1
|
Giovannercole F, De Smet T, Vences-Guzmán MÁ, Lauber F, Dugauquier R, Dieu M, Lizen L, Dehairs J, Lima-Mendez G, Guan Z, Sohlenkamp C, Renzi F. TamL is a Key Player of the Outer Membrane Homeostasis in Bacteroidota. J Mol Biol 2025; 437:169063. [PMID: 40043834 PMCID: PMC12045153 DOI: 10.1016/j.jmb.2025.169063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
In Proteobacteria, the outer membrane protein TamA and the inner membrane-anchored protein TamB form the Translocation and Assembly Module (TAM) complex, which facilitates the transport of autotransporters, virulence factors, and likely lipids across the two membranes. In Bacteroidota, TamA is replaced by TamL, a TamA-like lipoprotein with a lipid modification at its N-terminus that likely anchors it to the outer membrane. This structural difference suggests that TamL may have a distinct function compared to TamA. However, the role of TAM in bacterial phyla other than Proteobacteria remains unexplored. Our study aimed to elucidate the function of TamL in Flavobacterium johnsoniae, an environmental Bacteroidota. Unlike its homologs in Proteobacteria, we found that TamL and TamB are essential in F. johnsoniae. Through genetic, phenotypic, proteomic, and lipidomic analyses, we show that TamL depletion severely compromises outer membrane integrity, as evidenced by reduced cell viability, altered cell shape, increased susceptibility to membrane-disrupting agents, and elevated levels of outer membrane lipoproteins. Notably, we did not observe an overall decrease in the levels of β-barrel outer membrane proteins, nor substantial alterations in outer membrane lipid composition. By pull-down assays, we found TamL co-purifying with TamB in F. johnsoniae, suggesting an interaction. Furthermore, we found that while TamL and TamB monocistronic genes are conserved among Bacteroidota, only some species encode multiple TamL, TamB and TamA proteins. To our knowledge, this study is the first to provide functional insights into a TAM subunit beyond Proteobacteria.
Collapse
Affiliation(s)
- Fabio Giovannercole
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Tom De Smet
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Miguel Ángel Vences-Guzmán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Frédéric Lauber
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Rémy Dugauquier
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Marc Dieu
- Technological Platform Mass Spectrometry Service (MaSUN), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Laura Lizen
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Gipsi Lima-Mendez
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Francesco Renzi
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for life Sciences (Narilis), University of Namur, Namur, Belgium.
| |
Collapse
|
2
|
Nemcova Y, Neustupa J, Pichrtová M. Desiccation tolerance in peatland desmids: a comparative study of Micrasterias thomasiana and Staurastrum hirsutum (Zygnematophyceae). PROTOPLASMA 2025:10.1007/s00709-025-02061-1. [PMID: 40180684 DOI: 10.1007/s00709-025-02061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Desmids are valuable bioindicators in peatland ecosystems due to their sensitivity to environmental changes. In temperate and boreal wetlands, seasonal desiccation of aquatic habitats, which is increasing in frequency and severity due to ongoing climate change, is currently considered a key factor structuring the distribution of individual taxa. In this study, the desiccation tolerance of Micrasterias thomasiana and Staurastrum hirsutum isolated from contrasting hydrological environments in the peatland habitats of the Ore Mountains, Czech Republic, is investigated. Using controlled experimental conditions, we subjected both young, actively growing and old, mature cultures to four different desiccation treatments and evaluated morphology and photosynthetic performance. Our results showed that young and old cultures of both species exhibited a very similar photophysiological response. Severe desiccation led to an irreversible decline in the effective quantum yield of photosystem II in both species, resulting in cell death. Mild drought stress allowed the cultures to recover, indicating that the stress severity determines the recovery potential. Finally, prolonged desiccation resulted in irreversible damage in older cultures of both species, emphasizing the limited desiccation resilience of desmids. We observed similarities in morphology with Zygnema "pre-akinetes," but in contrast to these resilient cells, the old cells of M. thomasiana and S. hirsutum did not survive the harsher desiccation conditions. Long-term mild desiccation revealed a higher resistance of S. hirsutum, probably due to the protective role of its dense mucilage. In nature, these two species usually inhabit localities with low desiccation risk or avoid and mitigate desiccation stress through localized survival strategies.
Collapse
Affiliation(s)
- Y Nemcova
- Department of Botany, Charles University, Benatska 2, 128 00, Prague 2, Czech Republic.
