1
|
Inada K, Ohde T, Daimon T. Efficient transgenic system for the firebrat Thermobia domestica utilizing hyPBase and G 0 founder prescreening. Gene 2025; 955:149449. [PMID: 40174713 DOI: 10.1016/j.gene.2025.149449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
The firebrat, Thermobia domestica, is an apterygote model insect with favorable traits, including rapid generation turnover, high fecundity, and ease of laboratory rearing. We previously developed a method for embryo injection and CRISPR/Cas9-based genome editing in Thermobia. In the present study, we established a highly efficient transgenesis system using the hyperactive piggyBac transposase (hyPBase) to expand genetic manipulation techniques in Thermobia. By injecting embryos with a mixture of hyPBase mRNA and a donor plasmid expressing GFP under the control of an eye enhancer, we achieved the first successful transgenesis in Thermobia. Eye-specific GFP expression was observed in 5.7 % of G0 individuals hatched from injected eggs. Notably, these GFP-positive G0 founders exhibited significantly elevated germline transmission rates (53.3 %) compared with GFP-negative G0 founders (19.0 %). Additionally, a significant difference in the proportion of G1 transgenic progeny emerged between the GFP-positive and GFP-negative G0 groups (20.0 % vs. 2.7 %), highlighting the utility of GFP expression as a predictor of transgenic G1 offspring from injected G0 founders. Furthermore, multiple transgene insertions mediated by hyPBase contributed to the increased transformation efficiency observed in G0 founders with high transmission rates. Our findings offer valuable genetic toolkits for Thermobia that will facilitate advanced research on fundamental biological processes, such as the evolution of wings and metamorphosis.
Collapse
Affiliation(s)
- Kei Inada
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takahiro Ohde
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takaaki Daimon
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
2
|
Hossain MB, Tan BJY, Satou Y. Viral oncogenesis of δ-retroviruses, HTLV-1 and BLV, and recent advances in its diagnosis. Virology 2025; 605:110461. [PMID: 40015031 DOI: 10.1016/j.virol.2025.110461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
The δ-retrovirus genus includes human T-cell leukemia viruses (HTLV-1, HTLV-2, HTLV-3), simian T-lymphotropic viruses (STLV), and bovine leukemia viruses (BLV), which establish lifelong, typically asymptomatic, infections. However, HTLV-1 and BLV can lead to leukemia or lymphoma in 2-5% of infected hosts after prolonged latency. HTLV-1, the first identified human oncogenic retrovirus, drives T-cell leukemia/lymphoma via cell-intrinsic mechanisms. Similarly, BLV induces B-cell lymphoma in cattle, sharing key genomic and disease progression features with HTLV-1. Retrovirus-induced leukemias/lymphomas arise through complex interactions of viral and host factors. This review explores current virological perspectives on δ-retroviral oncogenesis, focusing on proviral integration sites within the host genome. Additionally, we briefly compare HTLV-1 with the human immunodeficiency virus (HIV), highlighting that while HIV causes AIDS, it also induces clonal expansion of infected cells. Finally, we discuss the potential diagnostic and prognostic value of analyzing viral factors and integration sites.
