1
|
Martin C, Bergamelli M, Martin H, Bénard M, Tscherning C, Malnou CE. Human placental models for studying viral infections. Curr Opin Virol 2025; 71:101454. [PMID: 40086106 DOI: 10.1016/j.coviro.2025.101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Viral infections during pregnancy represent a major threat to maternal, fetal, and neonatal health outcome, with a high risk of vertical transmission. It is therefore crucial to understand the mechanisms underlying the interaction between viruses and placenta, which ensures communication between maternal and fetal compartments throughout pregnancy. Human placental models, both in vitro and ex vivo, enable to dissect in detail these interactions. By studying in detail viral entry, replication, and immune responses within the placenta, they represent ideal tools for analyzing the effects of various viruses on pregnancy outcomes. In addition, these models serve as platforms for evaluating diagnostic and therapeutic approaches to protect pregnant women and their babies from viral infections. This review examines recent advances, the main advantages and limitations of different human placental models and discusses their potential to improve our understanding of virus-placenta interactions, thereby contributing to improved maternal and fetal health.
Collapse
Affiliation(s)
- Charlène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Mathilde Bergamelli
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Hélène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Mélinda Bénard
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; CHU Toulouse, Hôpital des Enfants, Service de Néonatalogie, Toulouse, France
| | - Charlotte Tscherning
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; Division of Neonatology, Oslo University Hospital, Oslo, Norway
| | - Cécile E Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
2
|
Fishburn AT, Florio CJ, Klaessens TN, Prince B, Adia NAB, Lopez NJ, Beesabathuni NS, Becker SS, Cherkashchenko L, Haggard Arcé ST, Hoang V, Shiu TN, Richardson RB, Evans MJ, Rückert C, Shah PS. Microcephaly protein ANKLE2 promotes Zika virus replication. mBio 2025; 16:e0268324. [PMID: 39804047 PMCID: PMC11796389 DOI: 10.1128/mbio.02683-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/26/2024] [Indexed: 02/06/2025] Open
Abstract
Orthoflaviviruses are positive-sense single-stranded RNA viruses that hijack host proteins to promote their own replication. Zika virus (ZIKV) is infamous among orthoflaviviruses for its association with severe congenital birth defects, notably microcephaly. We previously mapped ZIKV-host protein interactions and identified the interaction between ZIKV non-structural protein 4A (NS4A) and host microcephaly protein ankyrin repeat and LEM domain-containing 2 (ANKLE2). Using a fruit fly model, we showed that NS4A induced microcephaly in an ANKLE2-dependent manner. Here, we explore the role of ANKLE2 in ZIKV replication to understand the biological significance of the interaction from a viral perspective. We observe that ANKLE2 localization is drastically shifted to sites of NS4A accumulation during infection and that knockout of ANKLE2 reduces ZIKV replication in multiple human cell lines. This decrease in virus replication is coupled with a moderate increase in innate immune activation. Using microscopy, we observe dysregulated formation of virus-induced endoplasmic reticulum rearrangements in ANKLE2 knockout cells. Knockdown of the ANKLE2 ortholog in Aedes aegypti cells also decreases virus replication, suggesting ANKLE2 is a beneficial replication factor across hosts. Finally, we show that NS4A from four other orthoflaviviruses physically interacts with ANKLE2 and is also beneficial to their replication. Thus, ANKLE2 likely promotes orthoflavivirus replication by regulating membrane rearrangements that serve to accelerate viral genome replication and protect viral dsRNA from immune detection. Taken together with our previous results, our findings indicate that ZIKV and other orthoflaviviruses hijack ANKLE2 for a conserved role in replication, and this drives unique pathogenesis for ZIKV since ANKLE2 has essential roles in developing tissues.IMPORTANCEZIKV is a major concern due to its association with birth defects, including microcephaly. We previously identified a physical interaction between ZIKV NS4A and host microcephaly protein ANKLE2. Mutations in ANKLE2 cause congenital microcephaly, and NS4A induces microcephaly in an ANKLE2-dependent manner. Here, we establish the role of ANKLE2 in ZIKV replication. Depletion of ANKLE2 from cells significantly reduces ZIKV replication and disrupts virus-induced membrane rearrangements. ANKLE2's ability to promote ZIKV replication is conserved in mosquito cells and for other related mosquito-borne orthoflaviviruses. Our data point to an overall model in which ANKLE2 regulates virus-induced membrane rearrangements to accelerate orthoflavivirus replication and avoid immune detection. However, ANKLE2's unique role in ZIKV NS4A-induced microcephaly is a consequence of ZIKV infection of important developing tissues in which ANKLE2 has essential roles.
