1
|
Liu S, Cao H, Wang Z, Zhu J, An X, Zhang L, Song Y. Single-cell transcriptomics reveals extracellular matrix remodeling and collagen dynamics during lactation in sheep mammary gland. Int J Biol Macromol 2025; 312:143669. [PMID: 40319976 DOI: 10.1016/j.ijbiomac.2025.143669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
The mammary gland is a dynamic organ with diverse cell populations that maintain glandular homeostasis, particularly during lactation. However, the cellular architecture and molecular mechanisms underlying lactational remodeling in the sheep mammary gland remain incompletely understood. Given similarities in mammary stromal structure, sheep serve as a valuable model for studying lactational changes relevant to the human breast, which experiences collagen loss and sagging during lactation. Utilizing single-cell transcriptomics (scRNA-seq), we mapped the sheep mammary gland's cellular landscape at postpartum days 60 and 150, identifying seven major cell types, including six distinct epithelial clusters. These clusters revealed differentiation among luminal progenitors, hormone-sensing, and myoepithelial cells across peak and late lactation stages. Transcriptomic analysis highlighted pivotal roles for epithelial integrity and ECM remodeling, with myoepithelial cells centrally involved in these processes. We observed significant collagen remodeling driven by fibroblast-epithelial crosstalk and ECM reorganization during late lactation. Comparative analysis with human mammary epithelial cells showed conserved basal and myoepithelial cell populations, while luminal cells diverged across species. This study provides insights into lactation biology and ECM remodeling, offering a framework to inform future studies on lactational adaptation and its implications for human health.
Collapse
Affiliation(s)
- Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhanhang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Junru Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Vickers R, Porter W. Immune Cell Contribution to Mammary Gland Development. J Mammary Gland Biol Neoplasia 2024; 29:16. [PMID: 39177859 PMCID: PMC11343902 DOI: 10.1007/s10911-024-09568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/27/2024] [Indexed: 08/24/2024] Open
Abstract
Postpartum breast cancer (PPBC) is a unique subset of breast cancer, accounting for nearly half of the women diagnosed during their postpartum years. Mammary gland involution is widely regarded as being a key orchestrator in the initiation and progression of PPBC due to its unique wound-healing inflammatory signature. Here, we provide dialogue suggestive that lactation may also facilitate neoplastic development as a result of sterile inflammation. Immune cells are involved in all stages of postnatal mammary development. It has been proposed that the functions of these immune cells are partially directed by mammary epithelial cells (MECs) and the cytokines they produce. This suggests that a more niche area of exploration aimed at assessing activation of innate immune pathways within MECs could provide insight into immune cell contributions to the developing mammary gland. Immune cell contribution to pubertal development and mammary gland involution has been extensively studied; however, investigations into pregnancy and lactation remain limited. During pregnancy, the mammary gland undergoes dramatic expansion to prepare for lactation. As a result, MECs are susceptible to replicative stress. During lactation, mitochondria are pushed to capacity to fulfill the high energetic demands of producing milk. This replicative and metabolic stress, if unresolved, can elicit activation of innate immune pathways within differentiating MECs. In this review, we broadly discuss postnatal mammary development and current knowledge of immune cell contribution to each developmental stage, while also emphasizing a more unique area of study that will be beneficial in the discovery of novel therapeutic biomarkers of PPBC.
