1
|
Hu K, Dong B, Wang Y, Meng X. The role of sperm protein in mammal fertilization: insights into gamete adhesion, membrane fusion and oocyte activation. ZYGOTE 2025:1-11. [PMID: 40356503 DOI: 10.1017/s0967199425000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Globally, numerous infertile couples have been assisted by extensive research on mammalian fertilization and the rapid development of Assisted Reproductive Technology (ART). However, 5%-15% of the couples that are selected for in vitro fertilization (IVF) experience a total fertilization failure (TFF), where no zygotes develop despite oocytes and semen parameters appear to be normal. Notably, an essential early event in fertilization is the binding of spermatozoa to the oocyte's external envelope, which followed by the spermatozoa-oocyte fusion. Meanwhile, oocyte activation is a crucial cellular process necessary to block polyspermy and start the development of the zygote. Improper membrane fusion of gametes has been demonstrated to be one of the mechanisms of TFF. Moreover, considering the large amount of research on sperm proteins in recent years, thus in this review, we characterize the role and molecular mechanisms of sperm proteins in the three key processes of gamete adhesion and fusion and oocyte activation, which would provide a comprehensive understanding of the role of sperm proteins in fertilization in mammals and a favourable reference for future studies in assisted reproduction due to FF.
Collapse
Affiliation(s)
- Kaiyue Hu
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Reproductive Medicine, Luoyang, China
| | - Bo Dong
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Andrology, Luoyang, China
| | - Yugang Wang
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Andrology, Luoyang, China
| | - Xiangrui Meng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
2
|
Blaha A, Schleiffer A, Pauli A. Conservation and divergence of the molecular regulators of the vertebrate fertilization synapse. Curr Opin Genet Dev 2025; 93:102352. [PMID: 40339255 DOI: 10.1016/j.gde.2025.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 05/10/2025]
Abstract
Fertilization - the process during which sperm and egg find each other, bind and eventually fuse - marks the beginning of a new individual. Research over the past years in vertebrates has shed new light on conserved and divergent molecular regulators that mediate the formation of the fertilization synapse, the close apposition of the two plasma membranes before fusion. Here, we review the known proteins that are required for sperm-egg interaction in mammals and fish from a phylogenetic perspective. While some sperm factors are only conserved in vertebrates and share phylogenetic and structural features, others have a longer evolutionary history. In contrast, the egg factors have changed even within vertebrates despite recognizing the preserved sperm machinery. Future functional work on these factors will be essential to understand the fusion mechanism of vertebrate sperm and egg.
Collapse
Affiliation(s)
- Andreas Blaha
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria. https://twitter.com/@PauliGroup
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
3
|
Inoue N, Saito T, Wada I. Noncanonical phagocytosis-like SEAL establishes mammalian fertilization. Cell Rep 2025; 44:115463. [PMID: 40138310 DOI: 10.1016/j.celrep.2025.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/01/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
In many forms of sexual reproduction, only the most robust spermatozoa, which overcome multiple physiological challenges, reach the oocyte. However, the exact mechanisms of gamete recognition and fusion are unknown. In the present study, we demonstrated that with the onset of gamete recognition, oocyte microvilli form lamellipodium-like structures, activate actin polymerization, and subsequently engulf spermatozoa to initiate gamete fusion. Gamete fusion occurred via a phagocytosis-like process we termed "sperm engulfment activated by IZUMO1-JUNO linkage and gamete fusion-related factors" (SEAL). Gamete adhesion was strictly regulated by binding of sperm IZUMO1 to oocyte JUNO, while SEAL was primarily mediated by sperm DCST1/2, SPACA6, TMEM95, FIMP, and TMEM81, the essential factors for gamete fusion. Interestingly, JUNO was almost depleted from oocyte surfaces in the region where SEAL enveloped spermatozoa by microvilli without actin polymerization. SEAL formation was recapitulated using JUNO-expressing K562 lymphocytic cells rather than oocytes. Together, these findings suggest that dynamic rearrangement of membrane components facilitates SEAL prior to successful fertilization.
