1
|
Liu Q, Wang Y, Wang J, Zhang J, Liu F, Wang G. A LysR-like Transcriptional Regulator DsfB Is Required for the Daughter Cell Separation in Bacillus cereus 0-9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8148-8159. [PMID: 40167214 DOI: 10.1021/acs.jafc.4c07307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Bacillus cereus 0-9 is a biocontrol strain isolated from a healthy wheat root, and studying cell separation after division in this strain will improve our understanding of its growth, environmental adaptation, and spread. In this work, we identified the deletion of dsfB resulted in a chaining phenotype. Four genes, lysM1, lysM2, lysM3, and lysM4, were associated with daughter cell separation in strain 0-9. Furthermore, DsfB bound to the promoter regions of lysM1 and lysM2 and induced their transcription. The peptidoglycan hydrolase activity of the lysM1 and lysM2 gene products was confirmed in vitro by site-directed mutagenesis and biochemical analyses. The addition of purified LysM1 or LysM2 proteins in vitro or the overexpression of their coding genes inhibited the chaining phenotype of ΔdsfB. Taken together, our data indicate that DsfB is involved in daughter cell separation via the positive regulation of lysM1 and lysM2 expression in B. cereus 0-9.
Collapse
Affiliation(s)
- Qing Liu
- Engineering Research Center for Applied Microbiology of Henan Province, School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
| | - Yunfan Wang
- Engineering Research Center for Applied Microbiology of Henan Province, School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
| | - Jiaqi Wang
- Engineering Research Center for Applied Microbiology of Henan Province, School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
| | - Juanmei Zhang
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- School of Pharmaceutical, Henan University, Kaifeng 475004, China
| | - Fengying Liu
- Engineering Research Center for Applied Microbiology of Henan Province, School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
| | - Gang Wang
- Engineering Research Center for Applied Microbiology of Henan Province, School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
| |
Collapse
|
2
|
Jönsson M, Sigrist R, Gren T, Semenov Petrov M, Marcussen NEJ, Svetlova A, Charusanti P, Gockel P, Palsson BO, Yang L, Özdemir E. Machine learning uncovers the transcriptional regulatory network for the production host Streptomyces albidoflavus. Cell Rep 2025; 44:115392. [PMID: 40057950 DOI: 10.1016/j.celrep.2025.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
Streptomyces albidoflavus is a widely used strain for natural product discovery and production through heterologous biosynthetic gene clusters (BGCs). However, the transcriptional regulatory network (TRN) and its impact on secondary metabolism remain poorly understood. Here, we characterize the TRN using independent component analysis on 218 RNA sequencing (RNA-seq) transcriptomes across 88 unique growth conditions. We identify 78 independently modulated sets of genes (iModulons) that quantitatively describe the TRN across diverse conditions. Our analyses reveal (1) TRN adaptation to different growth conditions, (2) conserved and unique characteristics of the TRN across diverse lineages, (3) transcriptional activation of several endogenous BGCs, including surugamide, minimycin, and paulomycin, and (4) inferred functions of 40% of uncharacterized genes in the S. albidoflavus genome. These findings provide a comprehensive and quantitative understanding of the S. albidoflavus TRN, offering a knowledge base for further exploration and experimental validation.