Collapse
Affiliation(s)
- Ramiah Vickers
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston Porter
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Hardwick LJA, Davies BP, Pensa S, Burge-Rogers M, Davies C, Baptista AF, Knott R, S McCrone I, Po E, Strugnell BW, Waine K, Wood P, Khaled WT, Summers HD, Rees P, Wills JW, Hughes K. In the Murine and Bovine Maternal Mammary Gland Signal Transducer and Activator of Transcription 3 is Activated in Clusters of Epithelial Cells around the Day of Birth. J Mammary Gland Biol Neoplasia 2024; 29:10. [PMID: 38722417 PMCID: PMC11081984 DOI: 10.1007/s10911-024-09561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events. We demonstrate that pSTAT3-positive events are multifocally clustered in a non-random and statistically significant fashion. Arginase-1 expressing cells, consistent with macrophages, exhibit distinct clustering within the periparturient mammary gland. These findings represent a new facet of mammary STAT3 biology, and point to the presence of mammary sub-microenvironments.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin P Davies
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Sara Pensa
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Maedee Burge-Rogers
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Claire Davies
- The Fold Farm Vets Ltd, Tyne Green, Hexham, Northumberland, UK
| | | | - Robert Knott
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - Ian S McCrone
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Eleonora Po
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | | | - Katie Waine
- Farm Post Mortems Ltd, Durham, UK
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T3R 1J3, Canada
| | - Paul Wood
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
- SRUC Aberdeen, Craibstone Estate, Bucksburn, Aberdeen, UK
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Huw D Summers
- Department of Biomedical Engineering, Swansea University, Swansea, UK
| | - Paul Rees
- Department of Biomedical Engineering, Swansea University, Swansea, UK
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - John W Wills
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
4
|
Hayes A, Hughes K, Hare C, Peschard L, Lara AS, Schiavo L, Dobson J. T-cell lymphoma involving the rectum of a dog. J Comp Pathol 2023; 207:87-90. [PMID: 37995445 DOI: 10.1016/j.jcpa.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
A mediastinal mass was diagnosed in a 7-year-4-month-old neutered female mixed breed dog following a 3-week history of lethargy, hyporexia and pyrexia. Bi-cavitary imaging, needle aspirate cytology and flow cytometry confirmed WHO clinical stage IVb, intermediate to large T-cell lymphoma involving the mediastinum, liver and spleen. The dog initially responded to a multidrug chemotherapy protocol but clinical deterioration occurred 3 months later. The dog presented with anorexia, vomiting and diarrhoea, associated with marked faecal tenesmus and haematochezia, initially believed by the primary care practitioner to be related to chemotherapy toxicity. However, rectal examination revealed multiple sessile and pedunculated masses. Further diagnostic imaging, cytology and flow cytometry confirmed progressive disease, including T-cell lymphoma of the rectum. Histology and immunohistochemistry confirmed an infiltrate of intermediate-sized CD3-positive neoplastic cells that expanded the rectal mucosa. Rectal lymphoma is uncommon in dogs and previous cases have been B cell in origin. In this report we describe the clinical presentation and macro- and microscopic findings of a case of canine T-cell lymphoma involving the rectum.
Collapse
Affiliation(s)
- Alison Hayes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Cassia Hare
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Lorraine Peschard
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Armando S Lara
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Luca Schiavo
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Jane Dobson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
5
|
Chalmers SB, van der Wal T, Fre S, Jonkers J. Fourteenth Annual ENBDC Workshop: Methods in Mammary Gland Biology and Breast Cancer. J Mammary Gland Biol Neoplasia 2023; 28:22. [PMID: 37801168 PMCID: PMC10558360 DOI: 10.1007/s10911-023-09549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
The fourteenth annual workshop of the European Network for Breast Development and Cancer (ENBDC) on Methods in Mammary Gland Biology and Breast Cancer was held on April 26th - 29th in Weggis, Switzerland. For the first time, early career researchers organised and took part in an additional ECR workshop on the 26th of April, which was received with great enthusiasm. The topics of the main workshop included mammary branching and morphogenesis, novel experimental systems (model organisms), systemic influences on tumour progression and the tumour microenvironment. Novel and recent findings were shared across excellent oral and poster presentations.
Collapse
Affiliation(s)
| | - Tanne van der Wal
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Silvia Fre
- Department of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Hughes K. Studying Mammary Physiology and Pathology in Domestic Species Benefits Both Humans and Animals. J Mammary Gland Biol Neoplasia 2023; 28:18. [PMID: 37450225 PMCID: PMC10348960 DOI: 10.1007/s10911-023-09547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
7
|
AbdulJabbar K, Castillo SP, Hughes K, Davidson H, Boddy AM, Abegglen LM, Minoli L, Iussich S, Murchison EP, Graham TA, Spiro S, Maley CC, Aresu L, Palmieri C, Yuan Y. Bridging clinic and wildlife care with AI-powered pan-species computational pathology. Nat Commun 2023; 14:2408. [PMID: 37100774 PMCID: PMC10133243 DOI: 10.1038/s41467-023-37879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Cancers occur across species. Understanding what is consistent and varies across species can provide new insights into cancer initiation and evolution, with significant implications for animal welfare and wildlife conservation. We build a pan-species cancer digital pathology atlas (panspecies.ai) and conduct a pan-species study of computational comparative pathology using a supervised convolutional neural network algorithm trained on human samples. The artificial intelligence algorithm achieves high accuracy in measuring immune response through single-cell classification for two transmissible cancers (canine transmissible venereal tumour, 0.94; Tasmanian devil facial tumour disease, 0.88). In 18 other vertebrate species (mammalia = 11, reptilia = 4, aves = 2, and amphibia = 1), accuracy (range 0.57-0.94) is influenced by cell morphological similarity preserved across different taxonomic groups, tumour sites, and variations in the immune compartment. Furthermore, a spatial immune score based on artificial intelligence and spatial statistics is associated with prognosis in canine melanoma and prostate tumours. A metric, named morphospace overlap, is developed to guide veterinary pathologists towards rational deployment of this technology on new samples. This study provides the foundation and guidelines for transferring artificial intelligence technologies to veterinary pathology based on understanding of morphological conservation, which could vastly accelerate developments in veterinary medicine and comparative oncology.