Collapse
Affiliation(s)
- Naokazu Inoue
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Takako Saito
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
4
|
Lu Y, Ikawa M, Tang S. Allosteric inhibition of the IZUMO1-JUNO fertilization complex by the naturally occurring antisperm antibody OBF13. Proc Natl Acad Sci U S A 2025; 122:e2425952122. [PMID: 40042902 PMCID: PMC11912406 DOI: 10.1073/pnas.2425952122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Sperm IZUMO1 binds to egg JUNO, and this interaction is essential for mammalian fertilization. Isolated from a female mouse immunized with syngeneic sperm, the antisperm antibody OBF13 recognizes IZUMO1 and inhibits murine fertilization. How OBF13 interferes with sperm-egg interactions was unknown. Here, we present the X-ray crystal structure of IZUMO1 in complex with OBF13. OBF13 binds to the apex of the four-helix domain of IZUMO1, distant from the JUNO-binding site. Our crystal structure of OBF13-bound IZUMO1 resembles apo-IZUMO1 and differs from the structure of IZUMO1 in complex with JUNO. We identify that OBF13 carries a low level of somatic hypermutation, and through deep mutational scanning, we engineer an affinity-enhanced OBF13 variant. This OBF13 variant single-chain fragment variable decreases the apparent affinity of IZUMO1 for membrane-bound murine JUNO and blocks the binding of acrosome-reacted sperm to eggs, thereby preventing fertilization. We propose allostery between the OBF13 epitope and the JUNO-binding site. OBF13 inhibits a conformational change in IZUMO1, preventing fusion-competent sperm from adhering to murine eggs during fertilization. Surprisingly, murine IZUMO1 binds to hamster JUNO with an affinity ~20-fold higher than to murine JUNO. The decreased affinity caused by OBF13 of murine IZUMO1 for hamster JUNO is sufficient for murine sperm to bind to and fuse with hamster eggs. Our studies provide a structural and mechanistic framework for species-specific, allosteric inhibition of IZUMO1 by a naturally occurring antisperm antibody and offer insights into the development of immunocontraceptives.
Collapse
Affiliation(s)
- Yonggang Lu
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita,Osaka565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita,Osaka565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita,Osaka565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku,Tokyo108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita,Osaka565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita,Osaka565-0871, Japan
| | - Shaogeng Tang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
| |
Collapse
|
5
|
Sawada H, Saito T, Shimada Y, Nishimura H. Fertilization mechanisms in hermaphroditic ascidians and nematodes: Common mechanisms with mammals and plants. Curr Top Dev Biol 2025; 162:55-114. [PMID: 40180517 DOI: 10.1016/bs.ctdb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Most animals have male and female, whereas flowering plants are hermaphrodites. Exceptionally, a small population of invertebrates, including ascidians and nematodes, has hermaphrodite in reproductive strategies. Several ascidians exhibit strict self-sterility (or self-incompatibility), similar to flowering plants. Such a self-incompatibility mechanism in ascidian has been revealed to be very similar to those of flowering plants. Here, we describe the mechanisms of ascidian fertilization shared with invertebrates and mammals, as well as with plants. In the nematode Caenorhabditis elegans, having self-fertile hermaphrodite and male, several genes responsible for fertilization are homologous to those of mammals. Thus, novel proteins responsible for fertilization will be easily disclosed by the analyses of sterile mutants. In this review, we focus on the same or similar reproductive strategies by shedding lights on the common mechanisms of fertilization, particularly in hermaphrodites.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.
| | - Yoshihiro Shimada
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Hitoshi Nishimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan.
| |
Collapse
|
6
|
Khan R, Azhar M, Umair M. Decoding the Genes Orchestrating Egg and Sperm Fusion Reactions and Their Roles in Fertility. Biomedicines 2024; 12:2850. [PMID: 39767756 PMCID: PMC11673484 DOI: 10.3390/biomedicines12122850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Mammalian fertilization is a complex and highly regulated process that has garnered significant attention, particularly with advancements in assisted reproductive technologies such as in vitro fertilization (IVF). The fusion of egg and sperm involves a sequence of molecular and cellular events, including capacitation, the acrosome reaction, adhesion, and membrane fusion. Critical genetic factors, such as IZUMO1, JUNO (also known as FOLR4), CD9, and several others, have been identified as essential mediators in sperm-egg recognition and membrane fusion. Additionally, glycoproteins such as ZP3 within the zona pellucida are crucial for sperm binding and triggering the acrosome reaction. Recent gene-editing technologies, such as CRISPR/Cas9 and conditional knockout models, have facilitated the functional annotation of genes such as SPAM1 and ADAM family members, further elucidating their roles in capacitation and adhesion. Furthermore, the integration of CRISPR-Cas9 with omics technologies, including transcriptomics, proteomics, and lipidomics, has unlocked new avenues for identifying previously unknown genetic players and pathways involved in fertilization. For instance, transcriptomics can uncover gene expression profiles during gamete maturation, while proteomics identifies key protein interactions critical for processes such as capacitation and the acrosome reaction. Lipidomics adds another dimension by revealing how membrane composition influences gamete fusion. Together, these tools enable the discovery of novel genes, pathways, and molecular mechanisms involved in fertility, providing insights that were previously unattainable. These approaches not only deepen our molecular understanding of fertility mechanisms but also hold promise for refining diagnostic tools and therapeutic interventions for infertility. This review summarizes the current molecular insights into genes orchestrating fertilization and highlights cutting-edge methodologies that propel the field toward novel discoveries. By integrating these findings, this review aims to provide valuable knowledge for clinicians, researchers, and technologists in the field of reproductive biology and assisted reproductive technologies.
