injuries caused by migrating parasite eggs. Complementing data from previous studies, our findings suggest that the host gut microbiome might play a dual role in the pathophysiology of schistosomiasis, where intestinal bacteria may contribute to egg-associated pathology while, in turn, protect the host from uncontrolled tissue damage.
Collapse
Affiliation(s)
- Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, València, Spain
| | - John Martin
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Klara A. Stark
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Clare
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Catherine McCarthy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Katherine Harcourt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Cordelia Brandt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charlotte Tolley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Trevor D. Lawley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gabriel Rinaldi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Schmid DW, Fackelmann G, Wasimuddin, Rakotondranary J, Ratovonamana YR, Montero BK, Ganzhorn JU, Sommer S. A framework for testing the impact of co-infections on host gut microbiomes. Anim Microbiome 2022; 4:48. [PMID: 35945629 PMCID: PMC9361228 DOI: 10.1186/s42523-022-00198-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parasitic infections disturb gut microbial communities beyond their natural range of variation, possibly leading to dysbiosis. Yet it remains underappreciated that most infections are accompanied by one or more co-infections and their collective impact is largely unexplored. Here we developed a framework illustrating changes to the host gut microbiome following single infections, and build on it by describing the neutral, synergistic or antagonistic impacts on microbial α- and ß-diversity expected from co-infections. We tested the framework on microbiome data from a non-human primate population co-infected with helminths and Adenovirus, and matched patterns reported in published studies to the introduced framework. In this case study, α-diversity of co-infected Malagasy mouse lemurs (Microcebus griseorufus) did not differ in comparison with that of singly infected or uninfected individuals, even though community composition captured with ß-diversity metrices changed significantly. Explicitly, we record stochastic changes in dispersion, a sign of dysbiosis, following the Anna-Karenina principle rather than deterministic shifts in the microbial gut community. From the literature review and our case study, neutral and synergistic impacts emerged as common outcomes from co-infections, wherein both shifts and dispersion of microbial communities following co-infections were often more severe than after a single infection alone, but microbial α-diversity was not universally altered. Important functions of the microbiome may also suffer from such heavily altered, though no less species-rich microbial community. Lastly, we pose the hypothesis that the reshuffling of host-associated microbial communities due to the impact of various, often coinciding parasitic infections may become a source of novel or zoonotic diseases.
Collapse
|
20
|
Lin D, Song Q, Liu J, Chen F, Zhang Y, Wu Z, Sun X, Wu X. Potential Gut Microbiota Features for Non-Invasive Detection of Schistosomiasis. Front Immunol 2022; 13:941530. [PMID: 35911697 PMCID: PMC9330540 DOI: 10.3389/fimmu.2022.941530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
The gut microbiota has been identified as a predictive biomarker for various diseases. However, few studies focused on the diagnostic accuracy of gut microbiota derived-signature for predicting hepatic injuries in schistosomiasis. Here, we characterized the gut microbiomes from 94 human and mouse stool samples using 16S rRNA gene sequencing. The diversity and composition of gut microbiomes in Schistosoma japonicum infection-induced disease changed significantly. Gut microbes, such as Bacteroides, Blautia, Enterococcus, Alloprevotella, Parabacteroides and Mucispirillum, showed a significant correlation with the level of hepatic granuloma, fibrosis, hydroxyproline, ALT or AST in S. japonicum infection-induced disease. We identified a range of gut bacterial features to distinguish schistosomiasis from hepatic injuries using the random forest classifier model, LEfSe and STAMP analysis. Significant features Bacteroides, Blautia, and Enterococcus and their combinations have a robust predictive accuracy (AUC: from 0.8182 to 0.9639) for detecting liver injuries induced by S. japonicum infection in humans and mice. Our study revealed associations between gut microbiota features and physiopathology and serological shifts of schistosomiasis and provided preliminary evidence for novel gut microbiota-derived features for the non-invasive detection of schistosomiasis.