Collapse
Affiliation(s)
- Md Belal Hossain
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan; Department of Food Microbiology, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Patuakhali-8602, Bangladesh
| | - Benjy Jek Yang Tan
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
3
|
Nishitani K, Nakamizo S, Shindo T, Kaku Y, Fujimoto M, Hirata M, Mizoguchi K, Kawai K, Kabashima K. Coexistence of oligoclonal and polyclonal HTLV-1-positive T cells with presentation of acute-type adult T-cell leukaemia-lymphoma successfully treated by ultraviolet B phototherapy and etretinate. J Eur Acad Dermatol Venereol 2025; 39:e297-e299. [PMID: 39115034 DOI: 10.1111/jdv.20284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/05/2024] [Indexed: 03/26/2025]
Affiliation(s)
- Kosei Nishitani
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Nakamizo
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takero Shindo
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yo Kaku
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kai Mizoguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhiro Kawai
- Department of Dermatology, Kido Hospital, Niigata, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Yoshida N, Hida A, Sakata R. Trends of changes in human T-cell leukemia virus type 1 epidemiology in Japan and globally. Leuk Res 2025; 150:107654. [PMID: 39904095 DOI: 10.1016/j.leukres.2025.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) has been identified as a cause of adult T-cell leukemia-lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Despite several HTLV-1 endemic areas being identified, comprehensive investigations have yet to be conducted in all the regions of the world. This review aims to summarize the current reports on HTLV-1. As vertical transmission is known to be a risk factor for ATL development, prevention strategies have been initiated in Japan, and these efforts may be related to the decrease in the estimated number of HTLV-1 carriers in Japan. In numerous HTLV-1 endemic regions, the prevalence of HTLV-1 increases with age, which may be attributed to horizontal infection. However, the incidence of HTLV-1 infection appears to be high among adolescents and young adults in Japan, especially in non-endemic areas. The clinical significance of HTLV-1 infections, other than ATL and HAM/TSP, has recently been documented. Consequently, it is imperative to develop treatment strategies for HTLV-1 infections, including measures to prevent horizontal infections.
Collapse
Affiliation(s)
- Noriaki Yoshida
- Department of Clinical Studies, Radiation Effects Research Foundation, 5-2 Hijiyama-park, Minami-ku, Hirohisma 732-0815, Japan; Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.
| | - Ayumi Hida
- Department of Clinical Studies, Radiation Effects Research Foundation, 8-6 Nakagawa 1-chome, Nagasaki 850-0013, Japan
| | - Ritsu Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama-park, Minami-ku, Hirohisma 732-0815, Japan
| |
Collapse
|
5
|
Hiraga K, Tezuka K, Nagata K, Koh KR, Nakamura H, Sagara Y, Sobata R, Satake M, Tanio M, Hasegawa H, Saito M, Miura K, Mizukami T, Hamaguchi I, Kuramitsu M. Development of a novel multiplex digital PCR-based method for the detection of HTLV-1 proviral deletion. J Virol Methods 2025; 332:115071. [PMID: 39577671 DOI: 10.1016/j.jviromet.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
The human T-cell leukemia virus type 1 (HTLV-1), a retrovirus, integrates into host DNA and causes adult T-cell leukemia/lymphoma (ATL) in some individuals. Two types of defective proviruses, Type 1 and Type 2, are often observed in ATL cells. Here, we developed a 3-plex digital PCR (dPCR) method to detect HTLV-1 proviral deletions by comparing the ratios of copy numbers quantified using specific primer-probes for the LTR, pol, and pX regions. We analyzed HTLV-1-positive asymptomatic carriers (ACs) and AC samples at high risk for developing ATL due to high proviral load (ATL high-risk (HR) ACs) using dPCR. Deletions were identified in 11.8 % (4/34, all Type 1) of ACs and 33.3 % (7/21, Type 1:1, Type 2:6) of ATL HR ACs. dPCR analysis revealed that in three ATL samples, all exhibited Type 1 defective characteristics, and two showed extremely low ratios in the pol region. Clonality analysis of these two samples revealed high monoclonality, indicating monoclonal expansion of ATL cells with defective proviruses. These findings demonstrate that our method effectively detects defective proviruses in both ACs and ATL, providing a valuable tool for understanding the genomic characteristics of proviruses in these conditions.
