1
|
Guan G, Li Z, Ma Y, Ye P, Cao J, Wong MK, Ho VWS, Chan LY, Yan H, Tang C, Zhao Z. Cell lineage-resolved embryonic morphological map reveals signaling associated with cell fate and size asymmetry. Nat Commun 2025; 16:3700. [PMID: 40251161 PMCID: PMC12008310 DOI: 10.1038/s41467-025-58878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
How cells change shape is crucial for the development of tissues, organs and embryos. However, studying these shape changes in detail is challenging. Here we present a comprehensive real-time cellular map that covers over 95% of the cells formed during Caenorhabditis elegans embryogenesis, featuring nearly 400,000 3D cell regions. This map includes information on each cell's identity, lineage, fate, shape, volume, surface area, contact area, and gene expression profiles, all accessible through our user-friendly software and website. Our map allows for detailed analysis of key developmental processes, including dorsal intercalation, intestinal formation, and muscle assembly. We show how Notch and Wnt signaling pathways, along with mechanical forces from cell interactions, regulate cell fate decisions and size asymmetries. Our findings suggest that repeated Notch signaling drives size disparities in the large excretory cell, which functions like a kidney. This work sets the stage for in-depth studies of the mechanisms controlling cell fate differentiation and morphogenesis.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, China
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zelin Li
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong SAR, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jianfeng Cao
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Surgery, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Surgery, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Yan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong SAR, China.
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- School of Physics, Peking University, Beijing, China.
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Jordan J, Jaitner N, Meyer T, Bramè L, Ghrayeb M, Köppke J, Böhm O, Chandia SK, Zaburdaev V, Chai L, Tzschätzsch H, Mura J, Braun J, Hagemann AI, Sack I. Rapid Stiffness Mapping in Soft Biologic Tissues With Micrometer Resolution Using Optical Multifrequency Time-Harmonic Elastography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410473. [PMID: 39686564 PMCID: PMC11848577 DOI: 10.1002/advs.202410473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/05/2024] [Indexed: 12/18/2024]
Abstract
Rapid mapping of the mechanical properties of soft biological tissues from light microscopy to macroscopic imaging can transform fundamental biophysical research by providing clinical biomarkers to complement in vivo elastography. This work introduces superfast optical multifrequency time-harmonic elastography (OMTHE) to remotely encode surface and subsurface shear wave fields for generating maps of tissue stiffness with unprecedented detail resolution. OMTHE rigorously exploits the space-time propagation characteristics of multifrequency time-harmonic waves to address current limitations of biomechanical imaging and elastography. Key solutions are presented for stimulation, wave decoding, and stiffness reconstruction of shear waves at multiple harmonic frequencies, all tuned to provide consistent stiffness values across resolutions from microns to millimeters. OMTHE's versatility is demonstrated by simulations, phantoms, Bacillus subtilis biofilms, zebrafish embryos and adult zebrafish, reflecting the diversity of biological systems from a mechanics perspective. By zooming in on stiffness details from coarse to finer scales, OMTHE has the potential to advance mechanobiology and offers a way to perform biomechanics-based tissue histology that consistently matches in vivo time-harmonic elastography in patients.
