1
|
Tayebi N, Lichtenberg J, Hertz E, Sidransky E. Is Gauchian genotyping of GBA1 variants reliable? Commun Biol 2025; 8:718. [PMID: 40346301 PMCID: PMC12064688 DOI: 10.1038/s42003-025-08059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Affiliation(s)
- Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jens Lichtenberg
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ellen Hertz
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Toffoli M, Schapira AHV, Sedlazeck FJ, Proukakis C. Reply to: Is Gauchian genotyping of GBA1 variants reliable? Commun Biol 2025; 8:719. [PMID: 40346300 PMCID: PMC12064761 DOI: 10.1038/s42003-025-08060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Affiliation(s)
- Marco Toffoli
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Cuconato G, Palmieri I, Percetti M, Pagliarani S, Tenace S, Morelli MJ, Zapparoli E, Avenali M, Carelli V, Dentelli P, Fiorentino A, Gaudio A, Ledda C, Mandich P, Marino S, Martone T, Minardi R, Origone P, Ormanbekova D, Pasini B, Scarabotto A, Sorbera C, Trevisan L, Di Fonzo A, Valente EM, Monfrini E. LONG-NEXT: A new accurate and efficient NGS-based method for GBA1 analysis in Parkinson disease. Parkinsonism Relat Disord 2025; 134:107780. [PMID: 40157138 DOI: 10.1016/j.parkreldis.2025.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION GBA1 variants are the most common genetic risk factor for Parkinson disease (PD). Sequencing of GBA1 on a large scale represents a burdensome task with currently adopted diagnostic techniques, namely Sanger sequencing and conventional short read next generation sequencing (sr-NGS). The high degree of sequence homology between GBA1 and its pseudogene GBA1LP is the major driver behind this complexity, leading to false positive and false negative results. We designed, optimized and validated LONG-NEXT, a new NGS-based strategy to streamline large scale GBA1 sequencing. METHODS LONG-NEXT relies on a specific long-range PCR, encompassing the whole GBA1 gene, in one fragment (6.5 kb), followed by short-read NGS and a tailored bioinformatic pipeline masking the GBA1LP sequence on the reference genome. RESULTS This protocol was optimized and tested on selected cases suspected of diagnostic mistakes by conventional testing (n = 13) and then validated on consecutively collected PD patients already screened either by Sanger sequencing (n = 101) or conventional sr-NGS (n = 294). LONG-NEXT reanalysis of 13 patients disclosed: 3 false positive cases due to mismapping of pseudogene reads on GBA1, 4 false homozygotes due to PCR-related allele dropout events, and 6 false negative cases, due to misalignment of GBA1 reads against the pseudogene or PCR-related allele dropout events. The validation phase disclosed one additional false homozygote in the Sanger cohort, and one false negative result in the sr-NGS cohort. CONCLUSION LONG-NEXT is a reliable, fast, cost-effective alternative for GBA1 sequencing and may prove strategic in light of current genotype-based tailored therapies specifically targeting GBA1-PD patients.
Collapse
Affiliation(s)
- Giada Cuconato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Ilaria Palmieri
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Marco Percetti
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Serena Pagliarani
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Tenace
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Marco J Morelli
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ettore Zapparoli
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Micol Avenali
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy; Parkinson Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | | | - Alessia Fiorentino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Andrea Gaudio
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Ledda
- Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy; SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy
| | - Paola Mandich
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI) University of Genoa, Genoa, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Tiziana Martone
- SC Neurologia 2U, AOU Città della Salute e della Scienza, Torino, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126, Turin, Italy
| | - Raffaella Minardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Paola Origone
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI) University of Genoa, Genoa, Italy
| | - Danara Ormanbekova
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Barbara Pasini
- Department of Medical Science, University of Torino, Italy
| | - Anna Scarabotto
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | | | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Nishimura S, Ma C, Sidransky E, Ryan E. Obstacles to Early Diagnosis of Gaucher Disease. Ther Clin Risk Manag 2025; 21:93-101. [PMID: 39882275 PMCID: PMC11776414 DOI: 10.2147/tcrm.s388266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/11/2025] [Indexed: 01/31/2025] Open
Abstract
Gaucher disease (GD) is a rare lysosomal storage disorder resulting from a deficiency of the lysosomal enzyme glucocerebrosidase caused by biallelic variants in the GBA1 gene. Patients may present with a wide spectrum of disease manifestations, including hepatosplenomegaly, thrombocytopenia, bone manifestations, and in the case of GD types 2 and 3, neurodegeneration, cognitive delay, and/or oculomotor abnormalities. While there is no treatment for neuronopathic GD, non-neuronopathic manifestations can be efficiently managed with enzyme replacement therapy or substrate reduction therapy. However, many patients with GD experience a lengthy diagnostic odyssey, which can negatively affect their access to care and clinical outcomes. The cause of this diagnostic delay is multifaceted. Since genotype/phenotype correlations in GD are not always clear, it is difficult to predict the presence, severity, and onset of clinical manifestations. This heterogeneity, combined with the molecular complexity of the GBA1 locus, low disease prevalence, and limited knowledge of GD among providers serves as a barrier to early diagnosis of GD. In this review, we discuss such obstacles and challenges, considerations, and future steps toward improving the diagnostic journey for patients with GD.