Collapse
Affiliation(s)
- Kou Hiraga
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan; Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenta Tezuka
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koh Nagata
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ki-Ryang Koh
- Department of Hematology, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Hitomi Nakamura
- Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan
| | - Yasuko Sagara
- Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan
| | - Rieko Sobata
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Masahiro Satake
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Michikazu Tanio
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Masumichi Saito
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takuo Mizukami
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Isao Hamaguchi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan; Department of Clinical Laboratory, Subaru Health Insurance Society Ota Memorial Hospital, Gunma, Japan
| | - Madoka Kuramitsu
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
6
|
Kobayashi T, Makimoto S, Ohnuki N, Hossain MB, Jahan MI, Matsuo M, Imakawa K, Satou Y. A rapid and simple clonality assay for bovine leukemia virus-infected cells by amplified fragment length polymorphism (AFLP) analysis. Microbiol Spectr 2025; 13:e0171424. [PMID: 39570050 PMCID: PMC11705797 DOI: 10.1128/spectrum.01714-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Enzootic bovine leukosis (EBL), although eradicated in some European countries, is still the most common neoplastic disease of cattle, caused by the bovine leukemia virus (BLV). During the progression of EBL, BLV-infected cells clonally expand, and some of which result in tumor onset. The clonality of BLV-infected cells is generally evaluated with NGS or Sanger sequencing. Although these methods clearly distinguish EBL from non-EBL cases, the procedures are complex and not practical for routine veterinary diagnosis. In this study, we developed an amplified fragment length polymorphism (AFLP) analysis for BLV clonality assay (BLV-AFLP). This analysis uses restriction enzyme digestion to amplify the chimeric regions of BLV 3' linear transcribed region (LTR) and host genome through conventional polymerase chain reaction (PCR) and visualizes the results by gel-electrophoresis. The method was established using cattle samples representing different stages of the disease: BLV-uninfected, non-EBL, and EBL cattle. Non-EBL cattle showed smeared bands, indicating polyclonal proliferation, while EBL cattle showed distinct bands, indicating clonal expansion. The results of BLV-AFLP correlated well with those of previously reported methods, suggesting its efficacy in detecting clonal proliferation. The validation using blood samples of non-EBL cattle and tumor samples of EBL cattle confirmed that BLV-AFLP could effectively identify clonal proliferation in EBL samples. Moreover, the emergence of dominant clones in the tumor at later stages was successfully detected before EBL onset in some cattle, highlighting its sensitivity and potential for early detection. Overall, BLV-AFLP is suitable for practical use in the field, improving BLV management strategies and minimizing economic losses. IMPORTANCE Enzootic bovine leukosis (EBL) is routinely diagnosed based on external manifestations at the farm, such as the presence of tumors and/or general lymph node enlargement. However, due to the nonspecific clinical manifestations of EBL, over half of EBL cases are unrecognized at the farm, with most cases being diagnosed during postmortem inspection at the slaughterhouse. Early detection and monitoring of clonal expansion are necessary for managing EBL and reducing economic losses. In this study, we developed BLV-AFLP that represents a significant advancement in the diagnosis of EBL in cattle. This method can rapidly assess the clonal proliferation of BLV-infected cells, crucial for distinguishing between asymptomatic and EBL cattle. Additionally, tracking clonal dynamics offers insights into the disease's progression, potentially providing strategies for avoiding economic losses. Overall, as BLV-AFLP is a simple and rapid test for detecting EBL, it is feasible and efficient for routine veterinary practice.