Collapse
Affiliation(s)
- Jakob Jordan
- Department of RadiologyCharité – Universitätsmedizin Berlin10117BerlinGermany
| | - Noah Jaitner
- Department of RadiologyCharité – Universitätsmedizin Berlin10117BerlinGermany
| | - Tom Meyer
- Department of RadiologyCharité – Universitätsmedizin Berlin10117BerlinGermany
| | - Luca Bramè
- Department of Hematology/OncologyCharité – Universitätsmedizin Berlin10117BerlinGermany
- German Cancer Consortium (DKTK)—German Cancer Research Center (DKFZ)69120HeidelbergGermany
| | - Mnar Ghrayeb
- The Center for Nanoscience and NanotechnologyEdmond J. Safra CampusThe Hebrew University of JerusalemJerusalem91901Israel
- Institute of ChemistryEdmond J. Safra CampusThe Hebrew University of JerusalemJerusalem91901Israel
| | - Julia Köppke
- Department of Hematology/OncologyCharité – Universitätsmedizin Berlin10117BerlinGermany
- German Cancer Consortium (DKTK)—German Cancer Research Center (DKFZ)69120HeidelbergGermany
| | - Oliver Böhm
- Department of RadiologyCharité – Universitätsmedizin Berlin10117BerlinGermany
| | | | - Vasily Zaburdaev
- Department of BiologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Liraz Chai
- The Center for Nanoscience and NanotechnologyEdmond J. Safra CampusThe Hebrew University of JerusalemJerusalem91901Israel
- Institute of ChemistryEdmond J. Safra CampusThe Hebrew University of JerusalemJerusalem91901Israel
| | - Heiko Tzschätzsch
- Institute of Medical InformaticsCharité – Universitätsmedizin Berlin10117BerlinGermany
| | - Joaquin Mura
- Department of Mechanical EngineeringUniversidad Técnica Federico Santa MaríaSantiago8330015Chile
| | - Jürgen Braun
- Institute of Medical InformaticsCharité – Universitätsmedizin Berlin10117BerlinGermany
| | - Anja I.H. Hagemann
- Department of Hematology/OncologyCharité – Universitätsmedizin Berlin10117BerlinGermany
- German Cancer Consortium (DKTK)—German Cancer Research Center (DKFZ)69120HeidelbergGermany
| | - Ingolf Sack
- Department of RadiologyCharité – Universitätsmedizin Berlin10117BerlinGermany
| |
Collapse
|
3
|
Alsehli HS, Roy E, Williams T, Kuziola A, Guo Y, Dreiss CA, Green JB, Gentleman E, Danovi D. Morphogen-driven differentiation is precluded by physical confinement in human iPSCs spheroids. Front Bioeng Biotechnol 2024; 12:1467412. [PMID: 39588360 PMCID: PMC11586224 DOI: 10.3389/fbioe.2024.1467412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/02/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Cell lineage specification is tightly associated with profound morphological changes in the developing human embryo, particularly during gastrulation. The interplay between mechanical forces and biochemical signals is poorly understood. Methods Here, we dissect the effects of biochemical cues and physical confinement on a 3D in vitro model based on spheroids formed from human induced pluripotent stem cells (hiPSCs). Results First, we compare self-renewing versus differentiating media conditions in free-floating cultures and observe the emergence of tri-germ layers. In these unconfined conditions, BMP4 exposure induces polarised expression of SOX17 in conjunction with spheroid elongation. We then physically confine spheroids using PEG-peptide hydrogels and observe dramatically reduced SOX17 expression, albeit rescued if gels that soften over time are used instead. Discussion Our study combines high-content imaging, synthetic hydrogels, and hiPSCs-derived models of early development to define the drivers that cause changes in the shape and the emergence of germ layers.
Collapse
Affiliation(s)
- Haneen S. Alsehli
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
- Centre for Stem Cell Biology, University of Sheffield, Sheffield, United Kingdom
| | - Errin Roy
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Thomas Williams
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Alicja Kuziola
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Yunzhe Guo
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Cecile A. Dreiss
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Jeremy B.A. Green
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Davide Danovi
- Centre for Gene Therapy and Regenerative Medicine, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom
- Migration Biotherapeutics, Cardiff, United Kingdom
| |
Collapse
|
4
|
Guan G, Chen Y, Wang H, Ouyang Q, Tang C. Characterizing Cellular Physiological States with Three-Dimensional Shape Descriptors for Cell Membranes. MEMBRANES 2024; 14:137. [PMID: 38921504 PMCID: PMC11205511 DOI: 10.3390/membranes14060137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The shape of a cell as defined by its membrane can be closely associated with its physiological state. For example, the irregular shapes of cancerous cells and elongated shapes of neuron cells often reflect specific functions, such as cell motility and cell communication. However, it remains unclear whether and which cell shape descriptors can characterize different cellular physiological states. In this study, 12 geometric shape descriptors for a three-dimensional (3D) object were collected from the previous literature and tested with a public dataset of ~400,000 independent 3D cell regions segmented based on fluorescent labeling of the cell membranes in Caenorhabditis elegans embryos. It is revealed that those shape descriptors can faithfully characterize cellular physiological states, including (1) cell division (cytokinesis), along with an abrupt increase in the elongation ratio; (2) a negative correlation of cell migration speed with cell sphericity; (3) cell lineage specification with symmetrically patterned cell shape changes; and (4) cell fate specification with differential gene expression and differential cell shapes. The descriptors established may be used to identify and predict the diverse physiological states in numerous cells, which could be used for not only studying developmental morphogenesis but also diagnosing human disease (e.g., the rapid detection of abnormal cells).