Collapse
Affiliation(s)
- Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Qiuyue Song
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Department of Clinical Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiahua Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Fang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yishu Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Xiaoying Wu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Lampard-Scotford AR, McCauley A, Kuebel JA, Ibbott R, Mutapi F. Impact of parasitic infection on mental health and illness in humans in Africa: a systematic review. Parasitology 2022; 149:1003-1018. [PMID: 35549773 PMCID: PMC11010480 DOI: 10.1017/s0031182022000166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 11/07/2022]
Abstract
A growing body of research implicates inflammation as a potential pathway in the aetiology and pathophysiology of some mental illnesses. A systematic review was conducted to determine the association between parasitic infection and mental illnesses in humans in Africa and reviewed the state of the evidence available. The search focused on publications from Africa documenting the relationship between parasites from two parasite groups, helminths and protozoans, and four classifications of mental illness: mood affective disorders, neurotic and stress-related disorders, schizotypal disorders and unspecified mental illnesses. In the 26 reviewed papers, the prevalence of mental illness was significantly higher in people with parasitic infection compared to those without infection, i.e., 58.2% vs 41.8% (P < 0.001). An overall odds ratio found that the association of having a mental illness when testing positive for a parasitic infection was four times that of people without infection. Whilst the study showed significant associations between parasite infection and mental illness, it also highlights gaps in the present literature on the pathophysiology of mental illness in people exposed to parasite infection. This study highlighted the importance of an integrated intervention for parasitic infection and mental illness.
Collapse
Affiliation(s)
- Alexandra R. Lampard-Scotford
- Ashworth Laboratories, Institute of Immunology & Infection Research, University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
- Ashworth Laboratories, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Angela McCauley
- Ashworth Laboratories, Institute of Immunology & Infection Research, University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
- Ashworth Laboratories, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Julius Arthur Kuebel
- Ashworth Laboratories, Institute of Immunology & Infection Research, University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
- Ashworth Laboratories, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Rachel Ibbott
- Ashworth Laboratories, Institute of Immunology & Infection Research, University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
- Ashworth Laboratories, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Francisca Mutapi
- Ashworth Laboratories, Institute of Immunology & Infection Research, University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
- Ashworth Laboratories, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
22
|
Loke P, Lee SC, Oyesola OO. Effects of helminths on the human immune response and the microbiome. Mucosal Immunol 2022; 15:1224-1233. [PMID: 35732819 DOI: 10.1038/s41385-022-00532-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023]
Abstract
Helminths have evolved sophisticated immune regulating mechanisms to prevent rejection by their mammalian host. Our understanding of how the human immune system responds to these parasites remains poor compared to mouse models of infection and this limits our ability to develop vaccines as well as harness their unique properties as therapeutic strategies against inflammatory disorders. Here, we review how recent studies on human challenge infections, self-infected individuals, travelers, and endemic populations have improved our understanding of human type 2 immunity and its effects on the microbiome. The heterogeneity of responses between individuals and the limited access to tissue samples beyond the peripheral blood are challenges that limit human studies on helminths, but also provide opportunities to transform our understanding of human immunology. Organoids and single-cell sequencing are exciting new tools for immunological analysis that may aid this pursuit. Learning about the genetic and immunological basis of resistance, tolerance, and pathogenesis to helminth infections may thus uncover mechanisms that can be utilized for therapeutic purposes.
