1
|
Shrum Davis S, Salazar-Hamm P, Edge K, Hanosh T, Houston J, Griego-Fisher A, Lugo F, Wenzel N, Malone D, Bradford C, Plymesser K, Baker M, Schwalm K, Lathrop S, Smelser C, Dinwiddie DL, Domman D. Multidrug-resistant Shigella flexneri outbreak affecting humans and non-human primates in New Mexico, USA. Nat Commun 2025; 16:4680. [PMID: 40393962 PMCID: PMC12092818 DOI: 10.1038/s41467-025-59766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 05/02/2025] [Indexed: 05/22/2025] Open
Abstract
Shigellosis is a gastrointestinal infection caused by species of Shigella. A large outbreak of Shigella flexneri serotype 2a occurred in Albuquerque, New Mexico between May 2021 and November 2023 that involved humans and non-human primates (NHP) from a local zoo. We analyzed the genomes of 202 New Mexican isolates as well as 15 closely related isolates from other states, and four from NHP. The outbreak was initially detected within men who have sex with men but then predominantly affected people experiencing homelessness. Nearly 70% of cases were hospitalized and there was one human death. The outbreak extended into Albuquerque's BioPark Zoo, causing high morbidity and six deaths in NHPs. All isolates were multidrug-resistant, including towards fluoroquinolones, a first line treatment option which led to treatment failures in human and NHP populations. We show the circulation of the same S. flexneri strain in humans and NHPs, causing fatalities in both populations. This study demonstrates the threat of antimicrobial resistant organisms to vulnerable human and NHP populations and emphasizes the value of genomic surveillance within a One Health framework.
Collapse
Affiliation(s)
- Sarah Shrum Davis
- Infectious Disease Epidemiology Bureau, New Mexico Department of Health, Santa Fe, NM, USA
- University of New Mexico Emerging Infections Program, Office for Community Health, Albuquerque, NM, USA
- Biology Department, University of New Mexico, Albuquerque, NM, USA
| | - Paris Salazar-Hamm
- Biology Department, University of New Mexico, Albuquerque, NM, USA
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, USA
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Karen Edge
- Infectious Disease Epidemiology Bureau, New Mexico Department of Health, Santa Fe, NM, USA
| | - Tim Hanosh
- Infectious Disease Epidemiology Bureau, New Mexico Department of Health, Santa Fe, NM, USA
| | - Jessica Houston
- Infectious Disease Epidemiology Bureau, New Mexico Department of Health, Santa Fe, NM, USA
| | | | - Francelli Lugo
- City of Albuquerque Environmental Health, Albuquerque, NM, USA
| | - Nicholas Wenzel
- Scientific Laboratory Division, New Mexico Department of Health, Albuquerque, NM, USA
| | - D'Eldra Malone
- Scientific Laboratory Division, New Mexico Department of Health, Albuquerque, NM, USA
| | | | - Kelly Plymesser
- Infectious Disease Epidemiology Bureau, New Mexico Department of Health, Santa Fe, NM, USA
- University of New Mexico Emerging Infections Program, Office for Community Health, Albuquerque, NM, USA
| | - Michael Baker
- Infectious Disease Epidemiology Bureau, New Mexico Department of Health, Santa Fe, NM, USA
- University of New Mexico Emerging Infections Program, Office for Community Health, Albuquerque, NM, USA
| | - Kurt Schwalm
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Sarah Lathrop
- University of New Mexico Emerging Infections Program, Office for Community Health, Albuquerque, NM, USA
| | - Chad Smelser
- Infectious Disease Epidemiology Bureau, New Mexico Department of Health, Santa Fe, NM, USA
| | - Darrell L Dinwiddie
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Daryl Domman
- Clinical and Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
2
|
Wong BC, Ling FY, Ayub Q, Tan HS. Transposon mutagenesis identifies acid resistance and biofilm genes as Shigella sonnei virulence factors in Caenorhabditis elegans infection. Biochem Biophys Res Commun 2025; 754:151546. [PMID: 40023989 DOI: 10.1016/j.bbrc.2025.151546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Identifying essential genes in bacterial pathogens during infection can enhance knowledge and provide novel targets for antimicrobial agents' development. Currently, only Shigella flexneri essential genes during in vitro growth have been experimentally identified. This study used transposon insertion sequencing (TIS) to identify Shigella sonnei essential genes during Caenorhabditis elegans infection. 498 genes were predicted to be essential in S. sonnei during growth on nutrient-rich media. Some genes previously predicted to be essential in Shigella were found non-essential in S. sonnei, such as acetyl metabolism genes (aceEF, lpdA) and sulphate transport genes (cysA, cyst, cysW). Finally, 217 genes were predicted as S. sonnei virulence genes during infection, including acid resistance and biofilm formation genes which was not linked to S. sonnei virulence previously.
Collapse
Affiliation(s)
- Bao Chi Wong
- School of Science, Monash University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Fong Yoke Ling
- Monash University Malaysia Genomics Platform, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Qasim Ayub
- School of Science, Monash University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Monash University Malaysia Genomics Platform, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Smaoui F, Ksibi B, Mezghani S, Guermazi E, Charfi F, Ktari S, Ben Ayed N, Kammoun T, Karray H, Hammami A. Molecular epidemiology of a multidrug-resistant Shigella sonnei outbreak in Tunisia (2022-2023) using whole-genome sequencing. Microb Genom 2025; 11:001362. [PMID: 40048496 PMCID: PMC11936343 DOI: 10.1099/mgen.0.001362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/16/2025] [Indexed: 03/27/2025] Open
Abstract
Purpose. The prevalence of multidrug-resistant (MDR) Shigella sonnei is increasing globally, raising concerns for public health. In 2022, an outbreak of MDR S. sonnei was observed in Tunisia. We aimed to evaluate the genetic profile of S. sonnei isolates during the outbreak, including their clonal relationship, antimicrobial determinants and connection to international strains.Methods. In this study, we sequenced the whole genome of 24 S. sonnei strains collected from South Tunisia between July 2022 and November 2023. Bioinformatic analysis was conducted to confirm species identification, assign sequence types, determine core genome sequence types, analyse phylogenetic relationships and identify antimicrobial resistance determinants. Phylodynamic and phylogeographic analyses were performed to trace the spatiotemporal spread of the outbreak genotype.Results. Our investigation revealed that 23 out of 24 isolates were grouped into the HC10-20662 genotype within the 3.6.3 subclade. All isolates carried the blaCTX-M-15 gene associated with extended-spectrum beta-lactamase production, as well as the dfrA1 and qnrS1 genes, along with the D87G mutation in gyrA. Additionally, the sul2, tet(A) and mph(A) resistance genes were present in most isolates (96%, 96 and 83, respectively). Phylogeographic analysis suggested that the outbreak genotype likely spread in Europe before being introduced into Tunisia.Conclusion. To the best of our knowledge, this is the first MDR S. sonnei outbreak in the country. The HC10-20662 genotype appears to be responsible for a multi-country outbreak, affecting both Tunisia and Europe. Continued genomic surveillance efforts, both nationally and internationally, are essential for monitoring the dynamic evolution and global spread of MDR S. sonnei.