| | - J Neustupa
- Department of Botany, Charles University, Benatska 2, 128 00, Prague 2, Czech Republic
| | - M Pichrtová
- Department of Botany, Charles University, Benatska 2, 128 00, Prague 2, Czech Republic
| |
Collapse
|
3
|
De Smet T, Baland E, Giovannercole F, Mignon J, Lizen L, Dugauquier R, Lauber F, Dieu M, Lima-Mendez G, Michaux C, Devos D, Renzi F. LolA and LolB are conserved in Bacteroidota and are crucial for gliding motility and Type IX secretion. Commun Biol 2025; 8:376. [PMID: 40050408 PMCID: PMC11885536 DOI: 10.1038/s42003-025-07817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Lipoproteins are key outer membrane (OM) components in Gram-negative bacteria, essential for functions like membrane biogenesis and virulence. Bacteroidota, a diverse and widespread phylum, produce numerous OM lipoproteins that play vital roles in nutrient acquisition, Type IX secretion system (T9SS), and gliding motility. In Escherichia coli, lipoprotein transport to the OM is mediated by the Lol system, where LolA shuttles lipoproteins to LolB, which anchors them in the OM. However, LolB homologs were previously thought to be limited to γ- and β-proteobacteria. This study uncovers the presence of LolB in Bacteroidota and demonstrates that multiple LolA and LolB proteins co-exist in various species. Specifically, in Flavobacterium johnsoniae, LolA1 and LolB1 transport gliding motility and T9SS lipoproteins to the OM. Notably, these proteins are not interchangeable with their E. coli counterparts, indicating functional specialization. Some lipoproteins still localize to the OM in the absence of LolA and LolB, suggesting the existence of alternative transport pathways in Bacteroidota. This points to a more complex lipoprotein transport system in Bacteroidota compared to other Gram-negative bacteria. These findings reveal previously unrecognized lipoprotein transport mechanisms in Bacteroidota and suggest that this phylum has evolved unique strategies to manage the essential task of lipoprotein localization.
Collapse
Affiliation(s)
- Tom De Smet
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Elisabeth Baland
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Fabio Giovannercole
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Julien Mignon
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Laura Lizen
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
- Laboratoire de Chimie Bactérienne (LCB) CNRS-Aix-Marseille University, Marseille, France
| | - Rémy Dugauquier
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Frédéric Lauber
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
- De Duve Institute, UCLouvain, Brussels, Belgium
| | - Marc Dieu
- Technological Platform Mass Spectrometry Service (MaSUN), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Gipsi Lima-Mendez
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Damien Devos
- Centro Andaluz de Biología del Desarrollo (CSIC), Universidad Pablo de Olavide, Sevilla, Spain
- Center for Infection and Immunity of Lille, Pasteur Institute, Lille, France
| | - Francesco Renzi
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium.
| |
Collapse
|
4
|
Page EF, Blackmon MF, Calhoun TR. Second harmonic scattering investigation of bacterial efflux induced by the antibiotic tetracycline. J Chem Phys 2024; 161:174710. [PMID: 39498886 PMCID: PMC11540441 DOI: 10.1063/5.0231391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024] Open
Abstract
Efflux pumps are a key component in bacteria's ability to gain resistance to antibiotics. In addition to increasing efflux, new research has suggested that the antibiotic, tetracycline, may have larger impacts on bacterial membranes. Using second harmonic scattering, we monitor the transport of two small molecules across the membranes of different Gram-positive bacteria. By comparing our results to a simple kinetic model, we find evidence for changes in influx and efflux across both bacterial species. These changes, however, are probe-dependent, opening new questions about the localization of the drug's effects and the specificity of the efflux pumps involved.
Collapse
Affiliation(s)
- Eleanor F. Page
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Mikala F. Blackmon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
5
|
Dubey AK, Sardana D, Verma T, Alam P, Chattopadhyay A, Nandini SS, Khamari B, Bulagonda EP, Sen S, Nandi D. Quantifying Membrane Alterations with Tailored Fluorescent Dyes: A Rapid Antibiotic Resistance Profiling Methodology. ACS Infect Dis 2024; 10:2836-2859. [PMID: 39024306 DOI: 10.1021/acsinfecdis.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Accurate detection of bacterial antibiotic sensitivity is crucial for theranostics and the containment of antibiotic-resistant infections. However, the intricate task of detecting and quantifying the antibiotic-induced changes in the bacterial cytoplasmic membrane, and their correlation with other metabolic pathways leading to antibiotic resistance, poses significant challenges. Using a novel class of 4-aminophthalimide (4AP)-based fluorescent dyes with precisely tailored alkyl chains, namely 4AP-C9 and 4AP-C13, we quantify stress-mediated alterations in E. coli membranes. Leveraging the unique depth-dependent positioning and environment-sensitive fluorescence properties of these dyes, we detect antibiotic-induced membrane damage through single-cell imaging and monitoring the fluorescence peak maxima difference ratio (PMDR) of the dyes within the bacterial membrane, complemented by other methods. The correlation between the ROS-induced cytoplasmic membrane damage and the PMDR of dyes quantifies sensitivity against bactericidal antibiotics, which correlates to antibiotic-induced lipid peroxidation. Significantly, our findings largely extend to clinical isolates of E. coli and other ESKAPE pathogens like K. pneumoniae and Enterobacter subspecies. Our data reveal that 4AP-Cn probes can potentially act as precise scales to detect antibiotic-induced membrane damage ("thinning") occurring at a subnanometer scale through the quantification of dyes' PMDR, making them promising membrane dyes for rapid detection of bacterial antibiotic resistance, distinguishing sensitive and resistant infections with high specificity in a clinical setup.