Collapse
Affiliation(s)
- Mathias Jönsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Renata Sigrist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Tetiana Gren
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Mykhaylo Semenov Petrov
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Nils Emil Junge Marcussen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Anna Svetlova
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Pep Charusanti
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Peter Gockel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Bernhard O Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lei Yang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| | - Emre Özdemir
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Anderson CJ, Boeckaerts L, Chin P, Cardas JB, Xie W, Gonçalves A, Blancke G, Benson S, Rogatti S, Simpson MS, Davey A, Choi SM, Desmet S, Bushman SD, Goeminne G, Vandenabeele P, Desai MS, Vereecke L, Ravichandran KS. Metabolite-based inter-kingdom communication controls intestinal tissue recovery following chemotherapeutic injury. Cell Host Microbe 2024; 32:1469-1487.e9. [PMID: 39197455 DOI: 10.1016/j.chom.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Cytotoxic chemotherapies have devastating side effects, particularly within the gastrointestinal tract. Gastrointestinal toxicity includes the death and damage of the epithelium and an imbalance in the intestinal microbiota, otherwise known as dysbiosis. Whether dysbiosis is a direct contributor to tissue toxicity is a key area of focus. Here, from both mammalian and bacterial perspectives, we uncover an intestinal epithelial cell death-Enterobacteriaceae signaling axis that fuels dysbiosis. Specifically, our data demonstrate that chemotherapy-induced epithelial cell apoptosis and the purine-containing metabolites released from dying cells drive the inter-kingdom transcriptional re-wiring of the Enterobacteriaceae, including fundamental shifts in bacterial respiration and promotion of purine utilization-dependent expansion, which in turn delays the recovery of the intestinal tract. Inhibition of epithelial cell death or restriction of the Enterobacteriaceae to homeostatic levels reverses dysbiosis and improves intestinal recovery. These findings suggest that supportive therapies that maintain homeostatic levels of Enterobacteriaceae may be useful in resolving intestinal disease.
Collapse
Affiliation(s)
- Christopher J Anderson
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Laura Boeckaerts
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Priscilla Chin
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Javier Burgoa Cardas
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wei Xie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB BioImaging Core, Ghent, Belgium
| | - Gillian Blancke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Benson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sebastian Rogatti
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Mariska S Simpson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anna Davey
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Summer D Bushman
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | | | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Lars Vereecke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
5
|
Patel A, McGrosso D, Hefner Y, Campeau A, Sastry AV, Maurya S, Rychel K, Gonzalez DJ, Palsson BO. Proteome allocation is linked to transcriptional regulation through a modularized transcriptome. Nat Commun 2024; 15:5234. [PMID: 38898010 PMCID: PMC11187210 DOI: 10.1038/s41467-024-49231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
It has proved challenging to quantitatively relate the proteome to the transcriptome on a per-gene basis. Recent advances in data analytics have enabled a biologically meaningful modularization of the bacterial transcriptome. We thus investigate whether matched datasets of transcriptomes and proteomes from bacteria under diverse conditions can be modularized in the same way to reveal novel relationships between their compositions. We find that; (1) the modules of the proteome and the transcriptome are comprised of a similar list of gene products, (2) the modules in the proteome often represent combinations of modules from the transcriptome, (3) known transcriptional and post-translational regulation is reflected in differences between two sets of modules, allowing for knowledge-mapping when interpreting module functions, and (4) through statistical modeling, absolute proteome allocation can be inferred from the transcriptome alone. Quantitative and knowledge-based relationships can thus be found at the genome-scale between the proteome and transcriptome in bacteria.
Collapse
Affiliation(s)
- Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dominic McGrosso
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anaamika Campeau
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Svetlana Maurya
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
6
|
Matsuyama C, Seike T, Okahashi N, Niide T, Hara KY, Hirono-Hara Y, Ishii J, Shimizu H, Toya Y, Matsuda F. Metabolome analysis of metabolic burden in Escherichia coli caused by overexpression of green fluorescent protein and delta-rhodopsin. J Biosci Bioeng 2024; 137:187-194. [PMID: 38281859 DOI: 10.1016/j.jbiosc.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 01/30/2024]
Abstract
Overexpression of proteins by introducing a DNA vector is among the most important tools for the metabolic engineering of microorganisms such as Escherichia coli. Protein overexpression imposes a burden on metabolism because metabolic pathways must supply building blocks for protein and DNA synthesis. Different E. coli strains have distinct metabolic capacities. In this study, two proteins were overexpressed in four E. coli strains (MG1655(DE3), W3110(DE3), BL21star(DE3), and Rosetta(DE3)), and their effects on metabolic burden were investigated. Metabolomic analysis showed that E. coli strains overexpressing green fluorescent protein had decreased levels of several metabolites, with a positive correlation between the number of reduced metabolites and green fluorescent protein expression levels. Moreover, nucleic acid-related metabolites decreased, indicating a metabolic burden in the E. coli strains, and the growth rate and protein expression levels were improved by supplementation with the five nucleosides. In contrast, two strains overexpressing delta rhodopsin, a microbial membrane rhodopsin from Haloterrigena turkmenica, led to a metabolic burden and decrease in the amino acids Ala, Val, Leu, Ile, Thr, Phe, Asp, and Trp, which are the most frequent amino acids in the delta rhodopsin protein sequence. The metabolic burden caused by protein overexpression was influenced by the metabolic capacity of the host strains and the sequences of the overexpressed proteins. Detailed characterization of the effects of protein expression on the metabolic state of engineered cells using metabolomics will provide insights into improving the production of target compounds.
