1
|
Peng S, Long M, Chen Q, Yin Z, Zeng C, Zhang W, Wen Q, Zhang X, Ke W, Wu Y. Perspectives on cancer therapy-synthetic lethal precision medicine strategies, molecular mechanisms, therapeutic targets and current technical challenges. Cell Death Discov 2025; 11:179. [PMID: 40240755 PMCID: PMC12003663 DOI: 10.1038/s41420-025-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/27/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, synthetic lethality has become an important theme in the field of targeted cancer therapy. Synthetic lethality refers to simultaneous defects in two or more genes leading to cell death, whereas defects in any single gene do not lead to cell death. Taking advantage of the genetic vulnerability that exists within cancer cells, it theoretically has no negative impact on healthy cells and has fewer side effects than non-specific chemotherapy. Currently, targeted cancer therapies focus on inhibiting key pathways in cancer. However, it has been found that over-activation of oncogenic-related signaling pathways can also induce cancer cell death, which is a major breakthrough in the new field of targeted therapies. In this review, we summarize the conventional gene targets in synthetic lethality (PARP, ATR, ATM, WEE1, PRMT) and provide an in-depth analysis of their latest potential mechanisms. We explore the impact of over-activation of pathways such as PI3K/AKT, MAPK, and WNT on cancer cell survival, and present the technical challenges of current research. Important theoretical foundations and insights are provided for the application of synthetic lethal strategies in cancer therapy, as well as future research directions.
Collapse
Affiliation(s)
- Shixuan Peng
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Mengle Long
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Qisheng Chen
- Department of Anesthesiology, The First People's Hospital of Chenzhou, The Chenzhou Affiliated Hospital, Hengyang Medical School, University of South China, Chenzhou, Hunan, 423000, China
| | - Zhijian Yin
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Chang Zeng
- Department of Pathology, Yueyang Central Hospital, Yueyang, China
| | - Wanyong Zhang
- Department of Pathology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Qingyang Wen
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Xinwen Zhang
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Weiqi Ke
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
| | - Yongjun Wu
- Department of Pathology, Xiangtan Center Hospital, Xiangtan City, Hunan province, 411100, China.
- Department of Pathology, The Affiliated Hospital of Hunan University, Xiangtan City, Hunan Province, China.
| |
Collapse
|
2
|
YOUSUF AMJAD, KHAN NAJEEBULLAH. Targeting MDM2-p53 interaction for breast cancer therapy. Oncol Res 2025; 33:851-861. [PMID: 40191734 PMCID: PMC11964874 DOI: 10.32604/or.2025.058956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/19/2024] [Indexed: 04/09/2025] Open
Abstract
Breast cancer is a significant global concern, with limited effective treatment options. Therefore, therapies with high efficacy and low complications, unlike the existing chemotherapies, are urgently required. To address this issue, advances have been made in therapies targeting molecular pathways related to the murine double minute 2 proto-oncogene (MDM2)-tumor proteinp53 (TP53) interaction. This review aims to investigate the efficacy of MDM2 inhibition in restoring TP53 activity in breast cancer cells, as evidenced by clinical studies, reviews, and trials. TP53 is a tumor suppressor and MDM2 facilitates proteasomal degradation of TP53. MDM2 and TP53 activity is tightly regulated. However, cancerous breast cells overexpress MDM2 through five hypothesized mechanisms. Consequently, TP53 levels decrease with increased tumor cell proliferation. Three strategies have been identified for controlling MDM2 upregulation in cells with wild-type or mutated TP53. MDM2 inhibitors (MDM2i) are administered in combination with existing chemotherapies to reduce their effects on healthy cells. Few clinical and preclinical studies have been conducted using MDM2i, which necessitates high-quality clinical trials to support their therapeutic potential in breast cancer therapy.