Collapse
Affiliation(s)
- Tomoko Kobayashi
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Sakurako Makimoto
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Nagaki Ohnuki
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Md Belal Hossain
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Food Microbiology, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - M. Ishrat Jahan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Misaki Matsuo
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kazuhiko Imakawa
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Letafati A, Bahari M, Salahi Ardekani O, Nayerain Jazi N, Nikzad A, norouzi F, Mahdavi B, Aboofazeli A, Mozhgani SH. HTLV-1 vaccination Landscape: Current developments and challenges. Vaccine X 2024; 19:100525. [PMID: 39105133 PMCID: PMC11298643 DOI: 10.1016/j.jvacx.2024.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/23/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that is distinguished for its correlation to myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia/lymphoma (ATLL). As well, HTLV-1 has been documented to have links with other inflammatory diseases, such as uveitis and dermatitis. According to the World Health Organization (WHO), the global distribution of HTLV-1 infection is estimated to extend between 5 and 10 million individuals. Recent efforts in HTLV-1 vaccine development primarily involve selecting viral components, such as antigens, from structural and non-structural proteins. These components are chosen to trigger a vigorous immune response from cytotoxic T lymphocytes (CTLs), helper T lymphocytes (HTLs), and B cells. Investigation into developing a vaccine against HTLV-1 is ongoing, and current surveys have explored several approaches, including viral vector vaccines, DNA vaccines, protein and peptide vaccines, dendritic cell-based vaccines, mRNA vaccines, and other platforms. Despite these investigations have shown promising results, challenges like the necessity for long-term protective immunity, addressing viral diversity, and managing potential side effects remain. It is critical to keep track of the progress made in HTLV-1 vaccination research to comprehend the development status and its possible impacts. The evolving nature of vaccine development underscores the importance of staying informed about advancements as we strive to combat HTLV-1-associated diseases through effective vaccination strategies. In this review, our goal is to provide an overview of the current status of HTLV-1 vaccination efforts, emphasizing the progress, challenges, and potential future directions in this vital area of research.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mahshid Bahari
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Negar Nayerain Jazi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Abuzar Nikzad
- Dipartimento di Chimica Organica e Industriale Universita’ di Milano, Milan, Italy
| | - Farnaz norouzi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Bahar Mahdavi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Amir Aboofazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
8
|
Nagata K, Tezuka K, Kuramitsu M, Fuchi N, Hasegawa Y, Hamaguchi I, Miura K. Establishment of a novel human T-cell leukemia virus type 1 infection model using cell-free virus. J Virol 2024; 98:e0186223. [PMID: 38294250 PMCID: PMC10878273 DOI: 10.1128/jvi.01862-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The primary mode of infection by human T-cell leukemia virus type 1 (HTLV-1) is cell-to-cell transmission during contact between infected cells and target cells. Cell-free HTLV-1 infections are known to be less efficient than infections with other retroviruses, and transmission of free HTLV-1 is considered not to occur in vivo. However, it has been demonstrated that cell-free HTLV-1 virions can infect primary lymphocytes and dendritic cells in vitro, and that virions embedded in biofilms on cell membranes can contribute to transmission. The establishment of an efficient cell-free HTLV-1 infection model would be a useful tool for analyzing the replication process of HTLV-1 and the clonal expansion of infected cells. We first succeeded in obtaining supernatants with high-titer cell-free HTLV-1 using a highly efficient virus-producing cell line. The HTLV-1 virions retained the structural characteristics of retroviruses. Using this cell-free infection model, we confirmed that a variety of cell lines and primary cultured cells can be infected with HTLV-1 and demonstrated that the provirus was randomly integrated into all chromosomes in the target cells. The provirus-integrated cell lines were HTLV-1-productive. Furthermore, we demonstrated for the first time that cell-free HTLV-1 is infectious in vivo using a humanized mouse model. These results indicate that this cell-free infection model recapitulates the HTLV-1 life cycle, including entry, reverse transcription, integration into the host genome, viral replication, and secondary infection. The new cell-free HTLV-1 infection model is promising as a practical resource for studying HTLV-1 infection.IMPORTANCECo-culture of infected and target cells is frequently used for studying HTLV-1 infection. Although this method efficiently infects HTLV-1, the cell mixture is complex, and it is extremely difficult to distinguish donor infected cells from target cells. In contrast, cell-free HTLV-1 infection models allow for more strict experimental conditions. In this study, we established a novel and efficient cell-free HTLV-1 infection model. Using this model, we successfully evaluated the infectivity titers of cell-free HTLV-1 as proviral loads (copies per 100 cells) in various cell lines, primary cultured cells, and a humanized mouse model. Interestingly, the HTLV-1-associated viral biofilms played an important role in enhancing the infectivity of the cell-free infection model. This cell-free HTLV-1 infection model reproduces the replication cycle of HTLV-1 and provides a simple, powerful, and alternative tool for researching HTLV-1 infection.