Collapse
Affiliation(s)
- Ranjha Khan
- Department of Pediatrics, University of California, San Francisco, CA94143, USA;
| | - Muhammad Azhar
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China;
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| |
Collapse
|
7
|
Deneke VE, Blaha A, Lu Y, Suwita JP, Draper JM, Phan CS, Panser K, Schleiffer A, Jacob L, Humer T, Stejskal K, Krssakova G, Roitinger E, Handler D, Kamoshita M, Vance TDR, Wang X, Surm JM, Moran Y, Lee JE, Ikawa M, Pauli A. A conserved fertilization complex bridges sperm and egg in vertebrates. Cell 2024; 187:7066-7078.e22. [PMID: 39423812 DOI: 10.1016/j.cell.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Fertilization, the basis for sexual reproduction, culminates in the binding and fusion of sperm and egg. Although several proteins are known to be crucial for this process in vertebrates, the molecular mechanisms remain poorly understood. Using an AlphaFold-Multimer screen, we identified the protein Tmem81 as part of a conserved trimeric sperm complex with the essential fertilization factors Izumo1 and Spaca6. We demonstrate that Tmem81 is essential for male fertility in zebrafish and mice. In line with trimer formation, we show that Izumo1, Spaca6, and Tmem81 interact in zebrafish sperm and that the human orthologs interact in vitro. Notably, complex formation creates the binding site for the egg fertilization factor Bouncer in zebrafish. Together, our work presents a comprehensive model for fertilization across vertebrates, where a conserved sperm complex binds to divergent egg proteins-Bouncer in fish and JUNO in mammals-to mediate sperm-egg interaction.
Collapse
Affiliation(s)
- Victoria E Deneke
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Andreas Blaha
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Yonggang Lu
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan; Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Johannes P Suwita
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Jonne M Draper
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Clara S Phan
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Karin Panser
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Laurine Jacob
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Theresa Humer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karel Stejskal
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Gabriela Krssakova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Elisabeth Roitinger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Maki Kamoshita
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tyler D R Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xinyin Wang
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Laboratory of Reproductive Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
8
|
Shah AN, Leesch F, Lorenzo-Orts L, Grundmann L, Novatchkova M, Haselbach D, Calo E, Pauli A. A dual ribosomal system in the zebrafish soma and germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610041. [PMID: 39257781 PMCID: PMC11383705 DOI: 10.1101/2024.08.29.610041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Protein synthesis during vertebrate embryogenesis is driven by ribosomes of two distinct origins: maternal ribosomes synthesized during oogenesis and stored in the egg, and somatic ribosomes, produced by the developing embryo after zygotic genome activation (ZGA). In zebrafish, these two ribosome types are expressed from different genomic loci and also differ in their ribosomal RNA (rRNA) sequence. To characterize this dual ribosome system further, we examined the expression patterns of maternal and somatic rRNAs during embryogenesis and in adult tissues. We found that maternal rRNAs are not only expressed during oogenesis but are continuously produced in the zebrafish germline. Proteomic analyses of maternal and somatic ribosomes unveiled differences in core ribosomal protein composition. Most nucleotide differences between maternal and somatic rRNAs are located in the flexible, structurally not resolved expansion segments. Our in vivo data demonstrated that both maternal and somatic ribosomes can be translationally active in the embryo. Using transgenically tagged maternal or somatic ribosome subunits, we experimentally confirm the presence of hybrid 80S ribosomes composed of 40S and 60S subunits from both origins and demonstrate the preferential in vivo association of maternal ribosomes with germline-specific transcripts. Our study identifies a distinct type of ribosomes in the zebrafish germline and thus presents a foundation for future explorations into possible regulatory mechanisms and functional roles of heterogeneous ribosomes.