Collapse
Affiliation(s)
- Fahmi Smaoui
- Research Laboratory Microorganisms and Human Disease 'MPH LR03SP03', Laboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
- Laboratory of Microbiology, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Boutheina Ksibi
- Research Laboratory Microorganisms and Human Disease 'MPH LR03SP03', Laboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
- Laboratory of Microbiology, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Senda Mezghani
- Research Laboratory Microorganisms and Human Disease 'MPH LR03SP03', Laboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
- Laboratory of Microbiology, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Eya Guermazi
- Research Laboratory Microorganisms and Human Disease 'MPH LR03SP03', Laboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Fatma Charfi
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Sonia Ktari
- Research Laboratory Microorganisms and Human Disease 'MPH LR03SP03', Laboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
- Laboratory of Microbiology, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Nourelhouda Ben Ayed
- Research Laboratory Microorganisms and Human Disease 'MPH LR03SP03', Laboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
- Laboratory of Microbiology, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Thouraya Kammoun
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Héla Karray
- Research Laboratory Microorganisms and Human Disease 'MPH LR03SP03', Laboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
- Laboratory of Microbiology, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Adnene Hammami
- Research Laboratory Microorganisms and Human Disease 'MPH LR03SP03', Laboratory of Microbiology, Habib Bourguiba University Hospital, Sfax, Tunisia
- Laboratory of Microbiology, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Tiwana G, Cock IE, Cheesman MJ. Phytochemical Analysis and Antimicrobial Activity of Terminalia bellirica (Gaertn.) Roxb. and Terminalia chebula Retz. Fruit Extracts Against Gastrointestinal Pathogens: Enhancing Antibiotic Efficacy. Microorganisms 2024; 12:2664. [PMID: 39770866 PMCID: PMC11728670 DOI: 10.3390/microorganisms12122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Terminalia bellirica (Gaertn) Roxb. and Terminalia chebula Retz. are significant botanicals in ancient Ayurvedic medicine. They are renowned for their therapeutic properties, notably in addressing gastrointestinal (GI) diseases. These plants have undergone thorough examination related to their antibacterial, anti-inflammatory, and antioxidant properties, which make them highly efficient natural treatments for controlling gastrointestinal infections. The current research demonstrated the antibacterial efficacy of fruit extracts of Terminalia bellirica and Terminalia chebula against Bacillus cereus, Shigella sonnei, Shigella flexneri, and Salmonella typhimurium. We performed disc diffusion and liquid microdilution experiments to evaluate the antibacterial efficacy. All extracts of Terminalia bellirica and Terminalia chebula showed good antibacterial effects against B. cereus and S. flexneri. The minimum inhibitory concentration (MIC) values ranged from 94 µg/mL to 556 µg/mL. The methanolic extracts from both plants also showed noteworthy antibacterial activity against S. sonnei and S. typhimurium, with MIC values of 755 µg/mL for both. Fractional inhibitory concentration studies revealed additive interactions between some conventional antibiotics and the plant extracts when used concurrently. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed that the T. bellirica and T. chebula extracts contained various tannins including methyl gallate, propyl gallate, gallic acid, and ellagic acid. Lethality assays conducted using Artemia franciscana Kellogg nauplii indicated that all the plant extracts are non-toxic. The antibacterial properties and absence of toxicity in T. bellirica and T. chebula fruit extracts indicate their potential for antibiotic development, warranting additional mechanistic and phytochemical studies.
Collapse
Affiliation(s)
- Gagan Tiwana
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| | - Ian Edwin Cock
- School of Environment and Science, Nathan Campus, Griffith University, Brisbane 4111, Australia;
| | - Matthew James Cheesman
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| |
Collapse
|
5
|
Miles SL, Holt KE, Mostowy S. Recent advances in modelling Shigella infection. Trends Microbiol 2024; 32:917-924. [PMID: 38423917 DOI: 10.1016/j.tim.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Shigella is an important human-adapted pathogen which contributes to a large global burden of diarrhoeal disease. Together with the increasing threat of antimicrobial resistance and lack of an effective vaccine, there is great urgency to identify novel therapeutics and preventatives to combat Shigella infection. In this review, we discuss the development of innovative technologies and animal models to study mechanisms underlying Shigella infection of humans. We examine recent literature introducing (i) the organ-on-chip model, and its substantial contribution towards understanding the biomechanics of Shigella infection, (ii) the zebrafish infection model, which has delivered transformative insights into the epidemiological success of clinical isolates and the innate immune response to Shigella, (iii) a pioneering oral mouse model of shigellosis, which has helped to discover new inflammasome biology and protective mechanisms against shigellosis, and (iv) the controlled human infection model, which has been effective in translating basic research into human health impact and assessing suitability of novel vaccine candidates. We consider the recent contributions of each model and discuss where the future of modelling Shigella infection lies.
Collapse
Affiliation(s)
- Sydney L Miles
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Kathryn E Holt
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
6
|
Al-Khafaji NSK, Almjalawi BSA, Ewadh RMJ, Al-Dahmoshi HOM, Abed SY, Nasrolahi A, Nwobodo DC, Kanaan MHG, Abdullah SS, Saki M. Prevalence of plasmid-mediated quinolone resistance genes and biofilm formation in different species of quinolone-resistant clinical Shigella isolates: a cross-sectional study. Eur J Med Res 2024; 29:419. [PMID: 39143645 PMCID: PMC11323402 DOI: 10.1186/s40001-024-02007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The purpose of this study was to look into the presence of plasmid-mediated quinolone resistance (PMQR) genes and biofilm formation in several species of clinical Shigella isolates that were resistant to quinolones. METHODS The stool samples of 150 patients (younger than 10 years) with diarrhea were collected in this cross-sectional study (November 2020 to December 2021). After cultivation of samples on Hektoen Enteric agar and xylose lysine deoxycholate agar, standard microbiology tests, VITEK 2 system, and polymerase chain reaction (PCR) were utilized to identify Shigella isolates. The broth microdilution method was used to determine antibiotic susceptibility. PMQR genes including qnrA, qnrB, qnrC, qnrD, qnrE, qnrS, qnrVC, qepA, oqxAB, aac(6')-Ib-cr, and crpP and biofilm formation were investigated in quinolone-resistant isolates by PCR and microtiter plate method, respectively. An enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) technique was used to determine the clonal relatedness of quinolone-resistant isolates. RESULTS A total of 95 Shigella isolates including S. sonnei (53, 55.8%), S. flexneri (39, 41.1%), and S. boydii (3, 3.2%) were identified. The highest resistance rates of the isolates were against ampicillin (92.6%, n = 88/95). Overall, 42 of 95 (44.2%) isolates were simultaneously resistant against two or more quinolones including 26 (61.9%) S. sonnei and 16 (38.1%) S. flexneri. All isolates were multidrug-resistant (resistance to more than 3 antibiotics). The occurrence of PMQR genes was as follows: qnrS (52.4%), qnrA and aac(6')-Ib-cr (33.3%), and qnrB (19.0%). The prevalence in species was as follows: 61.5% and 37.5% (qnrS), 19.2% and 56.3% (qnrA), 38.5% and 25.0 (aac(6')-Ib-cr), and 19.2% and 18.8% (qnrB) for S. sonnei and S. flexneri, respectively. The other PMQR genes were not detected. In total, 52.8% (28/53) of quinolone-susceptible and 64.3% (27/42) of quinolone-resistant isolates were biofilm producers. Biofilm formation was not significantly different between quinolone-resistant and quinolone-susceptible isolates (P-value = 0.299). Quinolone-resistant isolates showed a high genetic diversity according to the ERIC-PCR. CONCLUSION It seems that qnrS, qnrA, and aac(6')-Ib-cr play a significant role in the quinolone resistance among Shigella isolates in our region. Also the quinolone-resistant S. flexneri and S. sonnei isolates had a high genetic diversity. Hence, antibiotic therapy needs to be routinely revised based on the surveillance findings.