Collapse
Affiliation(s)
- Koh Nagata
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenta Tezuka
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kuramitsu
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Fuchi
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuri Hasegawa
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Isao Hamaguchi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
9
|
Nao N, Okagawa T, Nojiri N, Konnai S, Shimakura H, Tominaga M, Yoshida-Furihata H, Nishiyama E, Matsudaira T, Maekawa N, Murata S, Muramatsu M, Ohashi K, Saito M. Chimeric provirus of bovine leukemia virus/SMAD family member 3 in cattle with enzootic bovine leukosis. Arch Virol 2024; 169:47. [PMID: 38366081 DOI: 10.1007/s00705-024-05970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/12/2023] [Indexed: 02/18/2024]
Abstract
Bovine leukemia virus (BLV) is a member of the family Retroviridae that causes enzootic bovine leukemia (EBL). However, the association between BLV infection and EBL development remains unclear. In this study, we identified a BLV/SMAD3 chimeric provirus within CC2D2A intron 30 in monoclonal expanded malignant cells from a cow with EBL. The chimeric provirus harbored a spliced SMAD3 sequence composed of exons 3-9, encoding the short isoform protein, and the BLV-SMAD3 chimeric transcript was detectable in cattle with EBL. This is the first report of a BLV chimeric provirus that might be involved in EBL tumorigenesis.
Collapse
Affiliation(s)
- Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naomi Nojiri
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Honami Shimakura
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Misono Tominaga
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hazuka Yoshida-Furihata
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Eri Nishiyama
- Biotechnological Research Support Division, FASMAC Co., Ltd, Atsugi, Japan
| | | | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Ohashi
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masumichi Saito
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan.
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
10
|
Itonaga H, Kato T, Sawayama Y, Katsuoka S, Furumoto T, Matsumoto N, Sasaki D, Yamada Y, Hashimoto M, Fujioka M, Sakamoto H, Hasegawa H, Imaizumi Y, Nagai K, Yanagihara K, Miyazaki Y. RAISING revealed a heterogenous pattern of HTLV-1 clonality after HLA-haploidentical peripheral blood stem cell transplantation for ATL. Leuk Lymphoma 2024; 65:275-278. [PMID: 37909304 DOI: 10.1080/10428194.2023.2276058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Hidehiro Itonaga
- Transfusion and Cell Therapy Unit, Nagasaki University Hospital, Nagasaki, Japan
| | - Takeharu Kato
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Yasushi Sawayama
- Department of Hematology, Sasebo City General Hospital, Sasebo, Japan
| | | | - Takafumi Furumoto
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nariyoshi Matsumoto
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yuichi Yamada
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Miki Hashimoto
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Machiko Fujioka
- Department of Hematology, Sasebo City General Hospital, Sasebo, Japan
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hikaru Sakamoto
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Kazuhiro Nagai
- Department of Laboratory Medicine, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
11
|
Fukano K, Wakae K, Nao N, Saito M, Tsubota A, Toyoshima T, Aizaki H, Iijima H, Matsudaira T, Kimura M, Watashi K, Sugiura W, Muramatsu M. A versatile method to profile hepatitis B virus DNA integration. Hepatol Commun 2023; 7:e0328. [PMID: 38051537 PMCID: PMC10697629 DOI: 10.1097/hc9.0000000000000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND HBV DNA integration into the host genome is frequently found in HBV-associated HCC tissues and is associated with hepatocarcinogenesis. Multiple detection methods, including hybrid capture-sequencing, have identified integration sites and provided clinical implications; however, each has advantages and disadvantages concerning sensitivity, cost, and throughput. Therefore, methods that can comprehensively and cost-effectively detect integration sites with high sensitivity are required. Here, we investigated the efficiency of RAISING (Rapid Amplification of Integration Site without Interference by Genomic DNA contamination) as a simple and inexpensive method to detect viral integration by amplifying HBV-integrated fragments using virus-specific primers covering the entire HBV genome. METHODS AND RESULTS Illumina sequencing of RAISING products from HCC-derived cell lines (PLC/PRF/5 and Hep3B cells) identified HBV-human junction sequences as well as their frequencies. The HBV-human junction profiles identified using RAISING were consistent with those determined using hybrid capture-sequencing, and the representative junctions could be validated by junction-specific nested PCR. The comparison of these detection methods revealed that RAISING-sequencing outperforms hybrid capture-sequencing in concentrating junction sequences. RAISING-sequencing was also demonstrated to determine the sites of de novo integration in HBV-infected HepG2-NTCP cells, primary human hepatocytes, liver-humanized mice, and clinical specimens. Furthermore, we made use of xenograft mice subcutaneously engrafted with PLC/PRF/5 or Hep3B cells, and HBV-human junctions determined by RAISING-sequencing were detectable in the plasma cell-free DNA using droplet digital PCR. CONCLUSIONS RAISING successfully profiles HBV-human junction sequences with smaller amounts of sequencing data and at a lower cost than hybrid capture-sequencing. This method is expected to aid basic HBV integration and clinical diagnosis research.