Collapse
Affiliation(s)
- Chinatsu Matsuyama
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Taisuke Seike
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Nobuyuki Okahashi
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratories, Osaka University, Osaka 565-0871, Japan
| | - Teppei Niide
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Kiyotaka Y Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Shimizu
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Yoshihiro Toya
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Fumio Matsuda
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan; Osaka University Shimadzu Omics Innovation Research Laboratories, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Salgado H, Gama-Castro S, Lara P, Mejia-Almonte C, Alarcón-Carranza G, López-Almazo AG, Betancourt-Figueroa F, Peña-Loredo P, Alquicira-Hernández S, Ledezma-Tejeida D, Arizmendi-Zagal L, Mendez-Hernandez F, Diaz-Gomez AK, Ochoa-Praxedis E, Muñiz-Rascado LJ, García-Sotelo JS, Flores-Gallegos FA, Gómez L, Bonavides-Martínez C, del Moral-Chávez VM, Hernández-Alvarez AJ, Santos-Zavaleta A, Capella-Gutierrez S, Gelpi JL, Collado-Vides J. RegulonDB v12.0: a comprehensive resource of transcriptional regulation in E. coli K-12. Nucleic Acids Res 2024; 52:D255-D264. [PMID: 37971353 PMCID: PMC10767902 DOI: 10.1093/nar/gkad1072] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
RegulonDB is a database that contains the most comprehensive corpus of knowledge of the regulation of transcription initiation of Escherichia coli K-12, including data from both classical molecular biology and high-throughput methodologies. Here, we describe biological advances since our last NAR paper of 2019. We explain the changes to satisfy FAIR requirements. We also present a full reconstruction of the RegulonDB computational infrastructure, which has significantly improved data storage, retrieval and accessibility and thus supports a more intuitive and user-friendly experience. The integration of graphical tools provides clear visual representations of genetic regulation data, facilitating data interpretation and knowledge integration. RegulonDB version 12.0 can be accessed at https://regulondb.ccg.unam.mx.