Collapse
Affiliation(s)
- Ashim Kumar Dubey
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Deepika Sardana
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Taru Verma
- Centre for BioSystems, Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Parvez Alam
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Avik Chattopadhyay
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Santhi Sanil Nandini
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Balaram Khamari
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi 515134, Andhra Pradesh, India
| | - Eswarappa Pradeep Bulagonda
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi 515134, Andhra Pradesh, India
| | - Sobhan Sen
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
6
|
Chioti VT, McWhorter KL, Blue TC, Li Y, Xu F, Jeffrey PD, Davis KM, Seyedsayamdost MR. Potent and specific antibiotic combination therapy against Clostridioides difficile. Nat Chem Biol 2024; 20:924-933. [PMID: 38942968 PMCID: PMC11306116 DOI: 10.1038/s41589-024-01651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/15/2024] [Indexed: 06/30/2024]
Abstract
Keratinicyclins and keratinimicins are recently discovered glycopeptide antibiotics. Keratinimicins show broad-spectrum activity against Gram-positive bacteria, while keratinicyclins form a new chemotype by virtue of an unusual oxazolidinone moiety and exhibit specific antibiosis against Clostridioides difficile. Here we report the mechanism of action of keratinicyclin B (KCB). We find that steric constraints preclude KCB from binding peptidoglycan termini. Instead, KCB inhibits C. difficile growth by binding wall teichoic acids (WTAs) and interfering with cell wall remodeling. A computational model, guided by biochemical studies, provides an image of the interaction of KCB with C. difficile WTAs and shows that the same H-bonding framework used by glycopeptide antibiotics to bind peptidoglycan termini is used by KCB for interacting with WTAs. Analysis of KCB in combination with vancomycin (VAN) shows highly synergistic and specific antimicrobial activity, and that nanomolar combinations of the two drugs are sufficient for complete growth inhibition of C. difficile, while leaving common commensal strains unaffected.
Collapse
Affiliation(s)
| | | | - Tamra C Blue
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Yuchen Li
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Fei Xu
- Institute of Pharmaceutical Biotechnology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
7
|
Khusainov I, Romanov N, Goemans C, Turoňová B, Zimmerli CE, Welsch S, Langer JD, Typas A, Beck M. Bactericidal effect of tetracycline in E. coli strain ED1a may be associated with ribosome dysfunction. Nat Commun 2024; 15:4783. [PMID: 38839776 PMCID: PMC11153495 DOI: 10.1038/s41467-024-49084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Ribosomes translate the genetic code into proteins. Recent technical advances have facilitated in situ structural analyses of ribosome functional states inside eukaryotic cells and the minimal bacterium Mycoplasma. However, such analyses of Gram-negative bacteria are lacking, despite their ribosomes being major antimicrobial drug targets. Here we compare two E. coli strains, a lab E. coli K-12 and human gut isolate E. coli ED1a, for which tetracycline exhibits bacteriostatic and bactericidal action, respectively. Using our approach for close-to-native E. coli sample preparation, we assess the two strains by cryo-ET and visualize their ribosomes at high resolution in situ. Upon tetracycline treatment, these exhibit virtually identical drug binding sites, yet the conformation distribution of ribosomal complexes differs. While K-12 retains ribosomes in a translation-competent state, tRNAs are lost in the vast majority of ED1a ribosomes. These structural findings together with the proteome-wide abundance and thermal stability assessments indicate that antibiotic responses are complex in cells and can differ between different strains of a single species, thus arguing that all relevant bacterial strains should be analyzed in situ when addressing antibiotic mode of action.
Collapse
Affiliation(s)
- Iskander Khusainov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Av. des Martyrs, 38000, Grenoble, France
| | - Natalie Romanov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Camille Goemans
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), SV, Station 19, 1015, Lausanne, Switzerland
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Christian E Zimmerli
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), BSP Route de la Sorge, 1015, Lausanne, Switzerland
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Julian D Langer
- Membrane Proteomics and Mass Spectrometry, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
- Mass Spectrometry, Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438, Frankfurt am Main, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany.
- Institute of Biochemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Nagarajan T, Gayathri MP, Mack J, Nyokong T, Govindarajan S, Babu B. Blue-Light-Activated Water-Soluble Sn(IV)-Porphyrins for Antibacterial Photodynamic Therapy (aPDT) against Drug-Resistant Bacterial Pathogens. Mol Pharm 2024; 21:2365-2374. [PMID: 38620059 DOI: 10.1021/acs.molpharmaceut.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Antimicrobial resistance has emerged as a global threat to the treatment of infectious diseases. Antibacterial photodynamic therapy (aPDT) is a promising alternative approach and is highly suitable for the treatment of cutaneous bacterial infections through topical applications. aPDT relies on light-responsive compounds called photosensitizer (PS) dyes, which generate reactive oxygen species (ROS) when induced by light, thereby killing bacterial cells. Despite several previous studies in this area, the molecular details of targeting and cell death mediated by PS dyes are poorly understood. In this study, we further investigate the antibacterial properties of two water-soluble Sn(IV) tetrapyridylporphyrins that were quaternized with methyl and hexyl groups (1 and 2). In this follow-up study, we demonstrate that Sn(IV)-porphyrins can be photoexcited by blue light (a 427 nm LED) and exhibit various levels of bactericidal activity against both Gram-(+) and Gram-(-) strains of bacteria. Using localization studies through fluorescence microscopy, we show that 2 targets the bacterial membrane more effectively than 1 and exhibits comparatively higher aPDT activity. Using multiple fluorescence reporters, we demonstrate that photoactivation of 1 and 2 results in extensive collateral damage to the bacterial cells including DNA cleavage, membrane damage, and delocalization of central systems necessary for bacterial growth and division. In summary, this investigation provides deep insights into the mechanism of bacterial killing mediated by the Sn(IV)-porphyrins. Moreover, our approach offers a new method for evaluating the activity of PS, which may inspire the discovery of new PS with enhanced aPDT activity.