Collapse
Affiliation(s)
- Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | - Masumichi Saito
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihito Tsubota
- Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Takae Toyoshima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroko Iijima
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Hyogo, Japan
| | - Takahiro Matsudaira
- Biotechnological Research Support Division, FASMAC Co., Ltd., Kanagawa, Japan
| | - Moto Kimura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
12
|
Umekita K, Hashikura Y, Takaki A, Kimura M, Kawano K, Iwao C, Miyauchi S, Kawaguchi T, Matsuda M, Hashiba Y, Hidaka T. HAS-Flow May Be an Adequate Method for Evaluating Human T-Cell Leukemia Virus Type 1 Infected Cells in Human T-Cell Leukemia Virus Type 1-Positive Rheumatoid Arthritis Patients Receiving Antirheumatic Therapies: A Retrospective Cross-Sectional Observation Study. Viruses 2023; 15:v15020468. [PMID: 36851682 PMCID: PMC9967177 DOI: 10.3390/v15020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The study aims to assess the usefulness of human T-cell leukemia virus type 1 (HTLV-1)-infected cell analysis using flow cytometry (HAS-Flow) as a monitoring method for adult T-cell leukemia (ATL) development in HTLV-1-positive patients with rheumatoid arthritis (RA) under treatment with antirheumatic therapies. A total of 13 HTLV-1-negative and 57 HTLV-1-positive RA patients participated in this study, which was used to collect clinical and laboratory data, including HAS-Flow and HTLV-1 proviral load (PVL), which were then compared between the two groups. CADM1 expression on CD4+ cells in peripheral blood (PB) was used to identify HTLV-1-infected cells. The population of CADM1+ CD4+ cells was significantly higher in HTLV-1-positive RA patients compared to HTLV-1-negative RA patients. The population of CADM1+ CD4+ cells was correlated with HTLV-1 PVL values. There were no antirheumatic therapies affecting both the expression of CADM1 on CD4+ cells and PVLs. Six HTLV-1-positive RA patients who indicated both high HTLV-1 PVL and a predominant pattern of CADM1+ CD7neg CD4+ cells in HAS-Flow can be classified as high-risk for ATL progression. HAS-Flow could be a useful method for monitoring high-risk HTLV-1-positive RA patients who are at risk of developing ATL during antirheumatic therapies.