Collapse
Affiliation(s)
- Noor S K Al-Khafaji
- Department of Biology, College of Science, University of Babylon, Hilla, Iraq
| | | | | | | | - Suhad Y Abed
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - David Chinemerem Nwobodo
- Department of Microbiology, Renaissance University, Enugu, Nigeria
- Department of Pharmaceutical Science, University of Shizuoka, Shizuoka, Japan
| | | | | | - Morteza Saki
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Gonabadi NSA, Menbari S, Farsiani H, Sedaghat H, Motallebi M. Antimicrobial susceptibility and virulence gene analysis of Shigella species causing dysentery in Iranian children: Implications for fluroquinolone resistance. Heliyon 2024; 10:e34384. [PMID: 39130411 PMCID: PMC11315073 DOI: 10.1016/j.heliyon.2024.e34384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Shigella species significantly impact global health due to their role in diarrheal diseases. A 2019-2022 cross-sectional study on 432 stool samples from pediatric patients in Mashhad, Iran, identified Shigella spp. and tested their susceptibility to 12 antimicrobials by the disk diffusion method. The presence of virulence factors, namely ipaH, virA, stx1, and stx2, as well as plasmid-mediated quinolone resistance (PMQR) genes, including qnrA, qnrB, qnrC, qnrD, and qnrS, were ascertained through the utilization of polymerase chain reaction techniques. Sequencing of 15 isolates detected mutations within quinolone resistance-determining regions (QRDRs) at the gyrA and parC genes, indicating fluoroquinolone (FQ) resistance. 19.2 % (83/432) of stool samples contained Shigella, primarily S. sonnei (77.1 %), followed by S. flexneri (21.6 %) and S. boydii (1.2 %). Most isolates were from children under five (55.4 %). All strains had the ipaH gene, lacked stx1 and stx2, and 86.7 % had virA. High resistance was noted for ampicillin and tetracycline (84.3 % each), trimethoprim-sulfamethoxazole (81.9 %), and azithromycin (60.2 %). 87.1 % of isolates were multidrug-resistant (MDR). The most common PMQR genes were qnrA and qnrS (41 % each). The qnrD gene, prevalent in 36.1 % of cases, is reported in Iran for the first time. The most common PMQR profile was qnrADS (15.7 %). Resistance to nalidixic acid and ciprofloxacin was 45.8 % and 12 %, respectively. The Shigella isolates exhibited mutations in the gyrA (at codons 83, 87, and 211) and parC (at codons 80, 84, 93, 126, 128, 129, and 132) genes. The D87Y mutation in the gyrA gene was the most common in Shigella isolates, occurring in 73 % of cases. The F93S and L132T mutations in the parC gene were unique to this study. Empirical FQ therapy in patients infected with MDR Shigella, possessing PMQR determinants and/or mutations in the QRDRs of gyrA and parC, may escalate the risks of secondary diseases, extended treatment duration, therapeutic failure, and resistance spread. Consequently, the necessity for continuous surveillance and genetic testing to detect FQ-resistant Shigella strains is of paramount importance.
Collapse
Affiliation(s)
- Nafise Sadat Alavi Gonabadi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Shaho Menbari
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Bacteriology and Virology, Mashhad University of Medical Sciences, Faculty of Medicine, Mashhad, Iran
| | - Hadi Farsiani
- Department of Bacteriology and Virology, Mashhad University of Medical Sciences, Faculty of Medicine, Mashhad, Iran
| | - Hosein Sedaghat
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Yan Y, Xu J, Huang W, Fan Y, Li Z, Tian M, Ma J, Lu X, Liang J. Metagenomic and Culturomics Analysis of Microbial Communities within Surface Sediments and the Prevalence of Antibiotic Resistance Genes in a Pristine River: The Zaqu River in the Lancang River Source Region, China. Microorganisms 2024; 12:911. [PMID: 38792738 PMCID: PMC11124135 DOI: 10.3390/microorganisms12050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Microbial communities inhabiting sedimentary environments in river source regions serve as pivotal indicators of pristine river ecosystems. While the correlation between antibiotic resistome and pathogenicity with core gut bacteria in humans is well established, there exists a significant knowledge gap concerning the interaction of antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) with specific microbes in river source basins, often referred to as "terrestrial gut". Understanding the microbial composition, including bacteria and resident genetic elements such as ARGs, HPB, Mobile Genetic Elements (MGEs), and Virulence Factors (VFs), within natural habitats against the backdrop of global change, is imperative. To address this gap, an enrichment-based culturomics complementary along with metagenomics was conducted in this study to characterize the microbial biobank and provide preliminary ecological insights into profiling the dissemination of ARGs in the Lancang River Source Basin. Based on our findings, in the main stream of the Lancang River Source Basin, 674 strains of bacteria, comprising 540 strains under anaerobic conditions and 124 under aerobic conditions, were successfully isolated. Among these, 98 species were identified as known species, while 4 were potential novel species. Of these 98 species, 30 were HPB relevant to human health. Additionally, bacA and bacitracin emerged as the most abundant ARGs and antibiotics in this river, respectively. Furthermore, the risk assessment of ARGs predominantly indicated the lowest risk rank (Rank Ⅳ) in terms of endangering human health. In summary, enrichment-based culturomics proved effective in isolating rare and unknown bacteria, particularly under anaerobic conditions. The emergence of ARGs showed limited correlation with MGEs, indicating minimal threats to human health within the main stream of the Lancang River Source Basin.