Collapse
Affiliation(s)
- Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Cole J. Florio
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Thomas N. Klaessens
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Brian Prince
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | - Neil A. B. Adia
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Nicholas J. Lopez
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | | | - Sydney S. Becker
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Liubov Cherkashchenko
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Sophia T. Haggard Arcé
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Vivian Hoang
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Traci N. Shiu
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - R. Blake Richardson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
- Department of Chemical Engineering, University of California, Davis, California, USA
| |
Collapse
|
3
|
Alippe Y, Wang L, Coskun R, Muraro SP, Zhao FR, Elam-Noll M, White JM, Vota DM, Hauk VC, Gordon JI, Handley SA, Diamond MS. Fetal MAVS and type I IFN signaling pathways control ZIKV infection in the placenta and maternal decidua. J Exp Med 2024; 221:e20240694. [PMID: 39042188 PMCID: PMC11270594 DOI: 10.1084/jem.20240694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The contribution of placental immune responses to congenital Zika virus (ZIKV) syndrome remains poorly understood. Here, we leveraged a mouse model of ZIKV infection to identify mechanisms of innate immune restriction exclusively in the fetal compartment of the placenta. ZIKV principally infected mononuclear trophoblasts in the junctional zone, which was limited by mitochondrial antiviral-signaling protein (MAVS) and type I interferon (IFN) signaling mechanisms. Single nuclear RNA sequencing revealed MAVS-dependent expression of IFN-stimulated genes (ISGs) in spongiotrophoblasts but not in other placental cells that use alternate pathways to induce ISGs. ZIKV infection of Ifnar1-/- or Mavs-/- placentas was associated with greater infection of the adjacent immunocompetent decidua, and heterozygous Mavs+/- or Ifnar1+/- dams carrying immunodeficient fetuses sustained greater maternal viremia and tissue infection than dams carrying wild-type fetuses. Thus, MAVS-IFN signaling in the fetus restricts ZIKV infection in junctional zone trophoblasts, which modulates dissemination and outcome for both the fetus and the pregnant mother.
Collapse
MESH Headings
- Female
- Animals
- Pregnancy
- Interferon Type I/metabolism
- Interferon Type I/immunology
- Signal Transduction/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Placenta/immunology
- Placenta/virology
- Placenta/metabolism
- Zika Virus Infection/immunology
- Zika Virus Infection/virology
- Zika Virus/immunology
- Zika Virus/physiology
- Mice
- Decidua/immunology
- Decidua/virology
- Decidua/metabolism
- Fetus/immunology
- Fetus/virology
- Trophoblasts/immunology
- Trophoblasts/virology
- Trophoblasts/metabolism
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Immunity, Innate
- Pregnancy Complications, Infectious/immunology
- Pregnancy Complications, Infectious/virology
- Disease Models, Animal
Collapse
Affiliation(s)
- Yael Alippe
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Reyan Coskun
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stéfanie P. Muraro
- Campinas State University, Laboratory of Emerging Viruses, Campinas, Brazil
| | - Fang R. Zhao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle Elam-Noll
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - J. Michael White
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Daiana M. Vota
- Universidad de Buenos Aires—CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Vanesa C. Hauk
- Universidad de Buenos Aires—CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Jeffrey I. Gordon
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott A. Handley
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Metzler AD, Tang H. Zika Virus Neuropathogenesis-Research and Understanding. Pathogens 2024; 13:555. [PMID: 39057782 PMCID: PMC11279898 DOI: 10.3390/pathogens13070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.