Collapse
Affiliation(s)
- Kunihiko Umekita
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Department of Internal Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
- Department of Clinical Laboratory, University of Miyazaki Hospital, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
- Correspondence: ; Tel.: +81-985-85-7284
| | - Yuki Hashikura
- Department of Clinical Laboratory, University of Miyazaki Hospital, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Akira Takaki
- Department of Clinical Laboratory, University of Miyazaki Hospital, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Masatoshi Kimura
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Department of Internal Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Katsumi Kawano
- Department of Clinical Laboratory, University of Miyazaki Hospital, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Chihiro Iwao
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Department of Internal Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Shunichi Miyauchi
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Department of Internal Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Takeshi Kawaguchi
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Department of Internal Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Motohiro Matsuda
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Department of Internal Medicine, University of Miyazaki, Kihara 5200, Kiyotake, Miyazaki 889-1692, Japan
| | - Yayoi Hashiba
- Institute of Rheumatology, Miyazaki Zenjinkai Hospital, Miyazaki 880-0834, Japan
| | - Toshihiko Hidaka
- Institute of Rheumatology, Miyazaki Zenjinkai Hospital, Miyazaki 880-0834, Japan
| |
Collapse
|
13
|
Clone Dynamics and Its Application for the Diagnosis of Enzootic Bovine Leukosis. J Virol 2023; 97:e0154222. [PMID: 36533951 PMCID: PMC9888225 DOI: 10.1128/jvi.01542-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bovine leukemia virus (BLV) infection results in polyclonal expansion of infected B lymphocytes, and ~5% of infected cattle develop enzootic bovine leukosis (EBL). Since BLV is a retrovirus, each individual clone can be identified by using viral integration sites. To investigate the distribution of tumor cells in EBL cattle, we performed viral integration site analysis by using a viral DNA capture-sequencing method. We found that the same tumor clones existed in peripheral blood, with a dominance similar to that in lymphoma tissue. Additionally, we observed that multiple tumor tissues from different sites harbored the identical clones, indicating that tumor cells can circulate and distribute systematically in EBL cattle. To investigate clonal expansion of BLV-infected cells during a long latent period, we collected peripheral blood samples from asymptomatic cattle every 2 years, among which several cattle developed EBL. We found that no detectable EBL clone existed before the diagnosis of EBL in some cases; in the other cases, clones that were later detected as malignant clones at the EBL stage were present several months or even years before the disease onset. To establish a feasible clonality-based method for the diagnosis of EBL, we simplified a quick and cost-effective method, namely, rapid amplification of integration sites for BLV infection (BLV-RAIS). We found that the clonality values (Cvs) were well correlated between the BLV-RAIS and viral DNA capture-sequencing methods. Furthermore, receiver operating characteristic (ROC) curve analysis identified an optimal Cv cutoff value of 0.4 for EBL diagnosis, with excellent diagnostic sensitivity (94%) and specificity (100%). These results indicated that the RAIS method efficiently and reliably detected expanded clones not only in lymphoma tissue but also in peripheral blood. Overall, our findings elucidated the clonal dynamics of BLV- infected cells during EBL development. In addition, Cvs of BLV-infected cells in blood can be used to establish a valid and noninvasive diagnostic test for potential EBL onset. IMPORTANCE Although BLV has been eradicated in some European countries, BLV is still endemic in other countries, including Japan and the United States. EBL causes huge economic damage to the cattle industry. However, there are no effective drugs or vaccines to control BLV infection and related diseases. The strategy of eradication of infected cattle is not practical due to the high endemicity of BLV. Furthermore, how BLV-infected B cell clones proliferate during oncogenesis and their distribution in EBL cattle have yet to be elucidated. Here, we provided evidence that tumor cells are circulating in the blood of diseased cattle. Thus, the Cv of virus-infected cells in blood is useful information for the evaluation of the disease status. The BLV-RAIS method provides quantitative and accurate clonality information and therefore is a promising method for the diagnosis of EBL.