Collapse
Affiliation(s)
- Yi Yan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jialiang Xu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Wenmin Huang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Yufeng Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.F.); (Z.L.)
| | - Zhenpeng Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.F.); (Z.L.)
| | - Mingkai Tian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Jinsheng Ma
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.X.); (W.H.); (M.T.); (J.M.)
| | - Xin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.F.); (Z.L.)
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
9
|
Leung PB, Matanza XM, Roche B, Ha KP, Cheung HC, Appleyard S, Collins T, Flanagan O, Marteyn BS, Clements A. Shigella sonnei utilises colicins during inter-bacterial competition. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001434. [PMID: 38376387 PMCID: PMC10924462 DOI: 10.1099/mic.0.001434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
The mammalian colon is one of the most densely populated habitats currently recognised, with 1011-1013 commensal bacteria per gram of colonic contents. Enteric pathogens must compete with the resident intestinal microbiota to cause infection. Among these enteric pathogens are Shigella species which cause approximately 125 million infections annually, of which over 90 % are caused by Shigella flexneri and Shigella sonnei. Shigella sonnei was previously reported to use a Type VI Secretion System (T6SS) to outcompete E. coli and S. flexneri in in vitro and in vivo experiments. S. sonnei strains have also been reported to harbour colicinogenic plasmids, which are an alternative anti-bacterial mechanism that could provide a competitive advantage against the intestinal microbiota. We sought to determine the contribution of both T6SS and colicins to the anti-bacterial killing activity of S. sonnei. We reveal that whilst the T6SS operon is present in S. sonnei, there is evidence of functional degradation of the system through SNPs, indels and IS within key components of the system. We created strains with synthetically inducible T6SS operons but were still unable to demonstrate anti-bacterial activity of the T6SS. We demonstrate that the anti-bacterial activity observed in our in vitro assays was due to colicin activity. We show that S. sonnei no longer displayed anti-bacterial activity against bacteria that were resistant to colicins, and removal of the colicin plasmid from S. sonnei abrogated anti-bacterial activity of S. sonnei. We propose that the anti-bacterial activity demonstrated by colicins may be sufficient for niche competition by S. sonnei within the gastrointestinal environment.
Collapse
Affiliation(s)
- P. B. Leung
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - X. M. Matanza
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - B. Roche
- Universite de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9002, F-67000 Strasbourg, France
| | - K. P. Ha
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - H. C. Cheung
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - S. Appleyard
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - T. Collins
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - O. Flanagan
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| | - B. S. Marteyn
- Universite de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9002, F-67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), F-67000 Strasbourg, France
- Institut Pasteur, Université de Paris, Inserm U1225, Unité de Pathogenèse des Infections Vasculaires, F-75015 Paris, France
| | - A. Clements
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW72AZ, UK
| |
Collapse
|
10
|
Satija K, Anjankar VP. Molecular Characterization of Multidrug-Resistant Shigella flexneri. Cureus 2024; 16:e53276. [PMID: 38435906 PMCID: PMC10905316 DOI: 10.7759/cureus.53276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Due to their propensity for causing diarrheal illnesses and their rising susceptibility to antimicrobials, Shigella infections constitute a serious threat to global public health. This extensive study explores the frequency, antibiotic resistance, genetic evolution, and effects of Shigella infections on vulnerable groups. The research covers a wide range of geographical areas and sheds information on how the prevalence of Shigella species is evolving. Shigella strain antimicrobial resistance patterns are thoroughly examined. Multidrug resistance (MDR) has been found to often occur in investigations, especially when older antimicrobials are used. The improper use of antibiotics in China is blamed for the quick emergence of resistance, and variations in resistance rates have been seen across different geographical areas. Shigella strains' genetic makeup can be used to identify emerging trends and horizontal gene transfer's acquisition of resistance genes. Notably, S. sonnei exhibits the capacity to obtain resistance genes from nearby bacteria, increasing its capacity for infection. The study also emphasizes the difficulties in accurately serotyping Shigella strains due to inconsistencies between molecular and conventional serology. These results highlight the necessity of reliable diagnostic methods for monitoring Shigella infections. In conclusion, this study emphasizes how dynamic Shigella infections are, with varying patterns of occurrence, changing resistance landscapes, and genetic adaptability. In addition to tackling the rising problem of antibiotic resistance in Shigella infections, these findings are essential for guiding efforts for disease surveillance, prevention, and treatment.
Collapse
Affiliation(s)
- Kshitij Satija
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vaibhav P Anjankar
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
11
|
Song Y, Sun M, Mu G, Tuo Y. Exopolysaccharide produced by Lactiplantibacillus plantarum Y12 exhibits inhibitory effect on the Shigella flexneri genes expression related to biofilm formation. Int J Biol Macromol 2023; 253:127048. [PMID: 37748596 DOI: 10.1016/j.ijbiomac.2023.127048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Shigella is a specific enteric pathogen in humans, causing symptoms of bacterial dysentery. The biofilm formation of S. flexneri contributes to the emergence of multidrug resistance and facilitates the establishment of persistent chronic infections. This study investigated the regulatory effects of Lactiplantibacillus plantarum Y12 exopolysaccharide (L-EPS) on gene expression and its spatial hindrance effects in inhibiting the biofilm formation of S. flexneri. The transcriptome analysis revealed a significant impact of L-EPS on the gene expression profile of S. flexneri, with a total of 968 genes showing significant changes (507 up-regulated and 461 down-regulated). The significantly down-regulated KEGG metabolic pathway enriched in phosphotransferase system, Embden-Meyerhf-Parnas, Citrate cycle, Lipopolysaccharide biosynthesis, Cationic antimicrobial peptide resistance, Two-component system. Moreover, L-EPS significantly down-regulated the gene expression levels of fimbriae synthesis (fimF), lipopolysaccharide synthesis (lptE, lptB), anchor protein repeat domain (arpA), virulence factor (lpp, yqgB), antibiotic resistance (marR, cusB, mdtL, mdlB), heavy metal resistance (zraP), and polysaccharide synthesis (mtgA, mdoB, mdoC). The expression of biofilm regulator factor (bssS) and two-component system suppressor factor (mgrB) were significantly up-regulated. The RT-qPCR results indicated that a major component of L-EPS (L-EPS 2-1) exhibited the gene regulatory effect on the S. flexneri biofilm formation. Furthermore, electrophoresis and isothermal microtitration calorimetry demonstrated that the interaction between L-EPS 2-1 and eDNA is electrostatic dependent on the change in environmental pH, disrupting the stable spatial structure of S. flexneri biofilm. In conclusion, L-EPS inhibited the biofilm formation of S. flexneri through gene regulation and spatial obstruction effects.