Collapse
Affiliation(s)
- AMJAD YOUSUF
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, 41477, Saudi Arabia
| | - NAJEEB ULLAH KHAN
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Peshawar, 25130, Pakistan
| |
Collapse
|
3
|
Belmonte B, Spada S, Allavena P, Benelli M, Bronte V, Casorati G, D'Ambrosio L, Ferrara R, Mondino A, Nisticò P, Sommaggio R, Tazzari M, Tripodo C, Sica A, Ferrucci PF. Highlighting recent achievements to advance more effective cancer immunotherapy. J Exp Clin Cancer Res 2025; 44:57. [PMID: 39966867 PMCID: PMC11834592 DOI: 10.1186/s13046-025-03316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
From 17 to 19th October 2024, the XXI Italian Network for Bio-Immunotherapy of Tumors Meeting (NIBIT) took place in Palermo, in the marvelous historical location of Teatro Politeama, under the auspices of the Italian Association of Medical Oncology (AIOM), Italian Association of Cancer Research (AIRC), Fondazione Pezcoller, Italian Alliance against Cancer (ACC), Italian Lymphoma Foundation (FIL), Grazia Focacci Foundation and Melagioco Foundation. The conference covered a spectrum of topics ranging from target discovery to therapeutic advances in immuno-oncology, bringing world-renowned experts to present groundbreaking innovations in basic, translational, and clinical cancer research. Six sessions focused on cellular therapies, digital pathology, vaccines, tertiary lymphoid structures, and microenvironment in order to get deep insights on how to personalize diagnosis and therapies in the clinical setting. Young investigators had the opportunity to meet and greet their mentors, promoting the synergy of the academic and industrial sectors within the national and international panorama, discussing the application of artificial intelligence on multi-specific antibodies, drug conjugates, and antibody fusion proteins that are advancing the efficacy of precision medicine and minimizing off-target effects.
Collapse
Affiliation(s)
- Beatrice Belmonte
- Tumor Immunology Unit, Departmentof Health Sciences, University of Palermo, Palermo, Italy
| | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | - Giulia Casorati
- Experimental Immunology Unit, DivisionofImmunology,TransplantationandInfectiousDiseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Roberto Ferrara
- Department of Medical Oncology, ScientificInstituteforResearch,HospitalizationandHealthcare(IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Sommaggio
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Marcella Tazzari
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori" S.r.l., Meldola, Italy
| | - Claudio Tripodo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Heamato-Oncology, University of Milan, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro", Novara, Italy.
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | | |
Collapse
|
4
|
Seymour L, Nuru N, Johnson KR, Gutierrez JMV, Njoku VT, Darie CC, Neagu AN. Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia. Molecules 2025; 30:645. [PMID: 39942749 PMCID: PMC11820228 DOI: 10.3390/molecules30030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast cancer (BC) progression and a general hallmark of solid tumors. Thus, intratumoral hypoxia is an important determinant of invasion, metastasis, treatment failure, prognosis, and patient mortality. Acquisition of the epithelial-mesenchymal transition (EMT) phenotype is also a consequence of tumor hypoxia. The cellular response to hypoxia is mainly regulated by the hypoxia signaling pathway, governed by hypoxia-inducible factors (HIFs), mainly HIF1α. HIFs are a family of transcription factors (TFs), which induce the expression of target genes involved in cell survival and proliferation, metabolic reprogramming, angiogenesis, resisting apoptosis, invasion, and metastasis. HIF1α cooperates with a large number of other TFs. In this review, we focused on the crosstalk and cooperation between HIF1α and other TFs involved in the cellular response to hypoxia in BC. We identified a cluster of TFs, proposed as the HIF1α-TF interactome, that orchestrates the transcription of target genes involved in hypoxia, due to their post-translational modifications (PTMs), including phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation, hydroxylation, acetylation, S-nitrosylation, and palmitoylation. PTMs of these HIF1α-related TFs drive their stability and activity, degradation and turnover, and the bidirectional translocation between the cytoplasm or plasma membrane and nucleus of BC cells, as well as the transcription/activation of proteins encoded by oncogenes or inactivation of tumor suppressor target genes. Consequently, PTMs of TFs in the HIF1α interactome are crucial regulatory mechanisms that drive the cellular response to oxygen deprivation in BC cells.
Collapse
Affiliation(s)
- Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Jennifer Michel Villalpando Gutierrez
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Victor Tochukwu Njoku
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
5
|
Tokat ÜM, Adibi A, Aydın E, Bilgiç ŞN, Özgü E, Tutar O, Demiray M. Case report: Near-complete response to neratinib-based treatment in HR-positive HER2-amplified metastatic breast cancer refractory to trastuzumab deruxtecan. Front Oncol 2025; 14:1484750. [PMID: 39931207 PMCID: PMC11808248 DOI: 10.3389/fonc.2024.1484750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/27/2024] [Indexed: 02/13/2025] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality among women. The backbone of first-line treatment in HR+/HER2+ BC is dual anti-HER2 blockade combined with taxane chemotherapy. Although this regimen exhibits high rates of response and disease control in both HR+ and HR- cohorts, some patients could have intrinsic or develop acquired resistance to trastuzumab and/or pertuzumab. Here, we achieved a near-complete response in HR+ HER2-amplified and overexpressing metastatic BC twice through molecular tumor board (MTB) discussions: initially, with trastuzumab deruxtecan (T-DXd) when HER2 IHC was positive, and, then, with neratinib plus fulvestrant plus paclitaxel when IHC was negative. Our case presents GATA3 and NOTCH2 mutations, MCL1 and CKS1B amplifications, as well as ERBB3/KRAS overexpression and ER signaling as potential new mechanisms of resistance to T-DXd. Furthermore, we demonstrated that triplet combination could induce a remarkable response in the T-DXd-refractory setting, which could be explored in future clinical trials in HR+ and HER2-activated (by RNA or protein overexpression, amplification, and mutation) patients. Our case also highlights the importance of the MTBs to dynamically and reactively manage the course of disease and treatment on a per-patient basis.