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
| | - Yixuan Chen
- School of Physics, Peking University, Beijing 100871, China;
| | - Hongli Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
- School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; (G.G.); (Q.O.)
- School of Physics, Peking University, Beijing 100871, China;
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Wei J, Zhang W, Jiang A, Peng H, Zhang Q, Li Y, Bi J, Wang L, Liu P, Wang J, Ge Y, Zhang L, Yu H, Li L, Wang S, Leng L, Chen K, Dong B. Temporospatial hierarchy and allele-specific expression of zygotic genome activation revealed by distant interspecific urochordate hybrids. Nat Commun 2024; 15:2395. [PMID: 38493164 PMCID: PMC10944513 DOI: 10.1038/s41467-024-46780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Zygotic genome activation (ZGA) is a universal process in early embryogenesis of metazoan, when the quiescent zygotic nucleus initiates global transcription. However, the mechanisms related to massive genome activation and allele-specific expression (ASE) remain not well understood. Here, we develop hybrids from two deeply diverged (120 Mya) ascidian species to symmetrically document the dynamics of ZGA. We identify two coordinated ZGA waves represent early developmental and housekeeping gene reactivation, respectively. Single-cell RNA sequencing reveals that the major expression wave exhibits spatial heterogeneity and significantly correlates with cell fate. Moreover, allele-specific expression occurs in a species- rather than parent-related manner, demonstrating the divergence of cis-regulatory elements between the two species. These findings provide insights into ZGA in chordates.
Collapse
Affiliation(s)
- Jiankai Wei
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Wei Zhang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - An Jiang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongzhe Peng
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Quanyong Zhang
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yuting Li
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jianqing Bi
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Linting Wang
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Penghui Liu
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jing Wang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yonghang Ge
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liya Zhang
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Haiyan Yu
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lei Li
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shi Wang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research and Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Rd, Nansha Dist., Guangzhou, 511458, China.
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Ichbiah S, Delbary F, McDougall A, Dumollard R, Turlier H. Embryo mechanics cartography: inference of 3D force atlases from fluorescence microscopy. Nat Methods 2023; 20:1989-1999. [PMID: 38057527 PMCID: PMC10703677 DOI: 10.1038/s41592-023-02084-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023]
Abstract
Tissue morphogenesis results from a tight interplay between gene expression, biochemical signaling and mechanics. Although sequencing methods allow the generation of cell-resolved spatiotemporal maps of gene expression, creating similar maps of cell mechanics in three-dimensional (3D) developing tissues has remained a real challenge. Exploiting the foam-like arrangement of cells, we propose a robust end-to-end computational method called 'foambryo' to infer spatiotemporal atlases of cellular forces from fluorescence microscopy images of cell membranes. Our method generates precise 3D meshes of cells' geometry and successively predicts relative cell surface tensions and pressures. We validate it with 3D foam simulations, study its noise sensitivity and prove its biological relevance in mouse, ascidian and worm embryos. 3D force inference allows us to recover mechanical features identified previously, but also predicts new ones, unveiling potential new insights on the spatiotemporal regulation of cell mechanics in developing embryos. Our code is freely available and paves the way for unraveling the unknown mechanochemical feedbacks that control embryo and tissue morphogenesis.