Collapse
Affiliation(s)
- Heladia Salgado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Paloma Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Citlalli Mejia-Almonte
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Gabriel Alarcón-Carranza
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Andrés G López-Almazo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Felipe Betancourt-Figueroa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Pablo Peña-Loredo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | | | - Daniela Ledezma-Tejeida
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Lizeth Arizmendi-Zagal
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Francisco Mendez-Hernandez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Ana K Diaz-Gomez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Elizabeth Ochoa-Praxedis
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Luis J Muñiz-Rascado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Jair S García-Sotelo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro 76230, Querétaro, Mexico
| | - Fanny A Flores-Gallegos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Laura Gómez
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, 14610 Ciudad de México, Mexico
- Escuela de Medicina, Tecnológico de Monterrey, Campus Ciudad de México, CDMX 14380, Meéxico
| | - César Bonavides-Martínez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Víctor M del Moral-Chávez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | | | - Alberto Santos-Zavaleta
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos 62580, Meéxico
| | | | - Josep Lluis Gelpi
- Department of Biochemistry and Molecular Biomedicine. Univ. of Barcelona. Av. Diagonal 643, 08028, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra(UPF), Dr. Aiguader 88, Barcelona, 08003, Barcelona, Spain
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra(UPF), Dr. Aiguader 88, Barcelona, 08003, Barcelona, Spain
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall. Boston, MA 02215, USA
| |
Collapse
|
8
|
Luo Y, Payne M, Kaur S, Octavia S, Jiang J, Lan R. Emergence and genomic insights of non-pandemic O1 Vibrio cholerae in Zhejiang, China. Microbiol Spectr 2023; 11:e0261523. [PMID: 37819129 PMCID: PMC10871787 DOI: 10.1128/spectrum.02615-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE It is well recognized that only Vibrio cholerae O1 causes cholera pandemics. However, not all O1 strains cause pandemic-level disease. In this study, we analyzed non-pandemic O1 V. cholerae isolates from the 1960s to the 1990s from China and found that they fell into three lineages, one of which shared the most recent common ancestor with pandemic O1 strains. Each of these non-pandemic O1 lineages has unique properties that contribute to their capacity to cause cholera. The findings of this study enhanced our understanding of the emergence and evolution of both pandemic and non-pandemic O1 V. cholerae.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jianmin Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Lamoureux CR, Decker KT, Sastry AV, Rychel K, Gao Y, McConn J, Zielinski D, Palsson BO. A multi-scale expression and regulation knowledge base for Escherichia coli. Nucleic Acids Res 2023; 51:10176-10193. [PMID: 37713610 PMCID: PMC10602906 DOI: 10.1093/nar/gkad750] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Transcriptomic data is accumulating rapidly; thus, scalable methods for extracting knowledge from this data are critical. Here, we assembled a top-down expression and regulation knowledge base for Escherichia coli. The expression component is a 1035-sample, high-quality RNA-seq compendium consisting of data generated in our lab using a single experimental protocol. The compendium contains diverse growth conditions, including: 9 media; 39 supplements, including antibiotics; 42 heterologous proteins; and 76 gene knockouts. Using this resource, we elucidated global expression patterns. We used machine learning to extract 201 modules that account for 86% of known regulatory interactions, creating the regulatory component. With these modules, we identified two novel regulons and quantified systems-level regulatory responses. We also integrated 1675 curated, publicly-available transcriptomes into the resource. We demonstrated workflows for analyzing new data against this knowledge base via deconstruction of regulation during aerobic transition. This resource illuminates the E. coli transcriptome at scale and provides a blueprint for top-down transcriptomic analysis of non-model organisms.
Collapse
Affiliation(s)
- Cameron R Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine T Decker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ye Gao
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - John Luke McConn
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Baugh AC, Momany C, Neidle EL. Versatility and Complexity: Common and Uncommon Facets of LysR-Type Transcriptional Regulators. Annu Rev Microbiol 2023; 77:317-339. [PMID: 37285554 DOI: 10.1146/annurev-micro-050323-040543] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
LysR-type transcriptional regulators (LTTRs) form one of the largest families of bacterial regulators. They are widely distributed and contribute to all aspects of metabolism and physiology. Most are homotetramers, with each subunit composed of an N-terminal DNA-binding domain followed by a long helix connecting to an effector-binding domain. LTTRs typically bind DNA in the presence or absence of a small-molecule ligand (effector). In response to cellular signals, conformational changes alter DNA interactions, contact with RNA polymerase, and sometimes contact with other proteins. Many are dual-function repressor-activators, although different modes of regulation may occur at multiple promoters. This review presents an update on the molecular basis of regulation, the complexity of regulatory schemes, and applications in biotechnology and medicine. The abundance of LTTRs reflects their versatility and importance. While a single regulatory model cannot describe all family members, a comparison of similarities and differences provides a framework for future study.
