1
|
Zhu Y, Yu X, Jiang L, Wang Y, Shi X, Cheng G. Advances in research on arboviral acquisition from hosts to mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101141. [PMID: 37977238 DOI: 10.1016/j.cois.2023.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Arboviral acquisition is a critical step in virus transmission. In this review, we present an overview of the interactions between viruses and host blood-derived factors, highlighting the diverse ways in which they interact. Moreover, the review outlines the impact of host blood on gut barriers during viral acquisition, emphasizing the crucial role of this physiological process in virus dissemination. Additionally, the review investigates the responses of symbioses to invading arboviruses, providing insights into the dynamic reactions of these vital relationships to the presence of arboviruses.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China.
| | - Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Liping Jiang
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Lamsal M, Luker HA, Pinch M, Hansen IA. RNAi-Mediated Knockdown of Acidic Ribosomal Stalk Protein P1 Arrests Egg Development in Adult Female Yellow Fever Mosquitoes, Aedes aegypti. INSECTS 2024; 15:84. [PMID: 38392504 PMCID: PMC10889338 DOI: 10.3390/insects15020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
After taking a blood meal, the fat body of the adult female yellow fever mosquito, Aedes aegypti, switches from a previtellogenic state of arrest to an active state of synthesizing large quantities of yolk protein precursors (YPPs) that are crucial for egg development. The synthesis of YPPs is regulated at both the transcriptional and translational levels. Previously, we identified the cytoplasmic protein general control nonderepressible 1 (GCN1) as a part of the translational regulatory pathway for YPP synthesis. In the current study, we used the C-terminal end of GCN1 to screen for protein-protein interactions and identified 60S acidic ribosomal protein P1 (P1). An expression analysis and RNAi-mediated knockdown of P1 was performed to further investigate the role of P1 in mosquito reproduction. We showed that in unfed (absence of a blood meal) adult A. aegypti mosquitoes, P1 was expressed ubiquitously in the mosquito organs and tissues tested. We also showed that the RNAi-mediated knockdown of P1 in unfed adult female mosquitoes resulted in a strong, transient knockdown with observable phenotypic changes in ovary length and egg deposition. Our results suggest that 60S acidic ribosomal protein P1 is necessary for mosquito reproduction and is a promising target for mosquito population control.
Collapse
Affiliation(s)
- Mahesh Lamsal
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (M.L.)
| | - Hailey A. Luker
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (M.L.)
| | - Matthew Pinch
- Department of Biology, University of Texas El Paso, El Paso, TX 79968, USA
| | - Immo A. Hansen
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (M.L.)
| |
Collapse
|
3
|
Yu X, Zhang M, Liu P, Li J, Gao B, Meng X. The miRNAs let-7b and miR-141 Coordinately Regulate Vitellogenesis by Modulating Methyl Farnesoate Degradation in the Swimming Crab Portunus trituberculatus. Int J Mol Sci 2023; 25:279. [PMID: 38203450 PMCID: PMC10778691 DOI: 10.3390/ijms25010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Methyl farnesoate (MF), a crucial sesquiterpenoid hormone, plays a pivotal role in the reproduction of female crustaceans, particularly in the vitellogenesis process. Despite extensive research on its functions, the molecular mechanisms that regulate MF levels during the vitellogenic phase remain largely elusive. This study investigates the roles of microRNAs (miRNAs), significant post-transcriptional regulators of gene expression, in controlling MF levels in the swimming crab Portunus trituberculatus. Through bioinformatic analysis, four miRNAs were identified as potential regulators targeting two genes encoding Carboxylesterases (CXEs), which are key enzymes in MF degradation. Dual luciferase reporter assays revealed that let-7b and miR-141 suppress CXE1 and CXE2 expression by directly binding to their 3' UTRs. In vivo overexpression of let-7b and miR-141 significantly diminished CXE1 and CXE2 levels, consequently elevating hemolymph MF and enhancing vitellogenin expression. Spatiotemporal expression profile analysis showed that these two miRNAs and their targets exhibited generally opposite patterns during ovarian development. These findings demonstrate that let-7b and miR-141 collaboratively modulate MF levels by targeting CXEs, thus influencing vitellogenesis in P. trituberculatus. Additionally, we found that the expression of let-7b and miR-141 were suppressed by MF, constituting a regulatory loop for the regulation of MF levels. The findings contribute novel insights into miRNA-mediated ovarian development regulation in crustaceans and offer valuable information for developing innovative reproduction manipulation techniques for P. trituberculatus.