Collapse
Affiliation(s)
- Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
12
|
Stenhouse GE, Keddy KH, Bengtsson RJ, Hall N, Smith AM, Thomas J, Iturriza-Gómara M, Baker KS. The genomic epidemiology of shigellosis in South Africa. Nat Commun 2023; 14:7715. [PMID: 38001075 PMCID: PMC10673971 DOI: 10.1038/s41467-023-43345-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Shigellosis, a leading cause of diarrhoeal mortality and morbidity globally, predominantly affects children under five years of age living in low- and middle-income countries. While whole genome sequence analysis (WGSA) has been effectively used to further our understanding of shigellosis epidemiology, antimicrobial resistance, and transmission, it has been under-utilised in sub-Saharan Africa. In this study, we applied WGSA to large sub-sample of surveillance isolates from South Africa, collected from 2011 to 2015, focussing on Shigella flexneri 2a and Shigella sonnei. We find each serotype is epidemiologically distinct. The four identified S. flexneri 2a clusters having distinct geographical distributions, and antimicrobial resistance (AMR) and virulence profiles, while the four sub-Clades of S. sonnei varied in virulence plasmid retention. Our results support serotype specific lifestyles as a driver for epidemiological differences, show AMR is not required for epidemiological success in S. flexneri, and that the HIV epidemic may have promoted Shigella population expansion.
Collapse
Affiliation(s)
- George E Stenhouse
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK.
| | | | - Rebecca J Bengtsson
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, NR4 7UZ, Norwich, UK
| | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases (NICD), Division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juno Thomas
- Centre for Enteric Diseases, National Institute for Communicable Diseases (NICD), Division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Miren Iturriza-Gómara
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK
| | - Kate S Baker
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK.
- Department of Genetics, University of Cambridge, CB23EH, Cambridge, UK.
| |
Collapse
|
13
|
Tsai CS, Wang JL, Liao YS, Fukushige M, Chiou CS, Ko WC. Shigellosis in Taiwan: An old enteric pathogen with changing epidemiology and increasing antimicrobial resistance. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023:S1684-1182(23)00206-2. [PMID: 37951802 DOI: 10.1016/j.jmii.2023.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/07/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
While the incidence of shigellosis has decreased in developed nations due to improved living conditions and healthcare systems, it remains prevalent in economically developing regions. In recent years, a resurgence of shigellosis has been observed in the United States, Europe, and Taiwan, primarily among men having sex with men and people living with human immunodeficiency virus, along with a rise in antimicrobial resistance. This study aims to review the historical epidemiological trends and drug resistance in shigellosis, with a focus on Taiwan. A comprehensive search was conducted using various databases and sources, including non-English literature in Japanese and Chinese. In developed countries, Shigella sonnei and Shigella flexneri are the most common species, while Shigella dysenteriae infections are sporadic. In Taiwan, the classification and prevalence of Shigella species have evolved over time, with S. flexneri and S. sonnei being the predominant strains. Fluoroquinolone resistance and azithromycin non-susceptibility are the ongoing threat. In conclusion, shigellosis remains a significant global health concern, with recent increases in certain populations and antimicrobial resistance. Further research is necessary to understand the clinical significance and risk factors associated with asymptomatic carriers and to assess the impact of behavioral modifications and interventions in high-risk populations.
Collapse
Affiliation(s)
- Chin-Shiang Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Shu Liao
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - Mizuho Fukushige
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Chien-Shun Chiou
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan.
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
14
|
Quino W, Bellido G, Flores-León D, Caro-Castro J, Mestanza O, Lucero J, Gavilan RG. Trends in antimicrobial resistance of Shigella species in Peru, 2011-2020. JAC Antimicrob Resist 2023; 5:dlad110. [PMID: 37901588 PMCID: PMC10600570 DOI: 10.1093/jacamr/dlad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Objective To describe the frequency of antimicrobial resistance rates and spatial-temporal distribution of Shigella species from the last 10 years in Peru. Methods A cross-sectional descriptive study was carried out. A total of 1668 Shigella strains, remitted as part of the national enteric pathogen surveillance from 2011 to 2020, were analysed. The strains were confirmed by conventional tests and serotyped with polyvalent and monovalent antibodies. Also, antimicrobial susceptibility was performed according to the Kirby-Bauer method. Results The most frequent Shigella species was S. sonnei (49.2%), followed by S. flexneri (42.2%), S. boydii (7.9%) and S. dysenteriae (0.7%). Phase II (46.29%) was the most frequent serotype in S. sonnei, serotype 2a (43.61%) in S. flexneri, serotype 2 in S. boydii and serotype 4 in S. dysenteriae. High rates of resistance were detected for trimethoprim/sulfamethoxazole (91.0%), tetracycline (88.4%), ampicillin (73.9%) and chloramphenicol (64.9%), moderate rates for amoxicillin/clavulanic acid (25.1%), ciprofloxacin (16.7%) and nalidixic acid (14.8%), and low rates for cefotaxime (1.74%), nitrofurantoin (0.7%) and ceftazidime (0.6%). Moreover, antimicrobial resistance to fluoroquinolones increased considerably from 2017 to 2020. Conclusion S. sonnei was the most frequent species, which have a large proportion of strains resistant to trimethoprim/sulfamethoxazole, and a growing trend of resistance to ciprofloxacin and nalidixic acid. This increase in resistance to commonly used antibiotics in treatments is alarming, threatening the control and management of these currently treatable infections.
Collapse
Affiliation(s)
- Willi Quino
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Perú
| | - Gustavo Bellido
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Perú
| | - Diana Flores-León
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Perú
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Perú
| | - Junior Caro-Castro
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Perú
| | - Orson Mestanza
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Perú
| | - Jorge Lucero
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Perú
| | - Ronnie G Gavilan
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Perú
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Perú
| |
Collapse
|
15
|
Nguyen DT, Morita M, Ngo TC, Le TH, Le DH, Nguyen HT, Akeda Y, Ohnishi M, Izumiya H. Characterization of Shigella flexneri in northern Vietnam in 2012-2016. Access Microbiol 2023; 5:acmi000493.v4. [PMID: 37424561 PMCID: PMC10323796 DOI: 10.1099/acmi.0.000493.v4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Shigellosis remains a considerable public health concern in developing countries. Shigella flexneri and Shigella sonnei are prevalent worldwide and S. sonnei has been replacing S. flexneri . Gap Statement S. flexneri still causes outbreaks of shigellosis in northern Vietnam but limited information is available on its genetic characteristics. Aim This study aimed to characterize the genetic characteristics of S. flexneri strains from northern Vietnam. Methodology This study used 17 isolates from eight incidents, collected in northern Vietnam between 2012 and 2016. The samples were subjected to whole genome sequencing, molecular serotyping, cluster analysis and identification of antimicrobial resistance genes. Additionally, phylogenetic analysis was performed including isolates from previous studies. Results Clusters were identified according to spatiotemporal backgrounds. The results suggested that two incidents in Yen Bai province in 2015 and 2016 were derived from a very recent common ancestor. All isolates belonged to phylogroup (PG) 3, which was divided into two sub-lineages. Thirteen of 17 isolates, including those from the Yen Bai incidents, belonged to sub-lineage Sub-1 and were serotyped as 1a. The remaining four isolates belonged to sub-lineage Sub-2 and were the globally predominant serotype 2a. The Sub-1 S. flexneri isolates possessed the gtrI gene, which encodes the glycosyl transferase that determines serotype 1a, with bacteriophage elements in the vicinity. Conclusion This study revealed two PG3 sub-lineages of S. flexneri in northern Vietnam, of which Sub-1 might be specific to the region.