Collapse
Affiliation(s)
- Arish N. Shah
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Friederike Leesch
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Laura Lorenzo-Orts
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Lorenz Grundmann
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Andrea Pauli
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
9
|
Elofsson A, Han L, Bianchi E, Wright GJ, Jovine L. Deep learning insights into the architecture of the mammalian egg-sperm fusion synapse. eLife 2024; 13:RP93131. [PMID: 38666763 PMCID: PMC11052572 DOI: 10.7554/elife.93131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.
Collapse
Affiliation(s)
- Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm UniversitySolnaSweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska InstitutetHuddingeSweden
| | - Enrica Bianchi
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| | - Gavin J Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska InstitutetHuddingeSweden
| |
Collapse
|
10
|
Bianchi E, Jiménez-Movilla M, Cots-Rodríguez P, Viola C, Wright GJ. No evidence for a direct extracellular interaction between human Fc receptor-like 3 (MAIA) and the sperm ligand IZUMO1. SCIENCE ADVANCES 2024; 10:eadk6352. [PMID: 38381819 PMCID: PMC10881024 DOI: 10.1126/sciadv.adk6352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Fertilization involves the recognition and fusion of sperm and egg to form a previously unidentified organism. In mammals, surface molecules on the sperm and egg have central roles, and while adhesion is mediated by the IZUMO1-JUNO sperm-egg ligand-receptor pair, the molecule/s responsible for membrane fusion remain mysterious. Recently, MAIA/FCRL3 was identified as a mammalian egg receptor, which bound IZUMO1 and JUNO and might therefore have a bridging role in gamete recognition and fusion. Here, we use sensitive assays designed to detect extracellular protein binding to investigate the interactions between MAIA and both IZUMO1 and JUNO. Despite using reagents with demonstrable biochemical activity, we did not identify any direct binding between MAIA/FCRL3 and either IZUMO1 or JUNO. We also observed no fusogenic activity of MAIA/FCRL3 in a cell-based membrane fusion assay. Our findings encourage caution in further investigations on the role played by MAIA/FCRL3 in fertilization.
Collapse
Affiliation(s)
- Enrica Bianchi
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, UK
| | - Maria Jiménez-Movilla
- Department of Cell Biology and Histology, Medical School, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Paula Cots-Rodríguez
- Department of Cell Biology and Histology, Medical School, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Cristina Viola
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, UK
| | - Gavin J. Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
11
|
Brukman NG, Valansi C, Podbilewicz B. Sperm induction of somatic cell-cell fusion as a novel functional test. eLife 2024; 13:e94228. [PMID: 38265078 PMCID: PMC10883674 DOI: 10.7554/elife.94228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
The fusion of mammalian gametes requires the interaction between IZUMO1 on the sperm and JUNO on the oocyte. We have recently shown that ectopic expression of mouse IZUMO1 induces cell-cell fusion and that sperm can fuse to fibroblasts expressing JUNO. Here, we found that the incubation of mouse sperm with hamster fibroblasts or human epithelial cells in culture induces the fusion between these somatic cells and the formation of syncytia, a pattern previously observed with some animal viruses. This sperm-induced cell-cell fusion requires a species-matching JUNO on both fusing cells, can be blocked by an antibody against IZUMO1, and does not rely on the synthesis of new proteins. The fusion is dependent on the sperm's fusogenic capacity, making this a reliable, fast, and simple method for predicting sperm function during the diagnosis of male infertility.