Collapse
Affiliation(s)
- Samantha Nishimura
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charis Ma
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emory Ryan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Akçimen F, Paquette K, Crea PW, Saffie-Awad P, Achoru C, Taiwo F, Ozomma S, Onwuegbuzie G, Khani M, Grant S, Owolabi L, Okereke C, Oshinaike O, Iwuozo E, Lee PS, Oyakhire S, Osemwegie N, Daida K, Abubakar S, Olusanya A, Isayan M, Traurig R, Ogunmodede A, Samuel S, Makarious MB, Sa’ad F, Olanigan R, Levine K, Ogbimi EM, Vitale D, Odiase F, Koretsky MJ, Ojini F, Odeniyi O, Fang ZH, Obianozie N, Hall DA, Nwazor E, Xie T, Nwaokorie F, Padmanaban M, Nwani P, Shamim EA, Nnama A, Standaert D, Komolafe M, Dean M, Osaigbovo G, Disbrow E, Ishola I, Rawls A, Imarhiagbe F, Chandra S, Erameh C, Hinson V, Louie N, Idowu A, Solle J, Norris SA, Ibrahim A, Kilbane C, Sukumar G, Shulman LM, Ezuduemoih D, Staisch J, Breaux S, Dalgard C, Foster ER, Bello A, Ameri A, Real R, Ikwenu E, Morris HR, Anyanwu R, Stimming EF, Billingsley K, Alaofin W, Jerez PA, Agabi O, Hernandez DG, Akinyemi R, Arepalli S, Malik L, Owolabi R, Nyandaiti Y, Leonard HL, Wahab K, Step K, Abiodun O, Hernandez CF, Abdulai F, Iwaki H, Bardien S, Klein C, Hardy J, Houlden H, Galvelis KG, Nalls MA, Dahodwala N, Aamodt W, et alAkçimen F, Paquette K, Crea PW, Saffie-Awad P, Achoru C, Taiwo F, Ozomma S, Onwuegbuzie G, Khani M, Grant S, Owolabi L, Okereke C, Oshinaike O, Iwuozo E, Lee PS, Oyakhire S, Osemwegie N, Daida K, Abubakar S, Olusanya A, Isayan M, Traurig R, Ogunmodede A, Samuel S, Makarious MB, Sa’ad F, Olanigan R, Levine K, Ogbimi EM, Vitale D, Odiase F, Koretsky MJ, Ojini F, Odeniyi O, Fang ZH, Obianozie N, Hall DA, Nwazor E, Xie T, Nwaokorie F, Padmanaban M, Nwani P, Shamim EA, Nnama A, Standaert D, Komolafe M, Dean M, Osaigbovo G, Disbrow E, Ishola I, Rawls A, Imarhiagbe F, Chandra S, Erameh C, Hinson V, Louie N, Idowu A, Solle J, Norris SA, Ibrahim A, Kilbane C, Sukumar G, Shulman LM, Ezuduemoih D, Staisch J, Breaux S, Dalgard C, Foster ER, Bello A, Ameri A, Real R, Ikwenu E, Morris HR, Anyanwu R, Stimming EF, Billingsley K, Alaofin W, Jerez PA, Agabi O, Hernandez DG, Akinyemi R, Arepalli S, Malik L, Owolabi R, Nyandaiti Y, Leonard HL, Wahab K, Step K, Abiodun O, Hernandez CF, Abdulai F, Iwaki H, Bardien S, Klein C, Hardy J, Houlden H, Galvelis KG, Nalls MA, Dahodwala N, Aamodt W, Hill E, Espay A, Factor S, Branson C, Blauwendraat C, Singleton AB, Ojo O, Chahine LM, Okubadejo N, Bandres-Ciga S. Large-scale genetic characterization of Parkinson's disease in the African and African admixed populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.25320205. [PMID: 39867380 PMCID: PMC11759243 DOI: 10.1101/2025.01.14.25320205] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Elucidating the genetic contributions to Parkinson's disease (PD) etiology across diverse ancestries is a critical priority for the development of targeted therapies in a global context. We conducted the largest sequencing characterization of potentially disease-causing, protein-altering and splicing mutations in 710 cases and 11,827 controls from genetically predicted African or African admixed ancestries. We explored copy number variants (CNVs) and runs of homozygosity (ROHs) in prioritized early onset and familial cases. Our study identified rare GBA1 coding variants to be the most frequent mutations among PD patients, with a frequency of 4% in our case cohort. Out of the 18 GBA1 variants identified, ten were previously classified as pathogenic or likely pathogenic, four were novel, and four were reported as of uncertain clinical significance. The most common known disease-associated GBA1 variants in the Ashkenazi Jewish and European populations, p.Asn409Ser, p.Leu483Pro, p.Thr408Met, and p.Glu365Lys, were not identified among the screened PD cases of African and African admixed ancestry. Similarly, the European and Asian LRRK2 disease-causing mutational spectrum, including LRRK2 p.Gly2019Ser and p.Gly2385Arg genetic risk factors, did not appear to play a major role in PD etiology among West African-ancestry populations. However, we found three heterozygous novel missense LRRK2 variants of uncertain significance overrepresented in cases, two of which - p.Glu268Ala and p.Arg1538Cys - had a higher prevalence in the African ancestry population reference datasets. Structural variant analyses revealed the presence of PRKN CNVs with a frequency of 0.7% in African and African admixed cases, with 66% of CNVs detected being compound heterozygous or homozygous in early-onset cases, providing further insights into the genetic underpinnings in early-onset juvenile PD in these populations. Novel genetic variation overrepresented in cases versus controls among screened genes warrants further replication and functional prioritization to unravel their pathogenic potential. Here, we created the most comprehensive genetic catalog of both known and novel coding and splicing variants potentially linked to PD etiology in an underserved population. Our study has the potential to guide the development of targeted therapies in the emerging era of precision medicine. By expanding genetics research to involve underrepresented populations, we hope that future PD treatments are not only effective but also inclusive, addressing the needs of diverse ancestral groups.