Collapse
Affiliation(s)
- Ünal Metin Tokat
- Precision Oncology Center, Medicana Health Group, Istanbul, Türkiye
| | - Ashkan Adibi
- Precision Oncology Center, Medicana Health Group, Istanbul, Türkiye
- Division of Cancer Genetics, Department of Basic Oncology, Institute of Oncology, Istanbul University, Istanbul, Türkiye
| | - Esranur Aydın
- Precision Oncology Center, Medicana Health Group, Istanbul, Türkiye
| | | | - Eylül Özgü
- Precision Oncology Center, Medicana Health Group, Istanbul, Türkiye
| | - Onur Tutar
- Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Mutlu Demiray
- Precision Oncology Center, Medicana Health Group, Istanbul, Türkiye
| |
Collapse
|
6
|
Han DJ, Kim S, Lee SY, Moon Y, Kang SJ, Yoo J, Jeong HY, Cho HJ, Jeon JY, Sim BC, Kim J, Lee S, Xi R, Kim TM. Evolutionary dependency of cancer mutations in gene pairs inferred by nonsynonymous-synonymous mutation ratios. Genome Med 2024; 16:103. [PMID: 39160568 PMCID: PMC11331682 DOI: 10.1186/s13073-024-01376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Determining the impact of somatic mutations requires understanding the functional relationship of genes acquiring mutations; however, it is largely unknown how mutations in functionally related genes influence each other. METHODS We employed non-synonymous-to-synonymous or dNdS ratios to evaluate the evolutionary dependency (ED) of gene pairs, assuming a mutation in one gene of a gene pair can affect the evolutionary fitness of mutations in its partner genes as mutation context. We employed PanCancer- and tumor type-specific mutational profiles to infer the ED of gene pairs and evaluated their biological relevance with respect to gene dependency and drug sensitivity. RESULTS We propose that dNdS ratios of gene pairs and their derived cdNS (context-dependent dNdS) scores as measure of ED distinguishing gene pairs either as synergistic (SYN) or antagonistic (ANT). Mutation contexts can induce substantial changes in the evolutionary fitness of mutations in the paired genes, e.g., IDH1 and IDH2 mutation contexts lead to substantial increase and decrease of dNdS ratios of ATRX indels and IDH1 missense mutations corresponding to SYN and ANT relationship with positive and negative cdNS scores, respectively. The impact of gene silencing or knock-outs on cell viability (genetic dependencies) often depends on ED, suggesting that ED can guide the selection of candidates for synthetic lethality such as TCF7L2-KRAS mutations. Using cell line-based drug sensitivity data, the effects of targeted agents on cell lines are often associated with mutations of genes exhibiting ED with the target genes, informing drug sensitizing or resistant mutations for targeted inhibitors, e.g., PRSS1 and CTCF mutations as resistant mutations to EGFR and BRAF inhibitors for lung adenocarcinomas and melanomas, respectively. CONCLUSIONS We propose that the ED of gene pairs evaluated by dNdS ratios can advance our understanding of the functional relationship of genes with potential biological and clinical implications.
Collapse
Affiliation(s)
- Dong-Jin Han
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Sunmin Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Seo-Young Lee
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Youngbeen Moon
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Su Jung Kang
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
| | - Jinseon Yoo
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Hye Young Jeong
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
| | - Hae Jin Cho
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
| | - Jeong Yang Jeon
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
| | - Byeong Chang Sim
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaehoon Kim
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea
| | - Seungho Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ruibin Xi
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea.