Collapse
|
14
|
Diagnosis and Early Prediction of Lymphoma Using High-Throughput Clonality Analysis of Bovine Leukemia Virus-Infected Cells. Microbiol Spectr 2022; 10:e0259522. [PMID: 36227090 PMCID: PMC9769566 DOI: 10.1128/spectrum.02595-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bovine leukemia virus (BLV), a retrovirus, infects B cells of ruminants and is integrated into the host genome as a provirus for lifelong infection. After a long latent period, 1% to 5% of BLV-infected cattle develop aggressive lymphoma, enzootic bovine leukosis (EBL). Since the clonal expansion of BLV-infected cells is essential for the development of EBL, the clonality of proviral integration sites could be a molecular marker for diagnosis and early prediction of EBL. Recently, we developed Rapid Amplification of the Integration Site without Interference by Genomic DNA Contamination (RAISING) and an analysis software of clonality value (CLOVA) to analyze the clonality of transgene-integrated cells. RAISING-CLOVA is capable of assessing the risk of adult T-cell leukemia/lymphoma development in human T-cell leukemia virus-I-infected individuals through the clonality analysis of proviral integration sites. Thus, we herein examined the performance of RAISING-CLOVA for the clonality analysis of BLV-infected cells and conducted a comprehensive clonality analysis by RAISING-CLOVA in EBL and non-EBL cattle. RAISING-CLOVA targeting BLV was a highly accurate and reproducible method for measuring the clonality value. The comprehensive clonality analysis successfully distinguished EBL from non-EBL specimens with high sensitivity and specificity. A longitudinal clonality analysis in BLV-infected sheep, an experimental model of lymphoma, also confirmed the effectiveness of RAISING-CLOVA for early detection of EBL development. Therefore, our study emphasizes the usefulness of RAISING-CLOVA as a routine clinical test for monitoring virus-related cancers. IMPORTANCE Bovine leukemia virus (BLV) infection causes aggressive B-cell lymphoma in cattle and sheep. The virus has spread to farms around the world, causing significant economic damage to the livestock industry. Thus, the identification of high-risk asymptomatic cattle before they develop lymphoma can be effective in reducing the economic damage. Clonal expansion of BLV-infected cells is a promising marker for the development of lymphoma. Recently, we have developed a high-throughput method to amplify random integration sites of transgenes in host genomes and analyze their clonality, named as RAISING-CLOVA. As a new application of our technology, in this study, we demonstrate the value of the RAISING-CLOVA method for the diagnosis and early prediction of lymphoma development by BLV infection in cattle. RAISING-CLOVA is a reliable technology for monitoring the clonality of BLV-infected cells and would contribute to reduce the economic losses by EBL development.
Collapse
|
15
|
Yoshida M, Saito T, Takayanagi Y, Totsuka Y, Onaka T. Necessity of integrated genomic analysis to establish a designed knock-in mouse from CRISPR-Cas9-induced mutants. Sci Rep 2022; 12:20390. [PMID: 36437283 PMCID: PMC9701781 DOI: 10.1038/s41598-022-24810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The CRISPR-Cas9 method for generation of knock-in mutations in rodent embryos yields many F0 generation candidates that may have the designed mutations. The first task for selection of promising F0 generations is to analyze genomic DNA which likely contains a mixture of designed and unexpected mutations. In our study, while generating Prlhr-Venus knock-in reporter mice, we found that genomic rearrangements near the targeted knock-in allele, tandem multicopies at a target allele locus, and mosaic genotypes for two different knock-in alleles occurred in addition to the designed knock-in mutation in the F0 generation. Conventional PCR and genomic sequencing were not able to detect mosaicism nor discriminate between the designed one-copy knock-in mutant and a multicopy-inserted mutant. However, by using a combination of Southern blotting and the next-generation sequencing-based RAISING method, these mutants were successfully detected in the F0 generation. In the F1 and F2 generations, droplet digital PCR assisted in establishing the strain, although a multicopy was falsely detected as one copy by analysis of the F0 generation. Thus, the combination of these methods allowed us to select promising F0 generations and facilitated establishment of the designed strain. We emphasize that focusing only on positive evidence of knock-in can lead to erroneous selection of undesirable strains.
Collapse
Affiliation(s)
- Masahide Yoshida
- grid.410804.90000000123090000Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 Japan
| | - Tomoko Saito
- Institute of Immunology Co., Ltd., 1198-4 Iwazo, Utsunomiya, Tochigi 321-0973 Japan
| | - Yuki Takayanagi
- grid.410804.90000000123090000Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 Japan
| | - Yoshikazu Totsuka
- Institute of Immunology Co., Ltd., 1198-4 Iwazo, Utsunomiya, Tochigi 321-0973 Japan
| | - Tatsushi Onaka
- grid.410804.90000000123090000Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 Japan
| |
Collapse
|