Collapse
Affiliation(s)
- T Nagarajan
- Department of Biological Sciences, SRM University-AP, Amaravati 522502, India
| | - M P Gayathri
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | | | - Balaji Babu
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| |
Collapse
|
9
|
Schäfer AB, Sidarta M, Abdelmesseh Nekhala I, Marinho Righetto G, Arshad A, Wenzel M. Dissecting antibiotic effects on the cell envelope using bacterial cytological profiling: a phenotypic analysis starter kit. Microbiol Spectr 2024; 12:e0327523. [PMID: 38289933 PMCID: PMC10913488 DOI: 10.1128/spectrum.03275-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Phenotypic analysis assays such as bacterial cytological profiling (BCP) have become increasingly popular for antibiotic mode of action analysis. A plethora of dyes, protein fusions, and reporter strains are available and have been used for this purpose, enabling both rapid mode of action categorization and in-depth analysis of antibiotic mechanisms. However, non-expert researchers may struggle choosing suitable assays and interpreting results. This is a particular problem for antibiotics that have multiple or complex targets, such as the bacterial cell envelope. Here, we set out to curate a minimal set of accessible and affordable phenotypic assays that allow distinction between membrane and cell wall targets, can identify dual-action inhibitors, and can be implemented in most research environments. To this end, we employed BCP, membrane potential, fluidity, and cell wall synthesis assays. To assess specificity and ease of interpretation, we tested three well-characterized and commercially available reference antibiotics: the potassium ionophore valinomycin, the lipid II-binding glycopeptide vancomycin, and the dual-action lantibiotic nisin, which binds lipid II and forms a membrane pore. Based on our experiments, we suggest a minimal set of BCP, a membrane-potentiometric probe, and fluorescent protein fusions to MinD and MreB as basic assay set and recommend complementing these assays with Laurdan-based fluidity measurements and a PliaI reporter fusion, where indicated. We believe that our results can provide guidance for researchers who wish to use phenotypic analysis for mode of action studies but do not possess the specialized equipment or expert knowledge to employ the full breadth of possible techniques.IMPORTANCEPhenotypic analysis assays using specialized fluorescence fusions and dyes have become increasingly popular in antibiotic mode of action analysis. However, it can be difficult to implement these methods due to the need for specialized equipment and/or the complexity of bacterial cell biology and physiology, making the interpretation of results difficult for non-experts. This is especially problematic for compounds that have multiple or pleiotropic effects, such as inhibitors of the bacterial cell envelope. In order to make phenotypic analysis assays accessible to labs, whose primary expertise is not bacterial cell biology, or with limited equipment and resources, a set of simple and broadly accessible assays is needed that is easy to implement, execute, and interpret. Here, we have curated a set of assays and strains that does not need highly specialized equipment, can be performed in most labs, and is straightforward to interpret without knowing the intricacies of bacterial cell biology.
Collapse
Affiliation(s)
- Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Margareth Sidarta
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Ireny Abdelmesseh Nekhala
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Gabriela Marinho Righetto
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Aysha Arshad
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| |
Collapse
|
10
|
Blake MJ, Castillo HB, Curtis AE, Calhoun TR. Facilitating flip-flop: Structural tuning of molecule-membrane interactions in living bacteria. Biophys J 2023; 122:1735-1747. [PMID: 37041744 PMCID: PMC10209030 DOI: 10.1016/j.bpj.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
The first barrier that a small molecule must overcome before trespassing into a living cell is the lipid bilayer surrounding the intracellular content. It is imperative, therefore, to understand how the structure of a small molecule influences its fate in this region. Through the use of second harmonic generation, we show how the differing degrees of ionic headgroups, conjugated system, and branched hydrocarbon tail disparities of a series of four styryl dye molecules influence the propensity to "flip-flop" or to be further organized in the outer leaflet by the membrane. We show here that initial adsorption experiments match previous studies on model systems; however, more complex dynamics are observed over time. Aside from probe molecule structure, these dynamics also vary between cell species and can deviate from trends reported based on model membranes. Specifically, we show here that the membrane composition is an important factor to consider for headgroup-mediated small-molecule dynamics. Overall, the findings presented here on how structural variability of small molecules impacts their initial adsorption and eventual destinations within membranes in the context of living cells could have practical applications in antibiotic and drug adjuvant design.
Collapse
Affiliation(s)
- Marea J Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Hannah B Castillo
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Anna E Curtis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Tessa R Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
11
|
Darnowski MG, Lanosky TD, Paquette AR, Boddy CN. Armeniaspirol analogues disrupt the electrical potential (ΔΨ) of the proton motive force. Bioorg Med Chem Lett 2023; 84:129210. [PMID: 36858079 DOI: 10.1016/j.bmcl.2023.129210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
The armeniaspirol family of natural product antibiotics have been shown to inhibit the ATP-dependent proteases ClpXP and ClpYQ and disrupt membrane potential through shuttling of protons across the membrane. Herein we investigate their ability to disrupt the proton motive force (PMF). We show, using a voltage sensitive, that armeniaspiols disrupt the electrical membrane potential (ΔΨ) component of the PMF and not the transmembrane proton gradient (ΔpH). Using checkerboard assays, we confirm this by showing antagonism, with kanamycin, an antibiotic that required ΔΨ for penetration. By evaluating the antibiotic activity and disruption of the PMF by sixteen armeniaspirol analogs, we find that disruption of the PMF is necessary but not sufficient for antibiotic activity. Analogs that are potent disruptors of the PMF without possessing the ability to inhibit ClpXP and ClpYQ are not potent antibiotics. Thus we propose that the armeniaspirols utilize a dual mechanism of action where they disrupt PMF and inhibit the ATP-dependent proteases ClpXP and ClpYQ. This type of dual mechanism has been observed in other natural product-based antibiotics, most notably chelocardin.