Collapse
Affiliation(s)
- Dong Tu Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tuan Cuong Ngo
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Thanh Huong Le
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Hoai Thu Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hidemasa Izumiya
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
16
|
Shahnaij M, Amin MB, Hoque MM, Mondol AS, Rana KJ, Azmi IJ, Talukder KA. Characterization of Shigella flexneri Serotype 6 Strains Isolated from Bangladesh and Identification of a New Phylogenetic Cluster. J Bacteriol 2023; 205:e0040622. [PMID: 36927058 PMCID: PMC10127597 DOI: 10.1128/jb.00406-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
A significant cause of shigellosis in Bangladesh and other developing countries is Shigella flexneri serotype 6. This serotype has been subtyped, on the basis of the absence or presence of a group-specific antigen, E1037, into S. flexneri 6a and 6b, respectively. Here, we provided rationales for the subclassification, using several phenotypic and molecular tools. A set of S. flexneri 6a and 6b strains isolated between 1997 and 2015 were characterized by analyzing their biochemical properties, plasmid profiles, virulence markers, pulsed-field gel electrophoresis (PFGE) results, and ribotype. Additionally, the genomic relatedness of these subserotypes was investigated with global isolates of serotype 6 using publicly available genomes. Both subserotypes of S. flexneri 6 agglutinated with monoclonal antiserum against S. flexneri (MASF) B and type VI-specific antiserum (MASF VI) and were PCR positive for O-antigen flippase-specific genes and virulence markers (ipaH, ial, sen, and sigA). Unlike S. flexneri 6a strains, S. flexneri 6b strains seroagglutinated with anti-E1037 antibodies, MASF IV-I. Notably, these two antigenically distinct subserotypes were clonally diverse, showing two distinct PFGE patterns following the digestion of chromosomal DNA with either XbaI or IceuI. In addition, hybridization of a 16S rRNA gene probe with HindIII-digested genomic DNA yielded two distinguishing ribotypes. Genomic comparison of S. flexneri subserotype 6a and 6b strains from Bangladesh indicated that, although these strains were in genomic synteny, the majority of them formed a unique phylogroup (PG-4) that was missing for the global isolates. This study supports the subserotyping and emphasizes the need for global monitoring of the S. flexneri subserotypes 6a and 6b. IMPORTANCE Shigella flexneri serotype 6 is one of the predominant serotypes among shigellosis cases in Bangladesh. Characterization of a novel subserotype of S. flexneri 6 (VI:E1037), agglutinated with type 6-specific antibody and anti-E1037, indicates a unique evolutionary ancestry. PFGE genotyping supports the finding that these two antigenically distinct subserotypes are clonally diverse. A phylogenetic study based on single-nucleotide polymorphism (SNP) data revealed that these two subserotypes were in genomic synteny, although their genomes were reduced. Interestingly, a majority of the S. flexneri 6 strains isolated from Bangladesh form a novel phylogenetic cluster. Therefore, this report underpins the global monitoring and tracking of the novel subserotype.
Collapse
Affiliation(s)
- Mohammad Shahnaij
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammed Badrul Amin
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - M. Mozammel Hoque
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Abdus Salam Mondol
- Department of Public Health Nutrition, Primeasia University, Dhaka, Bangladesh
| | - Kazi Jewel Rana
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Ishrat J. Azmi
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kaisar A. Talukder
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Bangladesh
| |
Collapse
|
17
|
Muzembo BA, Kitahara K, Mitra D, Ohno A, Khatiwada J, Dutta S, Miyoshi SI. Shigellosis in Southeast Asia: A systematic review and meta-analysis. Travel Med Infect Dis 2023; 52:102554. [PMID: 36792021 DOI: 10.1016/j.tmaid.2023.102554] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Southeast Asia is attractive for tourism. Unfortunately, travelers to this region are at risk of becoming infected with Shigella. We conducted a meta-analysis to provide updates on Shigella prevalence in Southeast Asia, along with their serogroups and serotypes. METHODS We conducted a systematic search using PubMed, EMBASE, and Web of Science for peer-reviewed studies from 2000 to November 2022. We selected studies that detected Shigella in stools by culture or polymerase chain reaction (PCR). Two reviewers extracted the data using a standardized form and performed quality assessments using the Joanna Briggs Institute checklist. The random effects model was used to estimate the pooled prevalence of Shigella. RESULTS During our search, we identified 4376 studies. 29 studies (from six Southeast Asian countries) were included in the systematic review, 21 each in the meta-analysis of the prevalence of Shigella (Sample size: 109545) and the prevalence of Shigella serogroups. The pooled prevalence of Shigella was 4% (95% CI: 4-5%) among diarrhea cases. Shigella sonnei was the most abundant serogroup in Thailand (74%) and Vietnam (57%), whereas Shigella flexneri was dominant in Indonesia (72%) and Cambodia (71%). Shigella dysenteriae and Shigella boydii were uncommon (pooled prevalence of 1% each). The pooled prevalence of Shigella was 5% (95% CI: 4-6%) in children aged <5 years. The pooled prevalence showed a decreasing trend comparing data collected between 2000-2013 (5%; 95% CI: 4-6%) and between 2014-2022 (3%; 95% CI: 2-4%). Shigella prevalence was 6% in studies that included participants with mixed pathogens versus 3% in those without. Shigella flexneri serotype 2a was the most frequently isolated (33%), followed by 3a (21%), 1b (10%), 2b (3%), and 6 (3%). CONCLUSIONS This study provides compelling evidence for the development of effective Shigella vaccines for residents of endemic regions and travellers to these areas.