Collapse
Affiliation(s)
- Xuee Yu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Mengqian Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ping Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Baoquan Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xianliang Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
4
|
Maritz-Olivier C, Ferreira M, Olivier NA, Crafford J, Stutzer C. Mining gene expression data for rational identification of novel drug targets and vaccine candidates against the cattle tick, Rhipicephalus microplus. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:291-317. [PMID: 37755526 PMCID: PMC10562289 DOI: 10.1007/s10493-023-00838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Control of complex parasites via vaccination remains challenging, with the current combination of vaccines and small drugs remaining the choice for an integrated control strategy. Studies conducted to date, are providing evidence that multicomponent vaccines will be needed for the development of protective vaccines against endo- and ectoparasites, though multicomponent vaccines require an in-depth understanding of parasite biology which remains insufficient for ticks. With the rapid development and spread of acaricide resistance in ticks, new targets for acaricide development also remains to be identified, along with novel targets that can be exploited for the design of lead compounds. In this study, we analysed the differential gene expression of Rhipicephalus microplus ticks that were fed on cattle vaccinated with a multi-component vaccine (Bm86 and 3 putative Bm86-binding proteins). The data was scrutinised for the identification of vaccine targets, small drug targets and novel pathways that can be evaluated in future studies. Limitations associated with targeting novel proteins for vaccine and/or drug design is also discussed and placed into the context of challenges arising when targeting large protein families and intracellular localised proteins. Lastly, this study provide insight into how Bm86-based vaccines may reduce successful uptake and digestion of the bloodmeal and overall tick fecundity.
Collapse
Affiliation(s)
- Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa.
| | - Mariëtte Ferreira
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Nicholas A Olivier
- DNA Microarray Laboratory, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jan Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Christian Stutzer
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
5
|
Ahmed J, Walker AA, Perdomo HD, Guo S, Nixon SA, Vetter I, Okoh HI, Shehu DM, Shuaibu MN, Ndams IS, King GF, Herzig V. Two Novel Mosquitocidal Peptides Isolated from the Venom of the Bahia Scarlet Tarantula ( Lasiodora klugi). Toxins (Basel) 2023; 15:418. [PMID: 37505687 PMCID: PMC10467143 DOI: 10.3390/toxins15070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed β-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.
Collapse
Affiliation(s)
- Jamila Ahmed
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew A. Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Hugo D. Perdomo
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Samantha A. Nixon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Hilary I. Okoh
- Department of Animal and Environmental Biology, Federal University Oye-Ekiti, Oye 371104, Nigeria
| | - Dalhatu M. Shehu
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
| | - Mohammed N. Shuaibu
- Department of Biochemistry, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
- Centre for Biotechnology Research and Training, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
| | - Iliya S. Ndams
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| |
Collapse
|
6
|
miR-125-3p and miR-276b-3p Regulate the Spermatogenesis of Bactrocera dorsalis by Targeting the orb2 Gene. Genes (Basel) 2022; 13:genes13101861. [PMID: 36292746 PMCID: PMC9601815 DOI: 10.3390/genes13101861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022] Open
Abstract
Bactrocera dorsalis is considered a major threat to horticultural crops. It has evolved resistance against insecticides. It is believed that development of new methods is highly desirable to control this destructive agricultural pest. Sterile insect technique is emerging as a potential tool to control this insect pest by reducing their reproductive ability. Here we report that orb2 has high expression in the testis of B. dorsalis which is the target of miR-125-3p and miR-276b-3p and plays a critical role in the spermatogenesis. Dual luciferase reporter assay using HEKT293 cells demonstrates that orb2 gene is downregulated by miR-125-3p and miR-276b-3p and is a common target of these miRNAs. Dietary treatment of adult male flies separately and in combination of agomir-125-3p (Ago-125-3p) and agomir-276b-3p (Ago-276b-3p) significantly downregulated the mRNA of orb2. The combined treatments of agomirs suppressed the level of mRNA of orb2 significantly more than any single treatment. Altered expression of miR-125-3p and miR-276b-3p significantly decreased the total and live spermatozoa in the testis which ultimately caused reduction in male fertility. Furthermore, we demonstrate that miR-125-3p, miR-276b-3p, and orb2 dsRNA are the novel agents that could be used in a genetic-based sterile insect technique (SIT) to control the B. dorsalis.