Collapse
Affiliation(s)
- Sacha Ichbiah
- Center for Interdisciplinary Research in Biology, College of France, CNRS, INSERM, University of PSL, Paris, France
| | - Fabrice Delbary
- Center for Interdisciplinary Research in Biology, College of France, CNRS, INSERM, University of PSL, Paris, France
| | - Alex McDougall
- Laboratory of Developmental Biology of the Villefranche-sur-Mer, Institute of Villefranche-sur-Mer, Sorbonne University, CNRS, Villefranche-sur-Mer, France
| | - Rémi Dumollard
- Laboratory of Developmental Biology of the Villefranche-sur-Mer, Institute of Villefranche-sur-Mer, Sorbonne University, CNRS, Villefranche-sur-Mer, France
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology, College of France, CNRS, INSERM, University of PSL, Paris, France.
| |
Collapse
|
7
|
Shigemura K, Kuribayashi-Shigetomi K, Tanaka R, Yamasaki H, Okajima T. Mechanical properties of epithelial cells in domes investigated using atomic force microscopy. Front Cell Dev Biol 2023; 11:1245296. [PMID: 38046668 PMCID: PMC10690596 DOI: 10.3389/fcell.2023.1245296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/24/2023] [Indexed: 12/05/2023] Open
Abstract
As epithelial cells in vitro reach a highly confluent state, the cells often form a microscale dome-like architecture that encloses a fluid-filled lumen. The domes are stabilized by mechanical stress and luminal pressure. However, the mechanical properties of cells that form epithelial domes remain poorly characterized at the single-cell level. In this study, we used atomic force microscopy (AFM) to measure the mechanical properties of cells forming epithelial domes. AFM showed that the apparent Young's modulus of cells in domes was significantly higher when compared with that in the surrounding monolayer. AFM also showed that the stiffness and tension of cells in domes were positively correlated with the apical cell area, depending on the degree of cell stretching. This correlation disappeared when actin filaments were depolymerized or when the ATPase activity of myosin II was inhibited, which often led to a large fluctuation in dome formation. The results indicated that heterogeneous actomyosin structures organized by stretching single cells played a crucial role in stabilizing dome formation. Our findings provide new insights into the mechanical properties of three-dimensional deformable tissue explored using AFM at the single-cell level.
Collapse
Affiliation(s)
- Kenta Shigemura
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | | | - Ryosuke Tanaka
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Haruka Yamasaki
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Takaharu Okajima
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Zills G, Datta T, Malmi-Kakkada AN. Enhanced mechanical heterogeneity of cell collectives due to temporal fluctuations in cell elasticity. Phys Rev E 2023; 107:014401. [PMID: 36797877 DOI: 10.1103/physreve.107.014401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
Cells are dynamic systems characterized by temporal variations in biophysical properties such as stiffness and contractility. Recent studies show that the recruitment and release of actin filaments into and out of the cell cortex-a network of proteins underneath the cell membrane-leads to cell stiffening prior to division and softening immediately afterward. In three-dimensional (3D) cell collectives, it is unclear whether the stiffness change during division at the single-cell scale controls the spatial structure and dynamics at the multicellular scale. This is an important question to understand because cell stiffness variations impact cell spatial organization and cancer progression. Using a minimal 3D model incorporating cell birth, death, and cell-to-cell elastic and adhesive interactions, we investigate the effect of mechanical heterogeneity-variations in individual cell stiffnesses that make up the cell collective-on tumor spatial organization and cell dynamics. We discover that spatial mechanical heterogeneity characterized by a spheroid core composed of stiffer cells and softer cells in the periphery emerges within dense 3D cell collectives, which may be a general feature of multicellular tumor growth. We show that heightened spatial mechanical heterogeneity enhances single-cell dynamics and volumetric tumor growth driven by fluctuations in cell elasticity. Our results could have important implications in understanding how spatiotemporal variations in single-cell stiffness determine tumor growth and spread.