Collapse
Affiliation(s)
- Nicolas G Brukman
- Department of Biology, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Clari Valansi
- Department of Biology, Technion-Israel Institute of TechnologyHaifaIsrael
| | | |
Collapse
|
12
|
Ogawa Y, Lu Y, Kiyozumi D, Chang HY, Ikawa M. CRISPR/Cas9-mediated genome editing reveals seven testis-enriched transmembrane glycoproteins dispensable for male fertility in mice. Andrology 2023:10.1111/andr.13564. [PMID: 38084666 PMCID: PMC11166886 DOI: 10.1111/andr.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/11/2023] [Indexed: 06/13/2024]
Abstract
BACKGROUND Mammalian fertilization is mediated by multiple sperm acrosomal proteins, many of which are testis-enriched transmembrane glycoproteins expressed during spermiogenesis (e.g., Izumo sperm-egg fusion 1, Sperm acrosome associated 6, and Transmembrane protein 95). METHODS We hypothesized that proteins with these features might have a role in sperm-egg interaction and thus carried out an in-silico screen based on multiple public databases. We generated knockout mouse lines lacking seven candidate proteins by the CRISPR/Cas9 system and conducted detailed analyses on the fecundity of the knockout males, as well as their testis appearance and weight, testis and epididymis histology, and sperm motility and morphology. RESULTS Through the in-silico screen, we identified 4932438H23Rik, A disintegrin and metalloproteinase domain-containing protein 29, SAYSvFN domain-containing protein 1, Sel-1 suppressor of lin-12-like 2 (C. elegans), Testis-expressed protein 2, Transmembrane and immunoglobulin domain-containing 3, and Zinc and ring finger 4. Phenotypic analyses unveiled that the knockout males showed normal testis gross appearance, normal testis and epididymis histology, and normal sperm morphology and motility. Fertility tests further indicated that the knockout male mice could sire pups with normal litter sizes when paired with wild-type females. DISCUSSION AND CONCLUSION These findings suggest that these seven proteins are individually dispensable for male reproduction and fertilization. Future studies are warranted to devise advanced in-silico screening approaches that permit effective identification of gamete fusion-required sperm proteins.
Collapse
Affiliation(s)
- Yo Ogawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yonggang Lu
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daiji Kiyozumi
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-0805, Japan
| | - Hsin-Yi Chang
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
13
|
Pacak P, Kluger C, Vogel V. Molecular dynamics of JUNO-IZUMO1 complexation suggests biologically relevant mechanisms in fertilization. Sci Rep 2023; 13:20342. [PMID: 37990051 PMCID: PMC10663542 DOI: 10.1038/s41598-023-46835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
JUNO-IZUMO1 binding is the first known physical link created between the sperm and egg membranes in fertilization, however, how this initiates sperm-egg fusion remains elusive. As advanced structural insights will help to combat the infertility crisis, or advance fertility control, we employed all-atom Molecular Dynamics (MD) to derive dynamic structural insights that are difficult to obtain experimentally. We found that the hydrated JUNO-IZUMO1 interface is composed of a large set of short-lived non-covalent interactions. The contact interface is destabilized by strategically located point mutations, as well as by Zn2+ ions, which shift IZUMO1 into the non-binding "boomerang" conformation. We hypothesize that the latter might explain how the transient zinc spark, as released after sperm entry into the oocyte, might contribute to block polyspermy. To address a second mystery, we performed another set of simulations, as it was previously suggested that JUNO in solution is unable to bind to folate despite it belonging to the folate receptor family. MD now suggests that JUNO complexation with IZUMO1 opens up the binding pocket thereby enabling folate insertion. Our MD simulations thus provide crucial new hypotheses how the dynamics of the JUNO-IZUMO1 complex upon solvation might regulate fertility.
Collapse
Affiliation(s)
- Paulina Pacak
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Carleen Kluger
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität, München, Munich, Germany
- Evotec München GmbH, Neuried, Germany
| | - Viola Vogel
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
15
|
Gert KRB, Panser K, Surm J, Steinmetz BS, Schleiffer A, Jovine L, Moran Y, Kondrashov F, Pauli A. Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nat Commun 2023; 14:3506. [PMID: 37316475 DOI: 10.1038/s41467-023-39317-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Molecular compatibility between gametes is a prerequisite for successful fertilization. As long as a sperm and egg can recognize and bind each other via their surface proteins, gamete fusion may occur even between members of separate species, resulting in hybrids that can impact speciation. The egg membrane protein Bouncer confers species specificity to gamete interactions between medaka and zebrafish, preventing their cross-fertilization. Here, we leverage this specificity to uncover distinct amino acid residues and N-glycosylation patterns that differentially influence the function of medaka and zebrafish Bouncer and contribute to cross-species incompatibility. Curiously, in contrast to the specificity observed for medaka and zebrafish Bouncer, seahorse and fugu Bouncer are compatible with both zebrafish and medaka sperm, in line with the pervasive purifying selection that dominates Bouncer's evolution. The Bouncer-sperm interaction is therefore the product of seemingly opposing evolutionary forces that, for some species, restrict fertilization to closely related fish, and for others, allow broad gamete compatibility that enables hybridization.