Collapse
Affiliation(s)
- Basilua Andre Muzembo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases in India at ICMR-NICED, Kolkata, India
| | - Debmalya Mitra
- Collaborative Research Centre of Okayama University for Infectious Diseases in India at ICMR-NICED, Kolkata, India
| | - Ayumu Ohno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases in India at ICMR-NICED, Kolkata, India
| | | | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
18
|
Prevalence of Multidrug-Resistant and Extended-Spectrum Beta-Lactamase-Producing Shigella Species in Asia: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2022; 11:antibiotics11111653. [PMID: 36421297 PMCID: PMC9687025 DOI: 10.3390/antibiotics11111653] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Shigellosis remains one of the leading causes of morbidity and mortality worldwide and is the second leading cause of diarrheal mortality among all age groups. However, the global emergence of antimicrobial-resistant Shigella strains, limiting the choice of effective drugs for shigellosis, has become the major challenge in the treatment of Shigella infections. The aim of this systematic review and meta-analysis was to provide an updated picture of the prevalence of antimicrobial-resistant Shigella species in Asia. A comprehensive and systematic search was performed on three electronic databases (PubMed, ScienceDirect and Scopus), in which 63 eligible studies published between 2010 and 2022 were identified. From our meta-analysis of proportions using a random-effects model, the overall prevalence of Shigella spp. in Asian patients was estimated to be 8.0% (95% CI: 5.5–10.5). The pooled prevalence rates of multidrug-resistant (MDR) and extended-spectrum beta-lactamase (ESBL)-producing Shigella strains were 68.7% (95% CI: 59.9–77.5) and 23.9% (95% CI: 12.9–34.8), respectively. Concerning recommended antimicrobial drugs for Shigella, the prevalence of resistance was highest for ciprofloxacin (29.8%) and azithromycin (29.2%), followed by ceftriaxone (23.8%), in spite of their importance as first- and second-line treatments for shigellosis. In contrast, resistance to carbapenems, such as ertapenem (0.0%), imipenem (0.1%) and meropenem (0.0%), was almost non-existent among the 49 tested antibiotics. The significantly high prevalence estimation suggests that the multidrug-resistant Shigella is a pressing threat to public health worthy of careful and justified interventions. Effective antibiotic treatment strategies, which may lead to better outcomes for the control and treatment of shigellosis in Asia, are essential.
Collapse
|
19
|
Ko KKK, Chu JJK, Lim KM, Yingtaweesittikul H, Huang W, Tan SYL, Goh KCM, Tan SH, Ng TY, Maiwald M, Chia JWZ, Cao DY, Tan YE, Sim JHC, Koh TH, Nagarajan N, Suphavilai C. Clonal serotype 1c multidrug-resistant Shigella flexneri detected in multiple institutions by sentinel-site sequencing. Front Med (Lausanne) 2022; 9:964640. [PMID: 35979220 PMCID: PMC9376355 DOI: 10.3389/fmed.2022.964640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Shigella flexneri is a major diarrhoeal pathogen, and the emergence of multidrug-resistant S. flexneri is of public health concern. We report the detection of a clonal cluster of multidrug-resistant serotype 1c (7a) S. flexneri in Singapore in April 2022. Long-read whole-genome sequence analysis found five S. flexneri isolates to be clonal and harboring the extended-spectrum β-lactamases blaCTX−M−15 and blaTEM−1. The isolates were phenotypically resistant to ceftriaxone and had intermediate susceptibility to ciprofloxacin. The S. flexneri clonal cluster was first detected in a tertiary hospital diagnostic laboratory (sentinel-site), to which the S. flexneri isolates were sent from other hospitals for routine serogrouping. Long-read whole-genome sequence analysis was performed in the sentinel-site near real-time in view of the unusually high number of S. flexneri isolates received within a short time frame. This study demonstrates that near real-time sentinel-site sequence-based surveillance of convenience samples can detect possible clonal outbreak clusters and may provide alerts useful for public health mitigations at the earliest possible opportunity.
Collapse
Affiliation(s)
- Karrie K. K. Ko
- Department of Microbiology, Singapore General Hospital, Singapore, Singapore
- Department of Molecular Pathology, Singapore General Hospital, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- *Correspondence: Karrie K. K. Ko ;
| | - Joash Jun Keat Chu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kar Mun Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Wenjie Huang
- Department of Microbiology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Shireen Yan Ling Tan
- Department of Microbiology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Kenneth Choon Meng Goh
- Department of Microbiology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Si Huei Tan
- Department of Laboratory Medicine, Changi General Hospital, Singapore, Singapore
| | - Tong Yong Ng
- Department of Pathology, Sengkang General Hospital, Singapore, Singapore
| | - Matthias Maiwald
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | | | | | - Yen Ee Tan
- Department of Microbiology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - James Heng Chiak Sim
- Department of Microbiology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Tse Hsien Koh
- Department of Microbiology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chayaporn Suphavilai
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
20
|
Functional Role of YnfA, an Efflux Transporter in Resistance to Antimicrobial Agents in Shigella flexneri. Antimicrob Agents Chemother 2022; 66:e0029322. [PMID: 35727058 PMCID: PMC9295541 DOI: 10.1128/aac.00293-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri has become a significant public health concern accounting for the majority of shigellosis cases worldwide. Even though a multitude of efforts is being made into the development of a vaccine to prevent infections, the absence of a licensed global vaccine compels us to enormously depend on antibiotics as the major treatment option. The extensive-unregulated use of antibiotics for treatment along with natural selection in bacteria has led to the rising of multidrug-resistance Shigella strains. Out of the various mechanisms employed by bacteria to gain resistance, efflux transporters are considered to be one of the principal contributors to antimicrobial resistance. The small multidrug-resistance family consists of unique small proteins that act as efflux pumps and are involved in extruding various antimicrobial compounds. The present study aims to demonstrate the role of an efflux transporter YnfA belonging to the SMR family and its functional involvement in promoting antimicrobial resistance in S. flexneri. Employing various genetic, computational, and biochemical techniques, we show how disrupting the YnfA transporter, renders the mutant Shigella strain more susceptible to some antimicrobial compounds tested in this study, and significantly affects the overall transport activity of the bacteria against ethidium bromide and acriflavine when compared with the wild-type Shigella strain. We also assessed how mutating some of the conserved amino acid residues of YnfA alters the resistance profile and efflux activity of the mutant YnfA transporter. This study provides a functional understanding of an uncharacterized SMR transporter YnfA of Shigella.