Collapse
Affiliation(s)
- Michael G Darnowski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Taylor D Lanosky
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - André R Paquette
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5 Canada.
| |
Collapse
|
12
|
Righetto GM, Lopes JLDS, Bispo PJM, André C, Souza JM, Andricopulo AD, Beltramini LM, Camargo ILBDC. Antimicrobial Activity of an Fmoc-Plantaricin 149 Derivative Peptide against Multidrug-Resistant Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12020391. [PMID: 36830301 PMCID: PMC9952790 DOI: 10.3390/antibiotics12020391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Antimicrobial resistance poses a major threat to public health. Given the paucity of novel antimicrobials to treat resistant infections, the emergence of multidrug-resistant bacteria renewed interest in antimicrobial peptides as potential therapeutics. This study designed a new analog of the antimicrobial peptide Plantaricin 149 (Pln149-PEP20) based on previous Fmoc-peptides. The minimal inhibitory concentrations of Pln149-PEP20 were determined for 60 bacteria of different species and resistance profiles, ranging from 1 mg/L to 128 mg/L for Gram-positive bacteria and 16 to 512 mg/L for Gram-negative. Furthermore, Pln149-PEP20 demonstrated excellent bactericidal activity within one hour. To determine the propensity to develop resistance to Pln149-PEP20, a directed-evolution in vitro experiment was performed. Whole-genome sequencing of selected mutants with increased MICs and wild-type isolates revealed that most mutations were concentrated in genes associated with membrane metabolism, indicating the most likely target of Pln149-PEP20. Synchrotron radiation circular dichroism showed how this molecule disturbs the membranes, suggesting a carpet mode of interaction. Membrane depolarization and transmission electron microscopy assays supported these two hypotheses, although a secondary intracellular mechanism of action is possible. The molecule studied in this research has the potential to be used as a novel antimicrobial therapy, although further modifications and optimization remain possible.
Collapse
Affiliation(s)
- Gabriela Marinho Righetto
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - José Luiz de Souza Lopes
- Laboratory of Applied Biophysics, Department of Applied Physics, Institute of Physics, University of São Paulo, São Paulo 05315-970, Brazil
| | - Paulo José Martins Bispo
- Department of Ophthalmology, Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | - Camille André
- Department of Ophthalmology, Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Medeiros Souza
- Laboratory of Medicinal and Computational Chemistry, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - Leila Maria Beltramini
- Group of Biophysics and Structural Biology “Sérgio Mascarenhas”, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
| | - Ilana Lopes Baratella da Cunha Camargo
- Laboratory of Molecular Epidemiology and Microbiology, Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, São Carlos 13563-120, Brazil
- Correspondence: ; Tel.: +55-(16)-3373-8654
| |
Collapse
|
13
|
Schäfer AB, Steenhuis M, Jim KK, Neef J, O’Keefe S, Whitehead RC, Swanton E, Wang B, Halbedel S, High S, van Dijl JM, Luirink J, Wenzel M. Dual Action of Eeyarestatin 24 on Sec-Dependent Protein Secretion and Bacterial DNA. ACS Infect Dis 2023; 9:253-269. [PMID: 36637435 PMCID: PMC9926488 DOI: 10.1021/acsinfecdis.2c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Eeyarestatin 24 (ES24) is a promising new antibiotic with broad-spectrum activity. It shares structural similarity with nitrofurantoin (NFT), yet appears to have a distinct and novel mechanism: ES24 was found to inhibit SecYEG-mediated protein transport and membrane insertion in Gram-negative bacteria. However, possible additional targets have not yet been explored. Moreover, its activity was notably better against Gram-positive bacteria, for which its mechanism of action had not yet been investigated. We have used transcriptomic stress response profiling, phenotypic assays, and protein secretion analyses to investigate the mode of action of ES24 in comparison with NFT using the Gram-positive model bacterium Bacillus subtilis and have compared our findings to Gram-negative Escherichia coli. Here, we show the inhibition of Sec-dependent protein secretion in B. subtilis and additionally provide evidence for DNA damage, probably caused by the generation of reactive derivatives of ES24. Interestingly, ES24 caused a gradual dissipation of the membrane potential, which led to delocalization of cytokinetic proteins and subsequent cell elongation in E. coli. However, none of those effects were observed in B. subtilis, thereby suggesting that ES24 displays distinct mechanistic differences with respect to Gram-positive and Gram-negative bacteria. Despite its structural similarity to NFT, ES24 profoundly differed in our phenotypic analysis, which implies that it does not share the NFT mechanism of generalized macromolecule and structural damage. Importantly, ES24 outperformed NFT in vivo in a zebrafish embryo pneumococcal infection model. Our results suggest that ES24 not only inhibits the Sec translocon, but also targets bacterial DNA and, in Gram-negative bacteria, the cell membrane.