Collapse
Affiliation(s)
- Krista R B Gert
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | - Karin Panser
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Joachim Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Benjamin S Steinmetz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Fyodor Kondrashov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Evolutionary and Synthetic Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| |
Collapse
|
16
|
Chen L, Song J, Zhang J, Luo Z, Chen X, Zhou C, Shen X. Spermatogenic cell-specific SPACA4 is essential for efficient sperm-zona pellucida binding in vitro. Front Cell Dev Biol 2023; 11:1204017. [PMID: 37377732 PMCID: PMC10291262 DOI: 10.3389/fcell.2023.1204017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Fertilization is a complex and highly regulated process that involves a series of molecular interactions between sperm and oocytes. However, the mechanisms of proteins involved in human fertilization, such as that of testis-specific SPACA4, remain poorly understood. Here we demonstrated that SPACA4 is a spermatogenic cell-specific protein. SPACA4 is expressed during spermatogenesis, upregulated in early-stage spermatids, and downregulated in elongating spermatids. SPACA4 is an intracellular protein that locates in the acrosome and is lost during the acrosome reaction. Incubation with antibodies against SPACA4 inhibited the binding of spermatozoa to zona pellucida. SPACA4 protein expression levels across different semen parameters were similar but varied significantly among patients. A prospective clinical study found no association between SPACA4 protein levels and fertilization or cleavage rates. Thus, the study suggests a novel function for SPACA4 in human fertilization in a non-dose-dependent manner. However, a larger clinical trial is required to evaluate the potential use of sperm SPACA4 protein levels to predict fertilization potential.
Collapse
Affiliation(s)
- Lin Chen
- Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junli Song
- Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinglei Zhang
- Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zicong Luo
- Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuren Chen
- Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Canquan Zhou
- Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory for Reproductive Medicine, Guangzhou, China
- Guangdong Provincial Clinical Medical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Xiaoting Shen
- Reproductive Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory for Reproductive Medicine, Guangzhou, China
- Guangdong Provincial Clinical Medical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| |
Collapse
|
17
|
1700029I15Rik orchestrates the biosynthesis of acrosomal membrane proteins required for sperm-egg interaction. Proc Natl Acad Sci U S A 2023; 120:e2207263120. [PMID: 36787362 PMCID: PMC9974436 DOI: 10.1073/pnas.2207263120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Sperm acrosomal membrane proteins, such as Izumo sperm-egg fusion 1 (IZUMO1) and sperm acrosome-associated 6 (SPACA6), play essential roles in mammalian gamete binding or fusion. How their biosynthesis is regulated during spermiogenesis has largely remained elusive. Here, we show that 1700029I15Rik knockout male mice are severely subfertile and their spermatozoa do not fuse with eggs. 1700029I15Rik is a type-II transmembrane protein expressed in early round spermatids but not in mature spermatozoa. It interacts with proteins involved in N-linked glycosylation, disulfide isomerization, and endoplasmic reticulum (ER)-Golgi trafficking, suggesting a potential role in nascent protein processing. The ablation of 1700029I15Rik destabilizes non-catalytic subunits of the oligosaccharyltransferase (OST) complex that are pivotal for N-glycosylation. The knockout testes exhibit normal expression of sperm plasma membrane proteins, but decreased abundance of multiple acrosomal membrane proteins involved in fertilization. The knockout sperm show upregulated chaperones related to ER-associated degradation (ERAD) and elevated protein ubiquitination; strikingly, SPACA6 becomes undetectable. Our results support for a specific, 1700029I15Rik-mediated pathway underpinning the biosynthesis of acrosomal membrane proteins during spermiogenesis.
Collapse
|
18
|
Lu Y, Shimada K, Tang S, Zhang J, Ogawa Y, Noda T, Shibuya H, Ikawa M. 1700029I15Rik orchestrates the biosynthesis of acrosomal membrane proteins required for sperm-egg interaction. Proc Natl Acad Sci U S A 2023. [PMID: 36787362 DOI: 10.1101/2022.04.15.488448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Sperm acrosomal membrane proteins, such as Izumo sperm-egg fusion 1 (IZUMO1) and sperm acrosome-associated 6 (SPACA6), play essential roles in mammalian gamete binding or fusion. How their biosynthesis is regulated during spermiogenesis has largely remained elusive. Here, we show that 1700029I15Rik knockout male mice are severely subfertile and their spermatozoa do not fuse with eggs. 1700029I15Rik is a type-II transmembrane protein expressed in early round spermatids but not in mature spermatozoa. It interacts with proteins involved in N-linked glycosylation, disulfide isomerization, and endoplasmic reticulum (ER)-Golgi trafficking, suggesting a potential role in nascent protein processing. The ablation of 1700029I15Rik destabilizes non-catalytic subunits of the oligosaccharyltransferase (OST) complex that are pivotal for N-glycosylation. The knockout testes exhibit normal expression of sperm plasma membrane proteins, but decreased abundance of multiple acrosomal membrane proteins involved in fertilization. The knockout sperm show upregulated chaperones related to ER-associated degradation (ERAD) and elevated protein ubiquitination; strikingly, SPACA6 becomes undetectable. Our results support for a specific, 1700029I15Rik-mediated pathway underpinning the biosynthesis of acrosomal membrane proteins during spermiogenesis.