Collapse
Affiliation(s)
- Fulya Akçimen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly Paquette
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter Wild Crea
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Paula Saffie-Awad
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Clínica Santa María, Santiago, Chile
| | - Charles Achoru
- Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | | | - Simon Ozomma
- University of Calabar Teaching Hospital, Calabar, Cross River State, Nigeria
| | | | - Marzieh Khani
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Spencer Grant
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Chiamaka Okereke
- University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu State, Nigeria
| | | | | | - Paul Suhwan Lee
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Sani Abubakar
- Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Adedunni Olusanya
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- R-Jolad Hospital, Gbagada, Lagos, Nigeria
| | - Mariam Isayan
- Department of Neurology and Neurosurgery, National Institute of Health, Yerevan, Armenia
| | - Rami Traurig
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Sarah Samuel
- University of Maiduguri Teaching Hospital, Maiduguri, Borno State
| | - Mary B. Makarious
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | - Rashidat Olanigan
- Lagos State University Teaching Hospital, Ikeja, Lagos State, Nigeria
| | - Kristin Levine
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | - Dan Vitale
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | - Mathew J. Koretsky
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Francis Ojini
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | | | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases, DZNE, Tübingen, Germany
| | - Nkechi Obianozie
- University of Abuja Teaching Hospital, Gwagwalada, Federal Capital Territory, Nigeria
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Ernest Nwazor
- Rivers State University Teaching Hospital, Port Harcourt, Rivers State, Nigeria
| | - Tao Xie
- University of Chicago Medicine, Department of Neurology, Chicago, USA
| | | | - Mahesh Padmanaban
- University of Chicago Medicine, Department of Neurology, Chicago, USA
| | - Paul Nwani
- Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Ejaz A. Shamim
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Mid-Atlantic Permanente Medical Group, Department of Neurology, Largo, MD, USA
- Kaiser Permanente, MidAtlantic Permanente Research Institute, Washington, DC, USA
| | - Alero Nnama
- University of Port Harcourt Teaching Hospital, Rivers State, Nigeria
| | - David Standaert
- University of Alabama at Birmingham, Department of Neurology, Birmingham, USA
| | | | - Marissa Dean
- University of Alabama at Birmingham, Department of Neurology, Birmingham, USA
| | | | - Elizabeth Disbrow
- Department of Neurology, LSU Health Shreveport, LSU Health Shreveport Center for Brain Health, Shreveport, USA
| | - Ismaila Ishola
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
| | - Ashley Rawls
- University of Florida Norman Fixel Institute for Neurological Diseases, Neurology Movement Disorders, Gainesville, USA
| | | | - Shivika Chandra
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cyril Erameh
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Vanessa Hinson
- Medical University of South Carolina, Charleston, SC, USA
| | - Naomi Louie
- Michael J. Fox Foundation for Parkinson’s Research, Department of Clinical Research, New York, USA
| | - Ahmed Idowu
- Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria
| | - J Solle
- Michael J. Fox Foundation for Parkinson’s Research, Department of Clinical Research, New York, USA
| | | | - Abdullahi Ibrahim
- Federal University of Health Sciences Teaching Hospital, Azare, Bauchi State, Nigeria
| | - Camilla Kilbane
- University Hospital in Cleveland Medical Center/Case Western Reserve University (UH)
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services
- University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | | | | | | | | | - Clifton Dalgard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Abiodun Bello
- University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Andrew Ameri