Collapse
Affiliation(s)
- Ann-Britt Schäfer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Maurice Steenhuis
- Molecular
Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Kin Ki Jim
- Department
of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers - Location Vrije Universiteit
Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam
Institute for Infection and Immunity, Amsterdam
University Medical Centers, 1081 HZ Amsterdam, The Netherlands
| | - Jolanda Neef
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Sarah O’Keefe
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Roger C. Whitehead
- School
of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Eileithyia Swanton
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Biwen Wang
- Bacterial
Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sven Halbedel
- FG11
Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
- Institute
for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stephen High
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Joen Luirink
- Molecular
Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Michaela Wenzel
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
14
|
Matavacas J, Hallgren J, von Wachenfeldt C. Bacillus subtilis forms twisted cells with cell wall integrity defects upon removal of the molecular chaperones DnaK and trigger factor. Front Microbiol 2023; 13:988768. [PMID: 36726573 PMCID: PMC9886141 DOI: 10.3389/fmicb.2022.988768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
The protein homeostasis network ensures a proper balance between synthesis, folding, and degradation of all cellular proteins. DnaK and trigger factor (TF) are ubiquitous bacterial molecular chaperones that assist in protein folding, as well as preventing protein misfolding and aggregation. In Escherichia coli, DnaK and TF possess partially overlapping functions. Their combined depletion results in proteostasis collapse and is synthetically lethal at temperatures above 30°C. To increase our understanding on how proteostasis is maintained in Gram-positive bacteria, we have investigated the physiological effects of deleting dnaK and tig (encoding for DnaK and TF) in Bacillus subtilis. We show that combined deletion of dnaK and tig in B. subtilis is non-lethal, but causes a severe pleiotropic phenotype, including an aberrant twisted and filamentous cell morphology, as well as decreased tolerance to heat and to cell wall active antibiotics and hydrolytic enzymes, indicative of defects in cell wall integrity. In addition, cells lacking DnaK and TF have a much smaller colony size due to defects in motility. Despite these physiological changes, we observed no major compromises in important cellular processes such as cell growth, FtsZ localization and division and only moderate defects in spore formation. Finally, through suppressor analyses, we found that the wild-type cell shape can be partially restored by mutations in genes involved in metabolism or in other diverse cellular processes.
Collapse
|
15
|
Humphrey M, Abdelmesseh Nekhala I, Scheinpflug K, Krylova O, Schäfer AB, Buttress JA, Wenzel M, Strahl H. Tracking Global and Local Changes in Membrane Fluidity Through Fluorescence Spectroscopy and Microscopy. Methods Mol Biol 2023; 2601:203-229. [PMID: 36445586 DOI: 10.1007/978-1-0716-2855-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Membrane fluidity is a critical parameter of cellular membranes, which cells continuously strive to maintain within a viable range. Interference with the correct membrane fluidity state can strongly inhibit cell function. Triggered changes in membrane fluidity and associated impacts on lipid domains have been postulated to contribute to the mechanism of action of membrane targeting antimicrobials, but the corresponding analyses have been hampered by the absence of readily available analytical tools. Here, we expand upon the protocols outlined in the first edition of this book, providing further and alternative protocols that can be used to measure changes in membrane fluidity. We provide detailed protocols, which allow straightforward in vivo and in vitro measurement of antibiotic compound-triggered changes in membrane fluidity and fluid membrane microdomains. Furthermore, we summarize useful strains constructed by us and others to characterize and confirm lipid specificity of membrane antimicrobials directly in vivo.
Collapse
Affiliation(s)
- Madeleine Humphrey
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ireny Abdelmesseh Nekhala
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kathi Scheinpflug
- Department of Chemical Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Oxana Krylova
- Department of Chemical Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jessica A Buttress
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
16
|
Page EF, Blake MJ, Foley GA, Calhoun TR. Monitoring membranes: The exploration of biological bilayers with second harmonic generation. CHEMICAL PHYSICS REVIEWS 2022; 3:041307. [PMID: 36536669 PMCID: PMC9756348 DOI: 10.1063/5.0120888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Nature's seemingly controlled chaos in heterogeneous two-dimensional cell membranes stands in stark contrast to the precise, often homogeneous, environment in an experimentalist's flask or carefully designed material system. Yet cell membranes can play a direct role, or serve as inspiration, in all fields of biology, chemistry, physics, and engineering. Our understanding of these ubiquitous structures continues to evolve despite over a century of study largely driven by the application of new technologies. Here, we review the insight afforded by second harmonic generation (SHG), a nonlinear optical technique. From potential measurements to adsorption and diffusion on both model and living systems, SHG complements existing techniques while presenting a large exploratory space for new discoveries.