Collapse
Affiliation(s)
- Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Simon P Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Hannah Davidson
- Zoological Society of London, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA
| | - Lucia Minoli
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | | | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, 4343, Gatton, QLD, Australia
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Altamirano GA, Masat E, Rivera O, Alarcón R, Dioguardi G, Muñoz-de-Toro M, Luque EH, Kass L. Postnatal exposure to a glyphosate-based herbicide interferes with the development and growth of the mammary gland of pre-pubertal Ewe lambs. CHEMOSPHERE 2023; 313:137358. [PMID: 36427587 DOI: 10.1016/j.chemosphere.2022.137358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study was to evaluate whether early postnatal exposure to a glyphosate-based herbicide (GBH) alters pre-pubertal mammary development in Friesian lambs. To this end, from postnatal day 1-14, ewe lambs were exposed subcutaneously or orally to GBH (2 mg/kg bw/day) or vehicle (control) and mammary gland biopsies were obtained at 45 days of age. GBH-exposed lambs exhibited larger mammary ducts and less area occupied by terminal duct lobular units than controls, accompanied by an increase in the area of adipocytes in the mammary stroma. Lambs subcutaneously exposed to GBH showed increased protein expression of estrogen receptor alpha; however, both GBH-exposed groups had decreased mRNA expression of this receptor. Control lambs showed nuclear progesterone receptor (PR) protein expression, whereas GBH-exposed animals showed cytoplasmic PR expression; both GBH-exposed groups exhibited decreased mRNA expression of PR. GBH-exposed lambs also had decreased epithelial cell proliferation. Regarding insulin-like growth factors, both groups showed similar IGF-1 mRNA and protein expression but decreased expression of its receptor, and increased IGFBP5 expression. In addition, phosphorylated AKT was only observed in the mammary gland of control lambs. Our results show that early postnatal exposure to GBH, regardless of the exposure route, affects the IGF-1 system and the AKT/protein kinase B pathway, interfering with steroid hormone receptor expression and cell proliferation. This consequently modifies the growth and development of the pre-pubertal mammary gland of Frisian lambs.
Collapse
Affiliation(s)
- Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Eduardo Masat
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar Rivera
- Instituto de Investigación Sobre Producción Agropecuaria, Ambiente y Salud (IIPAAs), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gisela Dioguardi
- Instituto de Investigación Sobre Producción Agropecuaria, Ambiente y Salud (IIPAAs), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
9
|
Bergomi V, Beck S, Dobromylskyj M, Davison LJ, Wills JW, Hughes K. Insulin expression in β cells is reduced within islets before islet loss in diabetic cats. J Small Anim Pract 2022; 63:809-815. [PMID: 35986507 DOI: 10.1111/jsap.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/02/2022] [Accepted: 07/07/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Diabetes mellitus is a common condition that requires intensive treatment and markedly impacts the welfare of affected cats. The aim of this study was to identify diabetes mellitus-associated perturbations in the feline pancreatic islet microenvironment. The utility of "clear, unobstructed brain/body imaging cocktails and computational analysis" (CUBIC) for three-dimensional pancreatic analysis was investigated. METHODS Formalin-fixed paraffin-embedded tissues from cats with diabetes mellitus, or control cats without pancreatic pathology, were retrospectively identified. Immunohistochemistry for synaptophysin and ionised calcium binding adaptor molecule 1, and immunofluorescence for insulin and synaptophysin, were used to assess changes in islets. An image analysis pipeline was developed to analyse images acquired from two-dimensional immunofluorescence. CUBIC was used to optically clear selected pancreas samples before immunofluorescence and deep three-dimensional confocal microscopy. RESULTS Diabetic cats have a significant reduction in synaptophysin-positive islet area. Whilst islets from diabetic patients have similar numbers of β cells to islets from control cats, significantly lower intensity of insulin expression can be observed in the former. CUBIC facilitates clear visualisation of pancreatic islets in three dimensions. CLINICAL SIGNIFICANCE The data presented support the theory that there is a decrease in function of β cells before their destruction, suggesting a potentially significant step in the pathogenesis of feline diabetes mellitus. In parallel, we demonstrate CUBIC as a valuable new tool to visualise the shape of feline pancreatic islets and to interrogate pathology occurring in the islets of diabetic pets.