Collapse
Affiliation(s)
- Garrett Zills
- Department of Chemistry and Physics, Augusta University, 1120 15th Street, Augusta, Georgia 30912, USA
| | - Trinanjan Datta
- Department of Chemistry and Physics, Augusta University, 1120 15th Street, Augusta, Georgia 30912, USA
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
9
|
Zieliński T, Pabijan J, Zapotoczny B, Zemła J, Wesołowska J, Pera J, Lekka M. Changes in nanomechanical properties of single neuroblastoma cells as a model for oxygen and glucose deprivation (OGD). Sci Rep 2022; 12:16276. [PMID: 36175469 PMCID: PMC9523022 DOI: 10.1038/s41598-022-20623-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Although complex, the biological processes underlying ischemic stroke are better known than those related to biomechanical alterations of single cells. Mechanisms of biomechanical changes and their relations to the molecular processes are crucial for understanding the function and dysfunction of the brain. In our study, we applied atomic force microscopy (AFM) to quantify the alterations in biomechanical properties in neuroblastoma SH-SY5Y cells subjected to oxygen and glucose deprivation (OGD) and reoxygenation (RO). Obtained results reveal several characteristics. Cell viability remained at the same level, regardless of the OGD and RO conditions, but, in parallel, the metabolic activity of cells decreased with OGD duration. 24 h RO did not recover the metabolic activity fully. Cells subjected to OGD appeared softer than control cells. Cell softening was strongly present in cells after 1 h of OGD and with longer OGD duration, and in RO conditions, cells recovered their mechanical properties. Changes in the nanomechanical properties of cells were attributed to the remodelling of actin filaments, which was related to cofilin-based regulation and impaired metabolic activity of cells. The presented study shows the importance of nanomechanics in research on ischemic-related pathological processes such as stroke.
Collapse
Affiliation(s)
- Tomasz Zieliński
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Joanna Pabijan
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Bartłomiej Zapotoczny
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Julita Wesołowska
- Laboratory of in Vivo and in Vitro Imaging, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31343, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Botaniczna 3, 31503, Kraków, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland.
| |
Collapse
|
10
|
Guan G, Zhao Z, Tang C. Delineating the mechanisms and design principles of Caenorhabditis elegans embryogenesis using in toto high-resolution imaging data and computational modeling. Comput Struct Biotechnol J 2022; 20:5500-5515. [PMID: 36284714 PMCID: PMC9562942 DOI: 10.1016/j.csbj.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
The nematode (roundworm) Caenorhabditis elegans is one of the most popular animal models for the study of developmental biology, as its invariant development and transparent body enable in toto cellular-resolution fluorescence microscopy imaging of developmental processes at 1-min intervals. This has led to the development of various computational tools for the systematic and automated analysis of imaging data to delineate the molecular and cellular processes throughout the embryogenesis of C. elegans, such as those associated with cell lineage, cell migration, cell morphology, and gene activity. In this review, we first introduce C. elegans embryogenesis and the development of techniques for tracking cell lineage and reconstructing cell morphology during this process. We then contrast the developmental modes of C. elegans and the customized technologies used for studying them with the ones of other animal models, highlighting its advantage for studying embryogenesis with exceptional spatial and temporal resolution. This is followed by an examination of the physical models that have been devised-based on accurate determinations of developmental processes afforded by analyses of imaging data-to interpret the early embryonic development of C. elegans from subcellular to intercellular levels of multiple cells, which focus on two key processes: cell polarization and morphogenesis. We subsequently discuss how quantitative data-based theoretical modeling has improved our understanding of the mechanisms of C. elegans embryogenesis. We conclude by summarizing the challenges associated with the acquisition of C. elegans embryogenesis data, the construction of algorithms to analyze them, and the theoretical interpretation.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Peking–Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|