Collapse
Affiliation(s)
- Eleanor F. Page
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Marea J. Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Grant A. Foley
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Tessa R. Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
17
|
Moreno S, Muriel-Millán LF, Rodríguez-Martínez K, Ortíz-Vasco C, Bedoya-Pérez LP, Espín G. The ribosome rescue pathways SsrA-SmpB, ArfA, and ArfB mediate tolerance to heat and antibiotic stresses in Azotobacter vinelandii. FEMS Microbiol Lett 2022; 369:6824435. [PMID: 36368695 DOI: 10.1093/femsle/fnac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria have a mechanism to rescue stalled ribosomes known as trans-translation consisting of SsrA, a transfer-messenger RNA (tmRNA), and the small protein SmpB. Other alternative rescue mechanisms mediated by ArfA and ArfB proteins are present only in some species. Ribosome rescue mechanisms also play a role in tolerance to antibiotics and various stresses such as heat. This study shows that the genome of the soil bacterium A. vinelandii harbours genes encoding for tmRNA, SmpB, two paralogs of ArfA (arfA1 and arfA2), and ArfB. A number of mutant strains carrying mutations in the ssrA, arfA1, arfA2, and arfB genes were constructed and tested for their growth and susceptibility to heat and the antibiotic tetracycline. We found that the inactivation of both ssrA and one or the two arfA genes was detrimental to growth and caused a higher susceptibility to heat and to the antibiotic tetracycline. Interestingly, the arfB mutant strain was unable to grow after 2 h of incubation at 45°C. Inactivation of arfB in the ssrA-arfA1-arfA2 strain caused a lethal phenotype since the quadruple mutant could not be isolated. Taken together, our data suggest that both arfA1 and arfA2, as well as arfB, are functional as back up mechanisms, and that the ArfB pathway has an essential role that confers A. vinelandii resistance to high temperatures.
Collapse
Affiliation(s)
- Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| | - Luis Felipe Muriel-Millán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad Universitaria, CDMX, México
| | - Karen Rodríguez-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| | - Cristian Ortíz-Vasco
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| | - Leidy Patricia Bedoya-Pérez
- Programa de Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| |
Collapse
|
18
|
Zhang Z, Asefaw BK, Xiong Y, Chen H, Tang Y. Evidence and Mechanisms of Selenate Reduction to Extracellular Elemental Selenium Nanoparticles on the Biocathode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16259-16270. [PMID: 36239462 DOI: 10.1021/acs.est.2c05145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intracellular selenium nanoparticles (SeNPs) production is a roadblock to the recovery of selenium from biological water treatment processes because it is energy intensive to break microbial cells and then separate SeNPs. This study provided evidence of significantly more extracellular SeNP production on the biocathode (97-99%) compared to the conventional reactors (1-90%) using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. The cathodic microbial community analysis showed that relative abundance of Azospira oryzae, Desulfovibrio, Stenotrophomonas, and Rhodocyclaceae was <1% in the inoculum but enriched to 10-21% for each group when the bioelectrochemical reactor reached a steady state. These four groups of microorganisms simultaneously produce intracellular and extracellular SeNPs in conventional biofilm reactors per literature review but prefer to produce extracellular SeNPs on the cathode. This observation may be explained by the cellular energetics: by producing extracellular SeNPs on the biocathode, microbes do not need to transfer selenate and the electrons from the cathode into the cells, thereby saving energy. Extracellular SeNP production on the biocathode is feasible since we found high concentrations of C-type cytochrome, which is well known for its ability to transfer electrons from electrodes to microbial cells and reduce selenate to SeNPs on the cell membrane.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida32310, United States
| | - Benhur K Asefaw
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida32310, United States
| | - Yi Xiong
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida32310, United States
| | - Huan Chen
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida32310, United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida32310, United States
| |
Collapse
|
19
|
Naclerio GA, Abutaleb NS, Onyedibe KI, Karanja C, Eldesouky HE, Liang HW, Dieterly A, Aryal UK, Lyle T, Seleem MN, Sintim HO. Mechanistic Studies and In Vivo Efficacy of an Oxadiazole-Containing Antibiotic. J Med Chem 2022; 65:6612-6630. [PMID: 35482444 PMCID: PMC9124606 DOI: 10.1021/acs.jmedchem.1c02034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are still difficult to treat, despite the availability of many FDA-approved antibiotics. Thus, new compound scaffolds are still needed to treat MRSA. The oxadiazole-containing compound, HSGN-94, has been shown to reduce lipoteichoic acid (LTA) in S. aureus, but the mechanism that accounts for LTA biosynthesis inhibition remains uncharacterized. Herein, we report the elucidation of the mechanism by which HSGN-94 inhibits LTA biosynthesis via utilization of global proteomics, activity-based protein profiling, and lipid analysis via multiple reaction monitoring (MRM). Our data suggest that HSGN-94 inhibits LTA biosynthesis via direct binding to PgcA and downregulation of PgsA. We further show that HSGN-94 reduces the MRSA load in skin infection (mouse) and decreases pro-inflammatory cytokines in MRSA-infected wounds. Collectively, HSGN-94 merits further consideration as a potential drug for staphylococcal infections.