Collapse
|
7
|
Fiorillo C, Yen PS, Colantoni A, Mariconti M, Azevedo N, Lombardo F, Failloux AB, Arcà B. MicroRNAs and other small RNAs in Aedes aegypti saliva and salivary glands following chikungunya virus infection. Sci Rep 2022; 12:9536. [PMID: 35681077 PMCID: PMC9184468 DOI: 10.1038/s41598-022-13780-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Mosquito saliva facilitates blood feeding through the anti-haemostatic, anti-inflammatory and immunomodulatory properties of its proteins. However, the potential contribution of non-coding RNAs to host manipulation is still poorly understood. We analysed small RNAs from Aedes aegypti saliva and salivary glands and show here that chikungunya virus-infection triggers both the siRNA and piRNA antiviral pathways with limited effects on miRNA expression profiles. Saliva appears enriched in specific miRNA subsets and its miRNA content is well conserved among mosquitoes and ticks, clearly pointing to a non-random sorting and occurrence. Finally, we provide evidence that miRNAs from Ae. aegypti saliva may target human immune and inflammatory pathways, as indicated by prediction analysis and searching for experimentally validated targets of identical human miRNAs. Overall, we believe these observations convincingly support a scenario where both proteins and miRNAs from mosquito saliva are injected into vertebrates during blood feeding and contribute to the complex vector-host-pathogen interactions.
Collapse
Affiliation(s)
- Carmine Fiorillo
- Department of Public Health and Infectious Diseases - Division of Parasitology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Pei-Shi Yen
- Arboviruses and Insect Vectors Unit, Institute Pasteur, 25 rue Dr. Roux, 75724, Paris Cedex 15, France
| | - Alessio Colantoni
- Department of Biology and Biotechnology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marina Mariconti
- Arboviruses and Insect Vectors Unit, Institute Pasteur, 25 rue Dr. Roux, 75724, Paris Cedex 15, France
| | - Nayara Azevedo
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases - Division of Parasitology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Institute Pasteur, 25 rue Dr. Roux, 75724, Paris Cedex 15, France
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases - Division of Parasitology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
8
|
Giraldo-Calderón GI, Harb OS, Kelly SA, Rund SS, Roos DS, McDowell MA. VectorBase.org updates: bioinformatic resources for invertebrate vectors of human pathogens and related organisms. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100860. [PMID: 34864248 PMCID: PMC9133010 DOI: 10.1016/j.cois.2021.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 06/12/2023]
Abstract
VectorBase (VectorBase.org) is part of the VEuPathDB Bioinformatics Resource Center, providing free online access to multi-omics and population biology data, focusing on arthropod vectors and invertebrates of importance to human health. VectorBase includes genomics and functional genomics data from bed bugs, biting midges, body lice, kissing bugs, mites, mosquitoes, sand flies, ticks, tsetse flies, stable flies, house flies, fruit flies, and a snail intermediate host. Tools include the Search Strategy system and MapVEu, enabling users to interrogate and visualize diverse 'omics and population-level data using a graphical interface (no programming experience required). Users can also analyze their own private data, such as transcriptomic sequences, exploring their results in the context of other publicly-available information in the database. Help Desk: help@vectorbase.org.
Collapse
Affiliation(s)
- Gloria I Giraldo-Calderón
- Department of Biological Sciences, Eck Institute for Global Health, University Notre Dame, Notre Dame, IN 46556, USA; Dept. Ciencias Biológicas & Dept. Ciencias Básicas Médicas, Universidad Icesi, Calle 18 No 122-135, Cali, Colombia
| | - Omar S Harb
- Department of Biology, University of Pennsylvania, Philadelphia 19104, PA, USA
| | - Sarah A Kelly
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Samuel Sc Rund
- Department of Biological Sciences, Eck Institute for Global Health, University Notre Dame, Notre Dame, IN 46556, USA
| | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia 19104, PA, USA
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
9
|
Shivaprasad S, Sarnow P. Cross-species microRNA transmission modulates flavivirus growth in mosquitoes. Trends Parasitol 2022; 38:349-350. [PMID: 35246384 DOI: 10.1016/j.pt.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Mosquitoes can be infected with a variety of RNA viruses. Recently,Zhu et al. demonstrated that human microRNA hsa-miR-150-5p is acquired by mosquitoes during blood meals and protects the Dengue virus by downregulation of chymotrypsin AaCT-1 mRNA. This finding suggests the use of microRNA antagomirs as an antiviral approach in mosquitoes.
Collapse
Affiliation(s)
- Shwetha Shivaprasad
- Department of Microbiology & Immunology, Stanford University SOM, Stanford, CA 94305, USA
| | - Peter Sarnow
- Department of Microbiology & Immunology, Stanford University SOM, Stanford, CA 94305, USA.
| |
Collapse
|