Collapse
|
21
|
Toro CS, Salazar JC, Montero DA, Ugalde JA, Díaz J, Cádiz LA, Henríquez T, García C, Díaz P, Camponovo R, Hermosilla G, Ulloa MT. Antimicrobial Resistance Dynamics in Chilean Shigella sonnei Strains Within Two Decades: Role of Shigella Resistance Locus Pathogenicity Island and Class 1 and Class 2 Integrons. Front Microbiol 2022; 12:794470. [PMID: 35185820 PMCID: PMC8854971 DOI: 10.3389/fmicb.2021.794470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Shigellosis is an enteric infectious disease in which antibiotic treatment is effective, shortening the duration of symptoms and reducing the excretion of the pathogen into the environment. Shigella spp., the etiologic agent, are considered emerging pathogens with a high public health impact due to the increase and global spread of multidrug-resistant (MDR) strains. Since Shigella resistance phenotype varies worldwide, we present an overview of the resistance phenotypes and associated genetic determinants present in 349 Chilean S. sonnei strains isolated during the periods 1995–1997, 2002–2004, 2008–2009, and 2010–2013. We detected a great variability in antibiotic susceptibility patterns, finding 300 (86%) MDR strains. Mobile genetic elements (MGE), such as plasmids, integrons, and genomic islands, have been associated with the MDR phenotypes. The Shigella resistance locus pathogenicity island (SRL PAI), which encodes for ampicillin, streptomycin, chloramphenicol, and tetracycline resistance genes, was detected by PCR in 100% of the strains isolated in 2008–2009 but was less frequent in isolates from other periods. The presence or absence of SRL PAI was also differentiated by pulsed-field gel electrophoresis. An atypical class 1 integron which harbors the blaOXA–1-aadA1-IS1 organization was detected as part of SRL PAI. The dfrA14 gene conferring trimethoprim resistance was present in 98.8% of the 2008–2009 isolates, distinguishing them from the SRL-positive strains isolated before that. Thus, it seems an SRL-dfrA14 S. sonnei clone spread during the 2008–2009 period and declined thereafter. Besides these, SRL-negative strains harboring class 2 integrons with or without resistance to nalidixic acid were detected from 2011 onward, suggesting the circulation of another clone. Whole-genome sequencing of selected strains confirmed the results obtained by PCR and phenotypic analysis. It is highlighted that 70.8% of the MDR strains harbored one or more of the MGE evaluated, while 15.2% lacked both SRL PAI and integrons. These results underscore the temporal dynamics of antimicrobial resistance in S. sonnei strains circulating in Chile, mainly determined by the spread of MGE conferring MDR phenotypes. Since shigellosis is endemic in Chile, constant surveillance of antimicrobial resistance phenotypes and their genetic basis is a priority to contribute to public health policies.
Collapse
Affiliation(s)
- Cecilia S. Toro
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
- *Correspondence: Cecilia S. Toro,
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Juan Antonio Ugalde
- C+, Research Center in Technologies for Society, School of Engineering, Universidad del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance, Santiago, Chile
| | - Janepsy Díaz
- Departamento de Estudios Científicos, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Leandro A. Cádiz
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Tania Henríquez
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Camila García
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia Díaz
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | - Germán Hermosilla
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - María Teresa Ulloa
- Programa de Microbiología y Micología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Maintenance of the Shigella sonnei virulence plasmid is dependent on its repertoire and amino acid sequence of toxin:antitoxin systems. J Bacteriol 2022; 204:e0051921. [PMID: 34978459 PMCID: PMC8923223 DOI: 10.1128/jb.00519-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella sonnei is a major cause of bacillary dysentery and an increasing concern due to the spread of multidrug resistance. S. sonnei harbors pINV, an ∼210 kb plasmid that encodes a type III secretion system (T3SS), which is essential for virulence. During growth in the laboratory, avirulence arises spontaneously in S. sonnei at high frequency, hampering studies on and vaccine development against this important pathogen. Here, we investigated the molecular basis for the emergence of avirulence in S. sonnei and showed that avirulence mainly results from pINV loss, which is consistent with previous findings. Ancestral deletions have led to the loss from S. sonnei pINV of two toxin-antitoxin (TA) systems involved in plasmid maintenance, CcdAB and GmvAT, which are found on pINV in Shigella flexneri. We showed that the introduction of these TA systems into S. sonnei pINV reduced but did not eliminate pINV loss, while the single amino acid polymorphisms found in the S. sonnei VapBC TA system compared with S. flexneri VapBC also contributed to pINV loss. Avirulence also resulted from deletions of T3SS-associated genes in pINV through recombination between insertion sequences (ISs) on the plasmid. These events differed from those observed in S. flexneri due to the different distribution and repertoire of ISs. Our findings demonstrated that TA systems and ISs influenced plasmid dynamics and loss in S. sonnei and could be exploited for the design and evaluation of vaccines. IMPORTANCEShigella sonnei is the major cause of shigellosis in high-income and industrializing countries and is an emerging, multidrug-resistant pathogen. A significant challenge when studying this bacterium is that it spontaneously becomes avirulent during growth in the laboratory through loss of its virulence plasmid (pINV). Here, we deciphered the mechanisms leading to avirulence in S. sonnei and how the limited repertoire and amino acid sequences of plasmid-encoded toxin-antitoxin (TA) systems make the maintenance of pINV in this bacterium less efficient compared with Shigella flexneri. Our findings highlighted how subtle differences in plasmids in closely related species have marked effects and could be exploited to reduce plasmid loss in S. sonnei. This should facilitate research on this bacterium and vaccine development.
Collapse
|
23
|
Mai SNT, Bodhidatta L, Turner P, Wangchuk S, Ha Thanh T, Voong Vinh P, Pham DT, Rabaa MA, Thwaites GE, Thomson NR, Baker S, Chung The H. The evolutionary history of Shigella flexneri serotype 6 in Asia. Microb Genom 2021; 7. [PMID: 34904947 PMCID: PMC8767353 DOI: 10.1099/mgen.0.000736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Shigella flexneri serotype 6 is an understudied cause of diarrhoeal diseases in developing countries, and has been proposed as one of the major targets for vaccine development against shigellosis. Despite being named as S. flexneri, Shigella flexneri serotype 6 is phylogenetically distinct from other S. flexneri serotypes and more closely related to S. boydii. This unique phylogenetic relationship and its low sampling frequency have hampered genomic research on this pathogen. Herein, by utilizing whole genome sequencing (WGS) and analyses of Shigella flexneri serotype 6 collected from epidemiological studies (1987–2013) in four Asian countries, we revealed its population structure and evolutionary history in the region. Phylogenetic analyses supported the delineation of Asian Shigella flexneri serotype 6 into two phylogenetic groups (PG-1 and −2). Notably, temporal phylogenetic approaches showed that extant Asian S. flexneri serotype 6 could be traced back to an inferred common ancestor arising in the 18th century. The dominant lineage PG-1 likely emerged in the 1970s, which coincided with the times to most recent common ancestors (tMRCAs) inferred from other major Southeast Asian S. flexneri serotypes. Similar to other S. flexneri serotypes in the same period in Asia, genomic analyses showed that resistance to first-generation antimicrobials was widespread, while resistance to more recent first-line antimicrobials was rare. These data also showed a number of gene inactivation and gene loss events, particularly on genes related to metabolism and synthesis of cellular appendages, emphasizing the continuing role of reductive evolution in the adaptation of the pathogen to an intracellular lifestyle. Together, our findings reveal insights into the genomic evolution of the understudied Shigella flexneri serotype 6, providing a new piece in the puzzle of Shigella epidemiology and evolution.
Collapse
Affiliation(s)
- Si-Nguyen T Mai
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | - Paul Turner
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sonam Wangchuk
- Royal Centre for Disease Control, Ministry of Health, Thimphu, Bhutan
| | - Tuyen Ha Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phat Voong Vinh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Duy Thanh Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas R Thomson
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,London School of Hygiene and Tropical Medicine, Bloomsbury, London WC1E 7HT, UK
| | - Stephen Baker
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Diseases (CITIID), University of Cambridge, Cambridge, UK
| | - Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|