Collapse
Affiliation(s)
- P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Soo Ching Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Oyebola O Oyesola
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
Dey P, Ray Chaudhuri S. Cancer-Associated Microbiota: From Mechanisms of Disease Causation to Microbiota-Centric Anti-Cancer Approaches. BIOLOGY 2022; 11:757. [PMID: 35625485 PMCID: PMC9138768 DOI: 10.3390/biology11050757] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the only well-established bacterial cause of cancer. However, due to the integral role of tissue-resident commensals in maintaining tissue-specific immunometabolic homeostasis, accumulated evidence suggests that an imbalance of tissue-resident microbiota that are otherwise considered as commensals, can also promote various types of cancers. Therefore, the present review discusses compelling evidence linking tissue-resident microbiota (especially gut bacteria) with cancer initiation and progression. Experimental evidence supporting the cancer-causing role of gut commensal through the modulation of host-specific processes (e.g., bile acid metabolism, hormonal effects) or by direct DNA damage and toxicity has been discussed. The opportunistic role of commensal through pathoadaptive mutation and overcoming colonization resistance is discussed, and how chronic inflammation triggered by microbiota could be an intermediate in cancer-causing infections has been discussed. Finally, we discuss microbiota-centric strategies, including fecal microbiota transplantation, proven to be beneficial in preventing and treating cancers. Collectively, this review provides a comprehensive understanding of the role of tissue-resident microbiota, their cancer-promoting potentials, and how beneficial bacteria can be used against cancers.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh 160036, India;
| |
Collapse
|
24
|
Fungal allergic sensitisation in young rural Zimbabwean children: Gut mycobiome and seroreactivity characteristics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 2:100082. [PMID: 35028627 PMCID: PMC8714770 DOI: 10.1016/j.crmicr.2021.100082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022] Open
Abstract
Background The prevalence of allergic diseases has increased over the last few decades, with sensitisation to fungal allergens and gut microbiome dysbiosis implicated in this trend. The fungal community in the gut (mycobiome) has yet to be characterised and related to fungal allergic sensitisation. Thus, we characterised the gut mycobiome and related it to fungal sensitisation and seroreactivity among Zimbabwean children. We further determined the effect of host age, sex, Schistosoma haematobium infection and mycobiome composition on fungal sensitisation and seroreactivity. Methods Using shotgun metagenomic sequencing, we characterised the gut microbiome of stool samples of 116 preschool aged children (PSAC) (≤5 years old, 57(49.1%) male and 59 (50.9%) female). Sensitisation to common fungi in Zimbabwe was assessed using skin prick tests (SPTs). Allergen-specific IgM, IgA, IgG, IgE and IgG4 antibodies were quantified by ELISA. We analysed the relationship between fungal genera and SPT reactivity by ANOVA; fungal genera and IgE antibody reactivity by linear regression; variation in mycobiome abundance with host and environmental factors by PERMANOVA; SPT reactivity and host and environmental factors by logistic regression; seroreactivity and host and environmental factors by ANOVA. Results The mycobiome formed <1% of the sequenced gut microbiome and 228 fungal genera were identified. The most abundant genera detected were Protomyces, Taphrina, and Aspergillus. S.haematobium infection had a significant effect on fungal genera. Prevalence of SPT sensitisation to ≥1 fungal species was 96%, and individuals were frequently sensitised to Saccharomyces cerevisiae. Antibodies were detected in 100% of the population. There was no relationship between mycobiome abundance and IgE titres or IgE/IgG4 ratios for each fungal species; no significant differences between SPT reactivity and abundance of fungal species except for S. cerevisiae; and fungal seroreactivity did not significantly differ with age. There were some sex (m>f for, Epicoccum nigrum and Penicillium chrysogenum) and SPT reactivity -related differences in seroreactivity. Conclusion This is the first comprehensive characterisation of gut mycobiome and fungal allergic sensitisation of rural children in Zimbabwe. Although reported allergic disease is low there is a high percentage of sensitisation. Further studies with larger populations are required to understand the role of the mycobiome in allergic diseases.
Collapse
|
25
|
Bajinka O, Qi M, Barrow A, Touray AO, Yang L, Tan Y. Pathogenicity of Salmonella During Schistosoma-Salmonella Co-infections and the Importance of the Gut Microbiota. Curr Microbiol 2021; 79:26. [PMID: 34905113 PMCID: PMC8669234 DOI: 10.1007/s00284-021-02718-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
Antibiotic inefficacy in treating bacterial infections is largely studied in the context of developing resistance mechanisms. However, little attention has been paid to combined diseases mechanisms, interspecies pathogenesis and the resulting impact on antimicrobial treatment. This review will consider the co-infections of Salmonella and Schistosoma mansoni. It summarises the protective mechanisms that the pathophysiology of the two infections confer, which leads to an antibiotic protection phenomenon. This review will elucidate the functional characteristics of the gut microbiota in the context of these co-infections, the pathogenicity of these infections in infected mice, and the efficacy of the antibiotics used in treatment of these co-infections over time. Salmonella-Schistosoma interactions and the mechanism for antibiotic protection are not well established. However, antimicrobial drug inefficacy is an existing phenomenon in these co-infections. The treatment of schistosomiasis to ensure the efficacy of antibiotic therapy for bacterial infections should be considered in co-infected patients.