Collapse
Affiliation(s)
- Alyssa C Baugh
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| | - Cory Momany
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| |
Collapse
|
11
|
Park J, Lee SM, Ebrahim A, Scott-Nevros Z, Kim J, Yang L, Sastry A, Seo S, Palsson BO, Kim D. Model-driven experimental design workflow expands understanding of regulatory role of Nac in Escherichia coli. NAR Genom Bioinform 2023; 5:lqad006. [PMID: 36685725 PMCID: PMC9853098 DOI: 10.1093/nargab/lqad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
The establishment of experimental conditions for transcriptional regulator network (TRN) reconstruction in bacteria continues to be impeded by the limited knowledge of activating conditions for transcription factors (TFs). Here, we present a novel genome-scale model-driven workflow for designing experimental conditions, which optimally activate specific TFs. Our model-driven workflow was applied to elucidate transcriptional regulation under nitrogen limitation by Nac and NtrC, in Escherichia coli. We comprehensively predict alternative nitrogen sources, including cytosine and cytidine, which trigger differential activation of Nac using a model-driven workflow. In accordance with the prediction, genome-wide measurements with ChIP-exo and RNA-seq were performed. Integrative data analysis reveals that the Nac and NtrC regulons consist of 97 and 43 genes under alternative nitrogen conditions, respectively. Functional analysis of Nac at the transcriptional level showed that Nac directly down-regulates amino acid biosynthesis and restores expression of tricarboxylic acid (TCA) cycle genes to alleviate nitrogen-limiting stress. We also demonstrate that both TFs coherently modulate α-ketoglutarate accumulation stress due to nitrogen limitation by co-activating amino acid and diamine degradation pathways. A systems-biology approach provided a detailed and quantitative understanding of both TF's roles and how nitrogen and carbon metabolic networks respond complementarily to nitrogen-limiting stress.
Collapse
Affiliation(s)
- Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ali Ebrahim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zoe K Scott-Nevros
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaehyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Laurence Yang
- Department of Chemical Engineering, Queen's University, Kingston, Canada
| | - Anand Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, and Interdisciplinary Program in Bioengineering, and Institute of Chemical Processes, and Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- The Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, 6 Kogle Alle, Hørsholm, Denmark
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
12
|
Patel A, McGrosso D, Hefner Y, Campeau A, Sastry AV, Maurya S, Rychel K, Gonzalez DJ, Palsson BO. Proteome allocation is linked to transcriptional regulation through a modularized transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529291. [PMID: 36865326 PMCID: PMC9980150 DOI: 10.1101/2023.02.20.529291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
It has proved challenging to quantitatively relate the proteome to the transcriptome on a per-gene basis. Recent advances in data analytics have enabled a biologically meaningful modularization of the bacterial transcriptome. We thus investigated whether matched datasets of transcriptomes and proteomes from bacteria under diverse conditions could be modularized in the same way to reveal novel relationships between their compositions. We found that; 1) the modules of the proteome and the transcriptome are comprised of a similar list of gene products, 2) the modules in the proteome often represent combinations of modules from the transcriptome, 3) known transcriptional and post-translational regulation is reflected in differences between two sets of modules, allowing for knowledge-mapping when interpreting module functions, and 4) through statistical modeling, absolute proteome allocation can be inferred from the transcriptome alone. Quantitative and knowledge-based relationships can thus be found at the genome-scale between the proteome and transcriptome in bacteria.