Collapse
Affiliation(s)
- V Bergomi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.,Mercer & Hughes Veterinary Surgeons, Saffron Walden, CB11 3JB, UK
| | - S Beck
- VPG Histology, Horner Court, Bristol, BS7 0BJ, UK.,Independent Anatomic Pathology Ltd, Bath, UK
| | | | - L J Davison
- Department of Clinical Sciences and Services, Royal Veterinary College, Hatfield, UK.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - J W Wills
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - K Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| |
Collapse
|
10
|
Yan XR, Shi T, Xiao JY, Liu YF, Zheng HL. In vitro transdifferentiated signatures of goat preadipocytes into mammary epithelial cells revealed by DNA methylation and transcriptome profiling. J Biol Chem 2022; 298:102604. [PMID: 36257406 PMCID: PMC9668736 DOI: 10.1016/j.jbc.2022.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
During mammary development, the transdifferentiation of mammary preadipocytes is one of the important sources for lactating mammary epithelial cells (MECs). However, there is limited knowledge about the mechanisms of dynamic regulation of transcriptome and genome-wide DNA methylation in the preadipocyte transdifferentiation process. Here, to gain more insight into these mechanisms, preadipocytes were isolated from adipose tissues from around the goat mammary gland (GM-preadipocytes). The GM-preadipocytes were cultured on Matrigel in conditioned media made from goat MECs to induce GM-preadipocyte-to-MEC transdifferentiation. The transdifferentiated GM-preadipocytes showed high abundance of keratin 18, which is a marker protein of MECs, and formed mammary acinar-like structures after 8 days of induction. Then, we performed transcriptome and DNA methylome profiling of the GM-preadipocytes and transdifferentiated GM-preadipocytes, respectively, and the differentially expressed genes and differentially methylated genes that play underlying roles in the process of transdifferentiation were obtained. Subsequently, we identified the candidate transcription factors in regulating the GM-preadipocyte-to-MEC transdifferentiation by transcription factor-binding motif enrichment analysis of differentially expressed genes and differentially methylated genes. Meanwhile, the secretory proteome of GM-preadipocytes cultured in conditioned media was also detected. By integrating the transcriptome, DNA methylome, and proteome, three candidate genes, four proteins, and several epigenetic regulatory axes were further identified, which are involved in regulation of the cell cycle, cell polarity establishment, cell adhesion, cell reprogramming, and adipocyte plasticity. These findings provide novel insights into the molecular mechanism of preadipocyte transdifferentiation and mammary development.
Collapse
|
11
|
Tsugami Y, Nakayama S, Suzuki N, Nii T, Isobe N. Investigating mammary glands of lactating goats for the presence of tertiary lymphoid organs. Front Immunol 2022; 13:941333. [PMID: 36032165 PMCID: PMC9399771 DOI: 10.3389/fimmu.2022.941333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
Ectopic tertiary lymphoid organs (TLOs) have been identified in many organs, such as the lungs, nasal cavities, and kidneys of both mice and humans. Although lymphocyte aggregates have been observed in the mammary glands of ruminants, the details remain unclear. In this study, we investigated the mammary glands of lactating goats for the presence of TLOs. The localization of CD20 (B cells), CD3 (T cells), MECA79 (high endothelial venules), CD40 (follicular dendritic cells), BCL6 (germinal center), and IgA was examined by immunohistochemistry. The concentrations of IgG, IgA, lactoferrin, β-defensin-1, cathelicidin-2, cathelicidin-7, S100A7, and S100A8 in milk were measured by ELISA. The localization and amount of tight junction (TJ) proteins (claudin-3 and claudin-4) were examined using immunofluorescence and western blotting. We found that 19 out of 30 udders contained lymphocyte aggregates, which showed positive reactions against CD20, CD3, CD40, and MECA79. In addition, large-sized aggregations showed separate localization of B cells and T cells and a positive reaction against BCL6, although BCL6 was sparsely localized in the aggregations. These results indicate that mammary glands of lactating goats contain TLOs. The IgG and IgA concentrations in the milk of TLO-positive goats and the number of IgA-positive cells were higher than those in negative goats. Furthermore, claudin-4 was localized in the TJ region and the amount was higher in TLO-positive mammary glands than that in the negative group, indicating the presence of leakages at TJs. In conclusion, a majority of lactating goat udders have TLOs, which contribute to local immunity by producing immunoglobulins.