Collapse
Affiliation(s)
- George A Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kenneth I Onyedibe
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Caroline Karanja
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hassan E Eldesouky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hsin-Wen Liang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Alexandra Dieterly
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tiffany Lyle
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Comparative Translational Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Hu X, Peng K, Chen Y, Chen X, Liu S, Zhao Y, Wu Y, Xu Z. Effect of g-C 3N 4 on biodiversity and structure of bacterial community in sediment of Xiangjiang River under tetracycline pressure. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:503-515. [PMID: 35181861 DOI: 10.1007/s10646-022-02525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Photocatalysts have been widely prepared and used in wastewater treatment. Although the influence of photocatalyst application on survival and activity of organisms has been examined, its impact on composition and diversity of microbial community is not fully understood. In this study, the impact of photocatalyst g-C3N4 (Graphitic carbon nitride) on microbial communities in riverbed sediments polluted by antibiotic tetracycline (TC) was investigated. The sediment samples collected from the Xiangjiang River of China were exposed to different concentrations of TC, g-C3N4 and TC/g-C3N4 and the bacterial community were analyzed by Illumina sequencing. The results showed that the dominant bacterial phyla were Acidobacteriota, Proteobacteria, Actinobacteriota, and Chloroflexi in the study site. When compared to the control treatments, the application of TC, g-C3N4 and TC/g-C3N4 exhibited distinguishable effects on bacterial community structure in sediments. The presence of TC had greater influence on bacterial composition, while g-C3N4 and TC/g-C3N4 had less influence on bacteria. The diversity and richness of microorganisms in sediment increased under g-C3N4 application and reached the highest values when g-C3N4 was 75 mg/kg. The photocatalyst g-C3N4 restored bacterial community diversity affected by TC, reduced the TC residues in aquatic environment, and eliminated the side effects of TC application in sediments. Our study indicated that g-C3N4 was an environmentally friendly photocatalyst with lightly negative effects on microbial community in riverbed sediments, and could be used for effective remediation of TC-contaminated environments.
Collapse
Affiliation(s)
- Xuemei Hu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Kuan Peng
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yijun Chen
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL, 60484, USA
| | - Shuguang Liu
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, 410004, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yaohui Wu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, China.
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, 410004, China.
| | - Zhenggang Xu
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A and F University, No.3 Taicheng Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
21
|
Wood TM, Zeronian MR, Buijs N, Bertheussen K, Abedian HK, Johnson AV, Pearce NM, Lutz M, Kemmink J, Seirsma T, Hamoen LW, Janssen BJC, Martin NI. Mechanistic insights into the C 55-P targeting lipopeptide antibiotics revealed by structure-activity studies and high-resolution crystal structures. Chem Sci 2022; 13:2985-2991. [PMID: 35382464 PMCID: PMC8905900 DOI: 10.1039/d1sc07190d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022] Open
Abstract
The continued rise of antibiotic resistance is a global concern that threatens to undermine many aspects of modern medical practice. Key to addressing this threat is the discovery and development of new antibiotics that operate by unexploited modes of action. The so-called calcium-dependent lipopeptide antibiotics (CDAs) are an important emerging class of natural products that provides a source of new antibiotic agents rich in structural and mechanistic diversity. Notable in this regard is the subset of CDAs comprising the laspartomycins and amphomycins/friulimicins that specifically target the bacterial cell wall precursor undecaprenyl phosphate (C55-P). In this study we describe the design and synthesis of new C55-P-targeting CDAs with structural features drawn from both the laspartomycin and amphomycin/friulimicin classes. Assessment of these lipopeptides revealed previously unknown and surprisingly subtle structural features that are required for antibacterial activity. High-resolution crystal structures further indicate that the amphomycin/friulimicin-like lipopeptides adopt a unique crystal packing that governs their interaction with C55-P and provides an explanation for their antibacterial effect. In addition, live-cell microscopy studies provide further insights into the biological activity of the C55-P targeting CDAs highlighting their unique mechanism of action relative to the clinically used CDA daptomycin. Structural and mechanistic studies give new insights into calcium-dependent lipopeptide antibiotics that target C55-P.![]()
Collapse
Affiliation(s)
- Thomas M Wood
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands .,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Matthieu R Zeronian
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Ned Buijs
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Kristine Bertheussen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Hanieh K Abedian
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Aidan V Johnson
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Nicholas M Pearce
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Johan Kemmink
- Faculty of Science and Engineering, University of Groningen 9747 AG Groningen The Netherlands
| | - Tjalling Seirsma
- Bacterial Cell Biology and Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Leendert W Hamoen
- Bacterial Cell Biology and Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bert J C Janssen
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| |
Collapse
|
22
|
Liu S, Brul S, Zaat SAJ. Isolation of Persister Cells of Bacillus subtilis and Determination of Their Susceptibility to Antimicrobial Peptides. Int J Mol Sci 2021; 22:10059. [PMID: 34576222 PMCID: PMC8470456 DOI: 10.3390/ijms221810059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Persister cells are growth-arrested subpopulations that can survive possible fatal environments and revert to wild types after stress removal. Clinically, persistent pathogens play a key role in antibiotic therapy failure, as well as chronic, recurrent, and antibiotic-resilient infections. In general, molecular and physiological research on persister cells formation and compounds against persister cells are much desired. In this study, we firstly demonstrated that the spore forming Gram-positive model organism Bacillus subtilis can be used to generate persister cells during exposure to antimicrobial compounds. Interestingly, instead of exhibiting a unified antibiotic tolerance profile, different number of persister cells and spores were quantified in various stress conditions. qPCR results also indicated that differential stress responses are related to persister formation in various environmental conditions. We propose, for the first time to the best of our knowledge, an effective method to isolate B. subtilis persister cells from a population using fluorescence-activated cell sorting (FACS), which makes analyzing persister populations feasible. Finally, we show that alpha-helical cationic antimicrobial peptides SAAP-148 and TC-19, derived from human cathelicidin LL-37 and human thrombocidin-1, respectively, have high efficiency against both B. subtilis vegetative cells and persisters, causing membrane permeability and fluidity alteration. In addition, we confirm that in contrast to persister cells, dormant B. subtilis spores are not susceptible to the antimicrobial peptides.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Sebastian A. J. Zaat
- Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, Department of Medical Microbiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|