Collapse
Affiliation(s)
- Ousman Bajinka
- Department of Microbiology, Central South University, Changsha, Hunan, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Amadou Barrow
- Heidelberg Institute of Global Health, University Hospital and Medical Faculty, Heidelberg University, Heidelberg, Germany.,School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Abdoulie O Touray
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Lulu Yang
- Department of Microbiology, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Microbiology, Central South University, Changsha, Hunan, China. .,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China. .,Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
26
|
Huus KE, Hoang TT, Creus-Cuadros A, Cirstea M, Vogt SL, Knuff-Janzen K, Sansonetti PJ, Vonaesch P, Finlay BB. Cross-feeding between intestinal pathobionts promotes their overgrowth during undernutrition. Nat Commun 2021; 12:6860. [PMID: 34824233 PMCID: PMC8617199 DOI: 10.1038/s41467-021-27191-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Child undernutrition is a global health issue associated with a high burden of infectious disease. Undernourished children display an overabundance of intestinal pathogens and pathobionts, and these bacteria induce enteric dysfunction in undernourished mice; however, the cause of their overgrowth remains poorly defined. Here, we show that disease-inducing human isolates of Enterobacteriaceae and Bacteroidales spp. are capable of multi-species symbiotic cross-feeding, resulting in synergistic growth of a mixed community in vitro. Growth synergy occurs uniquely under malnourished conditions limited in protein and iron: in this context, Bacteroidales spp. liberate diet- and mucin-derived sugars and Enterobacteriaceae spp. enhance the bioavailability of iron. Analysis of human microbiota datasets reveals that Bacteroidaceae and Enterobacteriaceae are strongly correlated in undernourished children, but not in adequately nourished children, consistent with a diet-dependent growth synergy in the human gut. Together these data suggest that dietary cross-feeding fuels the overgrowth of pathobionts in undernutrition.
Collapse
Affiliation(s)
- K. E. Huus
- grid.17091.3e0000 0001 2288 9830Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
| | - T. T. Hoang
- grid.17091.3e0000 0001 2288 9830Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
| | - A. Creus-Cuadros
- grid.17091.3e0000 0001 2288 9830Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
| | - M. Cirstea
- grid.17091.3e0000 0001 2288 9830Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
| | - S. L. Vogt
- grid.17091.3e0000 0001 2288 9830Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
| | - K. Knuff-Janzen
- grid.17091.3e0000 0001 2288 9830Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
| | - P. J. Sansonetti
- grid.428999.70000 0001 2353 6535Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France ,grid.429007.80000 0004 0627 2381Present Address: Center for Microbes, Development and Health, Institut Pasteur de Shanghai, Shanghai, China
| | - P. Vonaesch
- grid.428999.70000 0001 2353 6535Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France ,grid.416786.a0000 0004 0587 0574Present Address: Human and Animal Health Unit, Swiss Tropical and Public Health Institute & University of Basel, Basel, Switzerland
| | - B. B. Finlay
- grid.17091.3e0000 0001 2288 9830Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada ,grid.440050.50000 0004 0408 2525Canadian Institute for Advanced Research, Toronto, Ontario Canada
| |
Collapse
|
27
|
Horie M, Yang D, Joosten P, Munk P, Wadepohl K, Chauvin C, Moyano G, Skarżyńska M, Dewulf J, Aarestrup FM, Blaha T, Sanders P, Gonzalez-Zorn B, Wasyl D, Wagenaar JA, Heederik D, Mevius D, Schmitt H, Smit LAM, Van Gompel L. Risk Factors for Antimicrobial Resistance in Turkey Farms: A Cross-Sectional Study in Three European Countries. Antibiotics (Basel) 2021; 10:820. [PMID: 34356741 PMCID: PMC8300668 DOI: 10.3390/antibiotics10070820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Food-producing animals are an important reservoir and potential source of transmission of antimicrobial resistance (AMR) to humans. However, research on AMR in turkey farms is limited. This study aimed to identify risk factors for AMR in turkey farms in three European countries (Germany, France, and Spain). Between 2014 and 2016, faecal samples, antimicrobial usage (AMU), and biosecurity information were collected from 60 farms. The level of AMR in faecal samples was quantified in three ways: By measuring the abundance of AMR genes through (i) shotgun metagenomics sequencing (n = 60), (ii) quantitative real-time polymerase chain reaction (qPCR) targeting ermB, tetW, sul2, and aph3'-III; (n = 304), and (iii) by identifying the phenotypic prevalence of AMR in Escherichia coli isolates by minimum inhibitory concentrations (MIC) (n = 600). The association between AMU or biosecurity and AMR was explored. Significant positive associations were detected between AMU and both genotypic and phenotypic AMR for specific antimicrobial classes. Beta-lactam and colistin resistance (metagenomics sequencing); ampicillin and ciprofloxacin resistance (MIC) were associated with AMU. However, no robust AMU-AMR association was detected by analyzing qPCR targets. In addition, no evidence was found that lower biosecurity increases AMR abundance. Using multiple complementary AMR detection methods added insights into AMU-AMR associations at turkey farms.