Collapse
|
12
|
Rainard P, Foucras G, Martins RP. Adaptive Cell-Mediated Immunity in the Mammary Gland of Dairy Ruminants. Front Vet Sci 2022; 9:854890. [PMID: 35464360 PMCID: PMC9019600 DOI: 10.3389/fvets.2022.854890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023] Open
Abstract
Mastitis is one of the greatest issues for the global dairy industry and controlling these infections by vaccination is a long-sought ambition that has remained unfulfilled so far. In fact, gaps in knowledge of cell-mediated immunity in the mammary gland (MG) have hampered progress in the rational design of immunization strategies targeting this organ, as current mastitis vaccines are unable to elicit a strong protective immunity. The objectives of this article are, from a comprehensive and critical review of available literature, to identify what characterizes adaptive immunity in the MG of ruminants, and to derive from this analysis research directions for the design of an optimal vaccination strategy. A peculiarity of the MG of ruminants is that it does not belong to the common mucosal immune system that links the gut immune system to the MG of rodents, swine or humans. Indeed, the MG of ruminants is not seeded by lymphocytes educated in mucosal epithelia of the digestive or respiratory tracts, because the mammary tissue does not express the vascular addressins and chemokines that would allow the homing of memory T cells. However, it is possible to elicit an adaptive immune response in the MG of ruminants by local immunization because the mammary tissue is provided with antigen-presenting cells and is linked to systemic mechanisms. The optimal immune response is obtained by luminal exposure to antigens in a non-lactating MG. The mammary gland can be sensitized to antigens so that a local recall elicits neutrophilic inflammation and enhanced defenses locally, resulting from the activation of resident memory lymphocytes producing IFN-γ and/or IL-17 in the mammary tissue. The rational exploitation of this immunity by vaccination will need a better understanding of MG cell-mediated immunity. The phenotypic and functional characterization of mammary antigen-presenting cells and memory T cells are amongst research priorities. Based on current knowledge, rekindling research on the immune cells that populate the healthy, infected, or immunized MG appears to be a most promising approach to designing efficacious mastitis vaccines.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | |
Collapse
|
13
|
Hitchcock J, Hughes K, Pensa S, Lloyd-Lewis B, Watson CJ. The immune environment of the mammary gland fluctuates during post-lactational regression and correlates with tumour growth rate. Development 2022; 149:275060. [PMID: 35420674 PMCID: PMC9124574 DOI: 10.1242/dev.200162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/04/2022] [Indexed: 01/02/2023]
Abstract
Post-lactational mammary gland regression encompasses extensive programmed cell death and removal of milk-producing epithelial cells, breakdown of extracellular matrix components and redifferentiation of stromal adipocytes. This highly regulated involution process is associated with a transient increased risk of breast cancer in women. Using a syngeneic tumour model, we show that tumour growth is significantly altered depending on the stage of involution at which tumour cells are implanted. Tumour cells injected at day 3 involution grew faster than those in nulliparous mice, whereas tumours initiated at day 6 involution grew significantly slower. These differences in tumour progression correlate with distinct changes in innate immune cells, in particular among F4/80-expressing macrophages and among TCRδ+ unconventional T cells. Breast cancer post-pregnancy risk is exacerbated in older first-time mothers and, in our model, initial tumour growth is moderately faster in aged mice compared with young mice. Our results have implications for breast cancer risk and the use of anti-inflammatory therapeutics for postpartum breast cancers. Summary: Mammary gland involution is associated with dynamic changes in immune cell types and numbers at different stages that correlates with the initial rate of growth of implanted tumour cells.
Collapse
Affiliation(s)
- Jessica Hitchcock
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Sara Pensa
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Bethan Lloyd-Lewis
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christine J. Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|