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Chen BF, Tsai YF, Lien PJ, Lin YS, Feng CJ, Chen YJ, Cheng HF, Liu CY, Chao TC, Lai JI, Tseng LM, Huang CC. Prevalent landscape of tumor genomic alterations of luminal B1 breast cancers using a comprehensive genomic profiling assay in Taiwan. Breast Cancer 2024; 31:217-227. [PMID: 38070067 DOI: 10.1007/s12282-023-01524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/06/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND The human epidermal growth factor receptor 2 (HER2) negative luminal B1 subtype of breast cancer has been reported with a poorer outcome than luminal A in recent studies. This study aimed to investigate the molecular alterations and identify potential therapeutic targets by analyzing the genetic profiling from a cohort of luminal B1 breast cancer in Taiwan. METHODS We enrolled patients with luminal B1 breast cancer in our study. They were classified as patients who received curative surgery and adjuvant or neoadjuvant chemotherapy as the low-risk group, and who had advanced or metastatic disease or early relapse during the follow-up time as the high-risk group. Using targeted sequencing, we evaluated genomic alterations, interpreting variants with the ESMO Scale of clinical actionability of molecular targets (ESCAT). RESULTS A total of 305 luminal B1 breast cancer patients underwent targeted sequencing analyses. The high-risk patients reported more actionable genes and called variants than the low-risk group (P < 0.05). PIK3CA (42%), FGFR1 (25%), and BRCA1/2 (10.5%) were the most prevalent ESCAT actionable alterations in luminal B1 breast cancer. There was no difference in the prevalence of actionable mutations between these two groups, except for ERBB2 oncogenic mutations, which were more prevalent among the high-risk than the low-risk group (P < 0.05). Alterations in PTEN, ERBB2, and BRCA1/2 were associated with disease relapse events in luminal B1 breast cancer. CONCLUSIONS PIK3CA, FGFR1, and BRCA1/2 were the most prevalent actionable alterations among Taiwanese luminal B1 breast cancer. Moreover, PTEN and BRCA1/2 was significantly associated with disease relapse.
Collapse
Affiliation(s)
- Bo-Fang Chen
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Fang Tsai
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Pei-Ju Lien
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Shu Lin
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chin-Jung Feng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Jen Chen
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Han-Fang Cheng
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Chung Chao
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Cancer Prevention, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiun-I Lai
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Ling-Ming Tseng
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan.
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
- Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan.
| | - Chi-Cheng Huang
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan.
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Zheng J, Miao F, Wang Z, Ma Y, Lin Z, Chen Y, Kong X, Wang Y, Zhuang A, Wu T, Li W. Identification of MDM2 as a prognostic and immunotherapeutic biomarker in a comprehensive pan-cancer analysis: A promising target for breast cancer, bladder cancer and ovarian cancer immunotherapy. Life Sci 2023; 327:121832. [PMID: 37276911 DOI: 10.1016/j.lfs.2023.121832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND The murine double minute 2 (MDM2) gene is a crucial factor in the development and progression of various cancer types. Multiple rigorous scientific studies have consistently shown its involvement in tumorigenesis and cancer progression in a wide range of cancer types. However, a comprehensive analysis of the role of MDM2 in human cancer has yet to be conducted. METHODS We used various databases, including TIMER2.0, TCGA, GTEx and STRING, to analyze MDM2 expression and its correlation with clinical outcomes, interacting genes and immune cell infiltration. We also investigated the association of MDM2 with immune checkpoints and performed gene enrichment analysis using DAVID tools. RESULTS The pan-cancer MDM2 analysis found that MDM2 expression and mutation status were observably different in 25 types of cancer tissue compared with healthy tissues, and prognosis analysis showed that there was a significant correlation between MDM2 expression and patient prognosis. Furthermore, correlation analysis showed that MDM2 expression was correlated with tumor mutational burden, microsatellite instability and drug sensitivity in certain cancer types. We found that there was an association between MDM2 expression and immune cell infiltration across cancer types, and MDM2 inhibitors might enhance the effect of immunotherapy on breast cancer, bladder cancer and ovarian cancer. CONCLUSIONS The first systematic pan-cancer analysis of MDM2 was conducted, and it demonstrated that MDM2 was a reliable prognostic biomarker and was closely related to cancer immunity, providing a potential immunotherapeutic target for breast cancer, bladder cancer and ovarian cancer.
Collapse
Affiliation(s)
- Jialiang Zheng
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fenglin Miao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Wang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuan Ma
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenhang Lin
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yaqin Chen
- Nursing Department of Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xu Kong
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Wang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Aobo Zhuang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Ting Wu
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Wengang Li
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|