Collapse
Affiliation(s)
- Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dominic McGrosso
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anaamika Campeau
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand V. Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Svetlana Maurya
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
de Crécy-lagard V, Amorin de Hegedus R, Arighi C, Babor J, Bateman A, Blaby I, Blaby-Haas C, Bridge AJ, Burley SK, Cleveland S, Colwell LJ, Conesa A, Dallago C, Danchin A, de Waard A, Deutschbauer A, Dias R, Ding Y, Fang G, Friedberg I, Gerlt J, Goldford J, Gorelik M, Gyori BM, Henry C, Hutinet G, Jaroch M, Karp PD, Kondratova L, Lu Z, Marchler-Bauer A, Martin MJ, McWhite C, Moghe GD, Monaghan P, Morgat A, Mungall CJ, Natale DA, Nelson WC, O’Donoghue S, Orengo C, O’Toole KH, Radivojac P, Reed C, Roberts RJ, Rodionov D, Rodionova IA, Rudolf JD, Saleh L, Sheynkman G, Thibaud-Nissen F, Thomas PD, Uetz P, Vallenet D, Carter EW, Weigele PR, Wood V, Wood-Charlson EM, Xu J. A roadmap for the functional annotation of protein families: a community perspective. Database (Oxford) 2022; 2022:baac062. [PMID: 35961013 PMCID: PMC9374478 DOI: 10.1093/database/baac062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 12/23/2022]
Abstract
Over the last 25 years, biology has entered the genomic era and is becoming a science of 'big data'. Most interpretations of genomic analyses rely on accurate functional annotations of the proteins encoded by more than 500 000 genomes sequenced to date. By different estimates, only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different organismal lineages. Such a large gap in knowledge hampers all aspects of biological enterprise and, thereby, is standing in the way of genomic biology reaching its full potential. A brainstorming meeting to address this issue funded by the National Science Foundation was held during 3-4 February 2022. Bringing together data scientists, biocurators, computational biologists and experimentalists within the same venue allowed for a comprehensive assessment of the current state of functional annotations of protein families. Further, major issues that were obstructing the field were identified and discussed, which ultimately allowed for the proposal of solutions on how to move forward.
Collapse
Affiliation(s)
- Valérie de Crécy-lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Cecilia Arighi
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19713, USA
| | - Jill Babor
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Ian Blaby
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Crysten Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Alan J Bridge
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva 4 CH-1211, Switzerland
| | - Stephen K Burley
- RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stacey Cleveland
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lucy J Colwell
- Departmenf of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ana Conesa
- Spanish National Research Council, Institute for Integrative Systems Biology, Paterna, Valencia 46980, Spain
| | - Christian Dallago
- TUM (Technical University of Munich) Department of Informatics, Bioinformatics & Computational Biology, i12, Boltzmannstr. 3, Garching/Munich 85748, Germany
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, SAR Hong Kong 999077, China
| | - Anita de Waard
- Research Collaboration Unit, Elsevier, Jericho, VT 05465, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Raquel Dias
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, USA
| | - Gang Fang
- NYU-Shanghai, Shanghai 200120, China
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - John Gerlt
- Institute for Genomic Biology and Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joshua Goldford
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark Gorelik
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin M Gyori
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Marshall Jaroch
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Peter D Karp
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025, USA
| | | | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20817, USA
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20817, USA
| | - Maria-Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Claire McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Paul Monaghan
- Department of Agricultural Education and Communication, University of Florida, Gainesville, FL 32611, USA
| | - Anne Morgat
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva 4 CH-1211, Switzerland
| | - Christopher J Mungall
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Darren A Natale
- Georgetown University Medical Center, Washington, DC 20007, USA
| | - William C Nelson
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, WA 99354, USA
| | - Seán O’Donoghue
- School of Biotechnology and Biomolecular Sciences, University of NSW, Sydney, NSW 2052, Australia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | - Colbie Reed
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Dmitri Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Irina A Rodionova
- Department of Bioengineering, Division of Engineering, University of California at San Diego, La Jolla, CA 92093-0412, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Lana Saleh
- New England Biolabs, Ipswich, MA 01938, USA