Collapse
Affiliation(s)
- Mayu Horie
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| | - Dongsheng Yang
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| | - Philip Joosten
- Veterinary Epidemiology Unit, Department of Obstetrics, Reproduction and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (P.J.); (J.D.)
| | - Patrick Munk
- Research Group for Genomic Epidemiology, The National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark; (P.M.); (F.M.A.)
| | - Katharina Wadepohl
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Büscheler Straße 9, 49456 Bakum, Germany; (K.W.); (T.B.)
| | - Claire Chauvin
- Epidemiology, Health and Welfare Unit, The French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (C.C.); (P.S.)
| | - Gabriel Moyano
- Antimicrobial Resistance Unit (ARU), Animal Health Departement, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (G.M.); (B.G.-Z.)
| | - Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute (PIWet), Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.S.); (D.W.)
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Department of Obstetrics, Reproduction and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (P.J.); (J.D.)
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, The National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark; (P.M.); (F.M.A.)
| | - Thomas Blaha
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Büscheler Straße 9, 49456 Bakum, Germany; (K.W.); (T.B.)
| | - Pascal Sanders
- Epidemiology, Health and Welfare Unit, The French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (C.C.); (P.S.)
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit (ARU), Animal Health Departement, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (G.M.); (B.G.-Z.)
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute (PIWet), Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.S.); (D.W.)
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (J.A.W.); (D.M.)
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| | - Dik Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (J.A.W.); (D.M.)
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| | - Liese Van Gompel
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; (D.Y.); (D.H.); (H.S.); (L.A.M.S.); (L.V.G.)
| |
Collapse
|
28
|
Mehta SD, Okal D, Otieno F, Green SJ, Nordgren RK, Huibner S, Bailey RC, Bhaumik DK, Landay A, Kaul R. Schistosomiasis is associated with rectal mucosal inflammation among Kenyan men who have sex with men. Int J STD AIDS 2021; 32:694-703. [PMID: 33533314 DOI: 10.1177/0956462420985973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Schistosoma mansoni infection is hyperendemic in Lake Victoria communities and associated with cervicovaginal immune alterations and HIV acquisition. We assessed the hypothesis that schistosomiasis correlates with greater rectal inflammation in men who have sex with men (MSM) in Kisumu, Kenya. Methods: In this cross-sectional study of 38 HIV-negative MSM aged 18-35 years, schistosomiasis was diagnosed by urine circulating cathodic antigen (CCA). Microbiome was assessed in rectal swabs by 16S rRNA gene amplicon sequencing, and rectal inflammation by quartile normalized summative score of inflammatory cytokines (IL-1α, IL-1β, IL-8, and TNF-α). Elastic net (EN) regression identified taxa associated with inflammation. Multivariable linear regression estimated the association between inflammation score and schistosomiasis and bacteria identified in EN. Results: Most men were CCA positive (24/38; 63%), and median rectal inflammation score was significantly higher in these participants (11 vs. 8, p = 0.04). In multivariable regression, CCA-positive men had 2.85-point greater inflammation score (p = 0.009). The relative abundance of Succinivibrio (coefficient = -1.13, p = 0.002) and Pseudomonas (coefficient = -1.04, p = 0.001) were negatively associated with inflammation. Discussion: CCA positivity was associated with rectal mucosal inflammation, controlling for rectal microbiome composition. Given its high prevalence and contribution to inflammation, schistosomiasis may have important implications for HIV transmission in this vulnerable population.