Collapse
Affiliation(s)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Sosa-Acosta P, Quiñones-Vega M, Guedes JDS, Rocha D, Guida L, Vasconcelos Z, Nogueira FCS, Domont GB. Multiomics Approach Reveals Serum Biomarker Candidates for Congenital Zika Syndrome. J Proteome Res 2024; 23:1200-1220. [PMID: 38390744 DOI: 10.1021/acs.jproteome.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The Zika virus (ZIKV) can be vertically transmitted, causing congenital Zika syndrome (CZS) in fetuses. ZIKV infection in early gestational trimesters increases the chances of developing CZS. This syndrome involves several pathologies with a complex diagnosis. In this work, we aim to identify biological processes and molecular pathways related to CZS and propose a series of putative protein and metabolite biomarkers for CZS prognosis in early pregnancy trimesters. We analyzed serum samples of healthy pregnant women and ZIKV-infected pregnant women bearing nonmicrocephalic and microcephalic fetuses. A total of 1090 proteins and 512 metabolites were identified by bottom-up proteomics and untargeted metabolomics, respectively. Univariate and multivariate statistical approaches were applied to find CZS differentially abundant proteins (DAP) and metabolites (DAM). Enrichment analysis (i.e., biological processes and molecular pathways) of the DAP and the DAM allowed us to identify the ECM organization and proteoglycans, amino acid metabolism, and arachidonic acid metabolism as CZS signatures. Five proteins and four metabolites were selected as CZS biomarker candidates. Serum multiomics analysis led us to propose nine putative biomarkers for CZS prognosis with high sensitivity and specificity.
Collapse
Affiliation(s)
- Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mauricio Quiñones-Vega
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jéssica de S Guedes
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Danielle Rocha
- Fernandes Figueira Institute, Fiocruz, Rio de Janeiro 22250-020, Brazil
| | - Letícia Guida
- Fernandes Figueira Institute, Fiocruz, Rio de Janeiro 22250-020, Brazil
| | | | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
6
|
Sosa-Acosta P, Nogueira FCS, Domont GB. Proteomics and Metabolomics in Congenital Zika Syndrome: A Review of Molecular Insights and Biomarker Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:63-85. [PMID: 38409416 DOI: 10.1007/978-3-031-50624-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Zika virus (ZIKV) infection can be transmitted vertically, leading to the development of congenital Zika syndrome (CZS) in infected fetuses. During the early stages of gestation, the fetuses face an elevated risk of developing CZS. However, it is important to note that late-stage infections can also result in adverse outcomes. The differences between CZS and non-CZS phenotypes remain poorly understood. In this review, we provide a summary of the molecular mechanisms underlying ZIKV infection and placental and blood-brain barriers trespassing. Also, we have included molecular alterations that elucidate the progression of CZS by proteomics and metabolomics studies. Lastly, this review comprises investigations into body fluid samples, which have aided to identify potential biomarkers associated with CZS.