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20817, USA
| | - Paul D Thomas
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Peter Uetz
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry 91057, France
| | - Erica Watson Carter
- Department of Plant Pathology, University of Florida Citrus Research and Education Center, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| | | | - Valerie Wood
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jin Xu
- Department of Plant Pathology, University of Florida Citrus Research and Education Center, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| |
Collapse
|
14
|
Rodionova IA, Gao Y, Monk J, Hefner Y, Wong N, Szubin R, Lim HG, Rodionov DA, Zhang Z, Saier MH, Palsson BO. A systems approach discovers the role and characteristics of seven LysR type transcription factors in Escherichia coli. Sci Rep 2022; 12:7274. [PMID: 35508583 PMCID: PMC9068703 DOI: 10.1038/s41598-022-11134-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Although Escherichia coli K-12 strains represent perhaps the best known model bacteria, we do not know the identity or functions of all of their transcription factors (TFs). It is now possible to systematically discover the physiological function of TFs in E. coli BW25113 using a set of synergistic methods; including ChIP-exo, growth phenotyping, conserved gene clustering, and transcriptome analysis. Among 47 LysR-type TFs (LTFs) found on the E. coli K-12 genome, many regulate nitrogen source utilization or amino acid metabolism. However, 19 LTFs remain unknown. In this study, we elucidated the regulation of seven of these 19 LTFs: YbdO, YbeF, YcaN, YbhD, YgfI, YiaU, YneJ. We show that: (1) YbdO (tentatively re-named CitR) regulation has an effect on bacterial growth at low pH with citrate supplementation. CitR is a repressor of the ybdNM operon and is implicated in the regulation of citrate lyase genes (citCDEFG); (2) YgfI (tentatively re-named DhfA) activates the dhaKLM operon that encodes the phosphotransferase system, DhfA is involved in formate, glycerol and dihydroxyacetone utilization; (3) YiaU (tentatively re-named LpsR) regulates the yiaT gene encoding an outer membrane protein, and waaPSBOJYZU operon is also important in determining cell density at the stationary phase and resistance to oxacillin microaerobically; (4) YneJ, re-named here as PtrR, directly regulates the expression of the succinate-semialdehyde dehydrogenase, Sad (also known as YneI), and is a predicted regulator of fnrS (a small RNA molecule). PtrR is important for bacterial growth in the presence of l-glutamate and putrescine as nitrogen/energy sources; and (5) YbhD and YcaN regulate adjacent y-genes on the genome. We have thus established the functions for four LTFs and identified the target genes for three LTFs.
Collapse
Affiliation(s)
- Irina A Rodionova
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093-0116, USA. .,Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, 92093-0116, USA.
| | - Ye Gao
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093-0116, USA.,Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Jonathan Monk
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Ying Hefner
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Nicholas Wong
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Dmitry A Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Zhongge Zhang
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Milton H Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093-0116, USA. .,Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
15
|
Rajput A, Tsunemoto H, Sastry AV, Szubin R, Rychel K, Sugie J, Pogliano J, Palsson BO. Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators. Nucleic Acids Res 2022; 50:3658-3672. [PMID: 35357493 PMCID: PMC9023270 DOI: 10.1093/nar/gkac187] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
The transcriptional regulatory network (TRN) of Pseudomonas aeruginosa coordinates cellular processes in response to stimuli. We used 364 transcriptomes (281 publicly available + 83 in-house generated) to reconstruct the TRN of P. aeruginosa using independent component analysis. We identified 104 independently modulated sets of genes (iModulons) among which 81 reflect the effects of known transcriptional regulators. We identified iModulons that (i) play an important role in defining the genomic boundaries of biosynthetic gene clusters (BGCs), (ii) show increased expression of the BGCs and associated secretion systems in nutrient conditions that are important in cystic fibrosis, (iii) show the presence of a novel ribosomally synthesized and post-translationally modified peptide (RiPP) BGC which might have a role in P. aeruginosa virulence, (iv) exhibit interplay of amino acid metabolism regulation and central metabolism across different carbon sources and (v) clustered according to their activity changes to define iron and sulfur stimulons. Finally, we compared the identified iModulons of P. aeruginosa with those previously described in Escherichia coli to observe conserved regulons across two Gram-negative species. This comprehensive TRN framework encompasses the majority of the transcriptional regulatory machinery in P. aeruginosa, and thus should prove foundational for future research into its physiological functions.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|