Collapse
Affiliation(s)
- Supriya D Mehta
- Division of Epidemiology & Biostatistics, 14681University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Duncan Okal
- Nyanza Reproductive Health Society, Kisumu, Kenya
| | | | - Stefan J Green
- Sequencing Core, Research Resources Center, 14681University of Illinois at Chicago, Chicago, USA
| | - Rachel K Nordgren
- Division of Epidemiology & Biostatistics, 14681University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Sanja Huibner
- Division of Infectious Diseases, University of Toronto School of Medicine, Toronto, Canada
| | - Robert C Bailey
- Division of Epidemiology & Biostatistics, 14681University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Dulal K Bhaumik
- Division of Epidemiology & Biostatistics, 14681University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Alan Landay
- Department of Internal Medicine, 2468Rush University, Chicago, USA
| | - Rupert Kaul
- Division of Infectious Diseases, University of Toronto School of Medicine, Toronto, Canada
| |
Collapse
|
29
|
Cortés A, Clare S, Costain A, Almeida A, McCarthy C, Harcourt K, Brandt C, Tolley C, Rooney J, Berriman M, Lawley T, MacDonald AS, Rinaldi G, Cantacessi C. Baseline Gut Microbiota Composition Is Associated With Schistosoma mansoni Infection Burden in Rodent Models. Front Immunol 2020; 11:593838. [PMID: 33329584 PMCID: PMC7718013 DOI: 10.3389/fimmu.2020.593838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
In spite of growing evidence supporting the occurrence of complex interactions between Schistosoma and gut bacteria in mice and humans, no data is yet available on whether worm-mediated changes in microbiota composition are dependent on the baseline gut microbial profile of the vertebrate host. In addition, the impact of such changes on the susceptibility to, and pathophysiology of, schistosomiasis remains largely unexplored. In this study, mice colonized with gut microbial populations from a human donor (HMA mice), as well as microbiota-wild type (WT) animals, were infected with Schistosoma mansoni, and alterations of their gut microbial profiles at 50 days post-infection were compared to those occurring in uninfected HMA and WT rodents, respectively. Significantly higher worm and egg burdens, together with increased specific antibody responses to parasite antigens, were observed in HMA compared to WT mice. These differences were associated to extensive dissimilarities between the gut microbial profiles of each HMA and WT groups of mice at baseline; in particular, the gut microbiota of HMA animals was characterized by low microbial alpha diversity and expanded Proteobacteria, as well as by the absence of putative immunomodulatory bacteria (e.g. Lactobacillus). Furthermore, differences in infection-associated changes in gut microbiota composition were observed between HMA and WT mice. Altogether, our findings support the hypothesis that susceptibility to S.mansoni infection in mice is partially dependent on the composition of the host baseline microbiota. Moreover, this study highlights the applicability of HMA mouse models to address key biological questions on host-parasite-microbiota relationships in human helminthiases.
Collapse
Affiliation(s)
- Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, València, Spain
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Alice Costain
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | - Alexandre Almeida
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Catherine McCarthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Katherine Harcourt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Cordelia Brandt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charlotte Tolley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Trevor Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Andrew S. MacDonald
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|