Collapse
Affiliation(s)
- Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Kumar AR, Sheikh ED, Monson JW, Ligon SE, Talley RL, Dornisch EM, Howitz KJ, Damicis JR, Ieronimakis N, Unadkat JD. Understanding the Mechanism and Extent of Transplacental Transfer of (-)-∆ 9 -Tetrahydrocannabinol (THC) in the Perfused Human Placenta to Predict In Vivo Fetal THC Exposure. Clin Pharmacol Ther 2023; 114:446-458. [PMID: 37278090 DOI: 10.1002/cpt.2964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Cannabis use during pregnancy may cause fetal toxicity driven by in utero exposure to (-)-∆9 -tetrahydrocannabinol (THC) and its psychoactive metabolite, (±)-11-hydroxy-∆9 -THC (11-OH-THC). THC concentrations in the human term fetal plasma appear to be lower than the corresponding maternal concentrations. Therefore, we investigated whether THC and its metabolites are effluxed by placental transporters using the dual cotyledon, dual perfusion, term human placenta. The perfusates contained THC alone (5 μM) or in combination (100-250 nM) with its metabolites (100 nM or 250 nM 11-OH-THC, 100 nM COOH-THC), plus a marker of P-glycoprotein (P-gp) efflux (1 or 10 μM saquinavir), and a passive diffusion marker (106 μM antipyrine). All perfusions were conducted with (n = 7) or without (n = 16) a P-gp/BCRP (breast-cancer resistance protein) inhibitor, 4 μM valspodar. The maternal-fetal and fetal-maternal unbound cotyledon clearance indexes (m-f-CLu,c,i and f-m-CLu,c,i ) were normalized for transplacental antipyrine clearance. At 5 μM THC, the m-f-CLu,c,i , 5.1 ± 2.1, was significantly lower than the f-m-CLu,c,i , 13 ± 6.1 (P = 0.004). This difference remained in the presence of valspodar or when the lower THC concentrations were perfused. In contrast, neither metabolite, 11-OH-THC/COOH-THC, had significantly different m-f-CLu,c,i vs. f-m-CLu,c,i . Therefore, THC appears to be effluxed by placental transporter(s) not inhibitable by the P-gp/BCRP antagonist, valspodar, while 11-OH-THC and COOH-THC appear to passively diffuse across the placenta. These findings plus our previously quantified human fetal liver clearance, extrapolated to in vivo, yielded a THC fetal/maternal steady-state plasma concentration ratio of 0.28 ± 0.09, comparable to that observed in vivo, 0.26 ± 0.10.
Collapse
Affiliation(s)
- Aditya R Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Emily D Sheikh
- Department of Obstetrics/Gynecology, Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Joshua W Monson
- Department of Obstetrics/Gynecology, Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Sarah E Ligon
- Department of Obstetrics/Gynecology, Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Rebecca L Talley
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Elisabeth M Dornisch
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Kamy J Howitz
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Jennifer R Damicis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Nicholas Ieronimakis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Xu Y, He Y, Momben-Abolfath S, Vertrees D, Li X, Norton MG, Struble EB. Zika Virus Infection and Antibody Neutralization in FcRn Expressing Placenta and Engineered Cell Lines. Vaccines (Basel) 2022; 10:vaccines10122059. [PMID: 36560469 PMCID: PMC9781090 DOI: 10.3390/vaccines10122059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
As a developmental toxicant, Zika virus (ZIKV) attacks both the growing nervous system, causing congenital Zika syndrome, and the placenta, resulting in pathological changes and associated adverse fetal outcomes. There are no vaccines, antibodies, or other treatments for ZIKV, despite the potential for its re-emergence. Multiple studies have highlighted the risk of antibodies for enhancing ZIKV infection, including during pregnancy, but the mechanisms for such effects are not fully understood. We have focused on the ability of the neonatal Fc receptor (FcRn) to interact with ZIKV in the presence and absence of relevant antibodies. We found that ZIKV replication was higher in Marvin Darby Canine Kidney (MDCK) cells that overexpress FcRn compared to those that do not, and knocking down FcRn decreased ZIKV RNA production. In the placenta trophoblast BeWo cell line, ZIKV infection itself downregulated FcRn at the mRNA and protein levels. Addition of anti-ZIKV antibodies to MDCK/FcRn cells resulted in non-monotonous neutralization curves with neutralization attenuation and even enhancement of infection at higher concentrations. Non-monotonous neutralization was also seen in BeWo cells at intermediate antibody concentrations. Our studies highlight the underappreciated role FcRn plays in ZIKV infection and may have implications for anti-ZIKV prophylaxis and therapy in pregnant women.
Collapse
|