Collapse
Affiliation(s)
- Yonggang Lu
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kentaro Shimada
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Shaogeng Tang
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Yo Ogawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Taichi Noda
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Division of Reproductive Biology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Reproductive Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Maniates KA, Singson A. Where are all the egg genes? Front Cell Dev Biol 2023; 11:1107312. [PMID: 36819103 PMCID: PMC9936096 DOI: 10.3389/fcell.2023.1107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Complementary forward and reverse genetic approaches in several model systems have resulted in a recent burst of fertilization gene discovery. The number of genetically validated gamete surface molecules have more than doubled in the last few years. All the genetically validated sperm fertilization genes encode transmembrane or secreted molecules. Curiously, the discovery of genes that encode oocyte molecules have fallen behind that of sperm genes. This review discusses potential experimental biases and inherent biological reasons that could slow egg fertilization gene discovery. Finally, we shed light on current strategies to identify genes that may result in further identification of egg fertilization genes.
Collapse
Affiliation(s)
- Katherine A. Maniates
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | | |
Collapse
|
20
|
Brukman NG, Nakajima KP, Valansi C, Flyak K, Li X, Higashiyama T, Podbilewicz B. A novel function for the sperm adhesion protein IZUMO1 in cell-cell fusion. J Cell Biol 2022; 222:213693. [PMID: 36394541 PMCID: PMC9671554 DOI: 10.1083/jcb.202207147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Mammalian sperm-egg adhesion depends on the trans-interaction between the sperm-specific type I glycoprotein IZUMO1 and its oocyte-specific GPI-anchored receptor JUNO. However, the mechanisms and proteins (fusogens) that mediate the following step of gamete fusion remain unknown. Using live imaging and content mixing assays in a heterologous system and structure-guided mutagenesis, we unveil an unexpected function for IZUMO1 in cell-to-cell fusion. We show that IZUMO1 alone is sufficient to induce fusion, and that this ability is retained in a mutant unable to bind JUNO. On the other hand, a triple mutation in exposed aromatic residues prevents this fusogenic activity without impairing JUNO interaction. Our findings suggest a second function for IZUMO1 as a unilateral mouse gamete fusogen.
Collapse
Affiliation(s)
- Nicolas G. Brukman
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kohdai P. Nakajima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Clari Valansi
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kateryna Flyak
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Xiaohui Li
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan,Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi, Japan,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
21
|
Abstract
In sexually reproducing organisms, the genetic information is transmitted from one generation to the next via the merger of male and female gametes. Gamete fusion is a two-step process involving membrane recognition and apposition through ligand-receptor interactions and lipid mixing mediated by fusion proteins. HAP2 (also known as GCS1) is a bona fide gamete fusogen in flowering plants and protists. In vertebrates, a multitude of surface proteins have been demonstrated to be pivotal for sperm-egg fusion, yet none of them exhibit typical fusogenic features. In this Cell Science at a Glance article and the accompanying poster, we summarize recent advances in the mechanistic understanding of gamete fusion in eukaryotes, with a particular focus on mammalian species.
Collapse
Affiliation(s)
- Yonggang Lu
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Reproductive Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Abstract
Membrane fusion of sperm and eggs is pivotal in sexual reproduction. Tmem95 knockout mice produce sperm that can bind to, but do not fuse with, eggs. How TMEM95 facilitates membrane fusion was unknown. We show here that human TMEM95 binds eggs. Our crystal structure of TMEM95 suggests a region where this binding may occur. We develop monoclonal antibodies against TMEM95 that impair sperm-egg fusion but do not block sperm-egg binding. Thus, we propose that there is a receptor-mediated interaction of sperm TMEM95 with eggs, and that this interaction may have a direct role in membrane fusion. Our work suggests avenues for the identification of the TMEM95 egg receptor and the development of infertility treatments and contraceptives for humans. Tmem95 encodes a sperm acrosomal membrane protein, whose knockout has a male-specific sterility phenotype in mice. Tmem95 knockout murine sperm can bind to, but do not fuse with, eggs. How TMEM95 plays a role in membrane fusion of sperm and eggs has remained elusive. Here, we utilize a sperm penetration assay as a model system to investigate the function of human TMEM95. We show that human TMEM95 binds to hamster egg membranes, providing evidence for a TMEM95 receptor on eggs. Using X-ray crystallography, we reveal an evolutionarily conserved, positively charged region of TMEM95 as a putative receptor-binding surface. Amino acid substitutions within this region of TMEM95 ablate egg-binding activity. We identify monoclonal antibodies against TMEM95 that reduce the number of human sperm fused with hamster eggs in sperm penetration assays. Strikingly, these antibodies do not block binding of sperm to eggs. Taken together, these results provide strong evidence for a specific, receptor-mediated interaction of sperm TMEM95 with eggs and suggest that this interaction may have a role in facilitating membrane fusion during fertilization.
Collapse
|
23
|
Vance TDR, Yip P, Jiménez E, Li S, Gawol D, Byrnes J, Usón I, Ziyyat A, Lee JE. SPACA6 ectodomain structure reveals a conserved superfamily of gamete fusion-associated proteins. Commun Biol 2022; 5:984. [PMID: 36115925 PMCID: PMC9482655 DOI: 10.1038/s42003-022-03883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
SPACA6 is a sperm-expressed surface protein that is critical for gamete fusion during mammalian sexual reproduction. Despite this fundamental role, little is known about how SPACA6 specifically functions. We elucidated the crystal structure of the SPACA6 ectodomain at 2.2-Å resolution, revealing a two-domain protein containing a four-helix bundle and Ig-like β-sandwich connected via a quasi-flexible linker. This structure is reminiscent of IZUMO1, another gamete fusion-associated protein, making SPACA6 and IZUMO1 founding members of a superfamily of fertilization-associated proteins, herein dubbed the IST superfamily. The IST superfamily is defined structurally by its distorted four-helix bundle and a pair of disulfide-bonded CXXC motifs. A structure-based search of the AlphaFold human proteome identified more protein members to this superfamily; remarkably, many of these proteins are linked to gamete fusion. The SPACA6 structure and its connection to other IST-superfamily members provide a missing link in our knowledge of mammalian gamete fusion.
Collapse
Affiliation(s)
- Tyler D R Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Patrick Yip
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elisabet Jiménez
- Institute of Molecular Biology of Barcelona (IBMB-CSIC), 08028, Barcelona, Spain
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Diana Gawol
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Isabel Usón
- Institute of Molecular Biology of Barcelona (IBMB-CSIC), 08028, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Ahmed Ziyyat
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
- Service d'Histologie, d'Embryologie, Biologie de la Reproduction, AP-HP, Hôpital Cochin, F-75014, Paris, France
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Akhtar MF, Ma Q, Li Y, Chai W, Zhang Z, Li L, Wang C. Effect of Sperm Cryopreservation in Farm Animals Using Nanotechnology. Animals (Basel) 2022; 12:ani12172277. [PMID: 36077996 PMCID: PMC9454492 DOI: 10.3390/ani12172277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Sperm cryopreservation is one of the sublime biotechnologies for assisted reproduction. In recent decades, there has been an increasing trend in the use of preserved semen. Post-thaw semen quality and values vary among animals of the same species. Similarly, there are species-specific variations in sperm morphology, i.e., sperm head, kinetic properties, plasma membrane integrity, and freezability. Similarly, the viability of sperm varies in the female reproductive tract, i.e., from a few hours (in cattle) to several days (in chicken). Various steps of sperm cryopreservation, i.e., male health examination, semen collection, dilution, semen centrifugation, pre- and post-thaw semen quality evaluation, lack standardized methodology, that result in differences in opinions. Assisted reproductive technologies (ART), including sperm preservation, are not applied to the same extent in commercial poultry species as in mammalian species for management and economic reasons. Sperm preservation requires a reduction in physiological metabolism by extending the viable duration of the gametes. Physiologically and morphologically, spermatozoa are unique in structure and function to deliver paternal DNA and activate oocytes after fertilization. Variations in semen and sperm composition account for better handling of semen, which can aid in improved fertility. This review aims to provide an update on sperm cryopreservation in farm animals.
Collapse
|