- Medical University of South Carolina, Charleston, SC, USA
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
| | - Erica Ikwenu
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurology, Royal Free Hospital, London, UK
| | - Roosevelt Anyanwu
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
| | - Erin Furr Stimming
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kimberley Billingsley
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Pilar Alvarez Jerez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Osigwe Agabi
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Rufus Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Sampath Arepalli
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Laksh Malik
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Yakub Nyandaiti
- University of Maiduguri Teaching Hospital, Maiduguri, Borno State
| | - Hampton L. Leonard
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | - Kathryn Step
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Carlos F. Hernandez
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago 7610658, Chile
| | - Fatima Abdulai
- University of Abuja Teaching Hospital, Gwagwalada, Federal Capital Territory, Nigeria
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Soraya Bardien
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - John Hardy
- Reta Lila Weston Institute, University College London Institute of Neurology, Queen Square, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | | | | | - Emily Hill
- University of Cincinnati, Cincinnati, Ohio
| | | | | | | | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Oluwadamilola Ojo
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | - Lana M. Chahine
- University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | | | | | | | | | - Njideka Okubadejo
- College of Medicine, University of Lagos, Idi-araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi-araba, Lagos State, Nigeria
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Orimo K, Mitsui J, Matsukawa T, Tanaka M, Nomoto J, Ishiura H, Omae Y, Kawai Y, Tokunaga K, Toda T, Tsuji S. Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome. J Hum Genet 2024; 69:613-621. [PMID: 39020124 PMCID: PMC11599039 DOI: 10.1038/s10038-024-01266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 07/19/2024]
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by various combinations of autonomic failure, parkinsonism, and cerebellar ataxia. To elucidate variants associated with MSA, we have been conducting short-read-based whole-genome sequence analysis. In the process of the association studies, we initially focused on GBA1, a previously proposed susceptibility gene for MSA, to evaluate whether GBA1 variants can be efficiently identified despite its extraordinarily high homology with its pseudogene, GBA1LP. To accomplish this, we conducted a short-read whole-genome sequence analysis with alignment to GRCh38 as well as Sanger sequence analysis and compared the results. We identified five variants with inconsistencies between the two pipelines, of which three variants (p.L483P, p.A495P-p.V499V, p.L483_M489delinsW) were the results of misalignment due to minor alleles in GBA1P1 registered in GRCh38. The miscalling events in these variants were resolved by alignment to GRCh37 as the reference genome, where the major alleles are registered. In addition, a structural variant was not properly identified either by short-read or by Sanger sequence analyses. Having accomplished correct variant calling, we identified three variants pathogenic for Gaucher disease (p.S310G, p.L483P, and p.L483_M489delinsW). Of these variants, the allele frequency of p.L483P (0.003) in the MSA cases was higher than that (0.0011) in controls. The meta-analysis incorporating a previous report demonstrated a significant association of p.L483P with MSA with an odds ratio of 2.85 (95% CI; 1.05 - 7.76, p = 0.0400).
Collapse
Affiliation(s)
- Kenta Orimo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jun Mitsui
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masaki Tanaka
- Institute of Medical Genomics, International University of Health and Welfare, 4-3, Kozunomori, Narita-shi, Chiba, 286-8686, Japan
| | - Junko Nomoto
- Institute of Medical Genomics, International University of Health and Welfare, 4-3, Kozunomori, Narita-shi, Chiba, 286-8686, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Institute of Medical Genomics, International University of Health and Welfare, 4-3, Kozunomori, Narita-shi, Chiba, 286-8686, Japan.
| |
Collapse
|
7
|
Álvarez Jerez P, Wild Crea P, Ramos DM, Gustavsson EK, Radefeldt M, Damianov A, Makarious MB, Ojo OO, Billingsley KJ, Malik L, Daida K, Bromberek S, Hu F, Schneider Z, Surapaneni AL, Stadler J, Rizig M, Morris HR, Pantazis CB, Leonard HL, Screven L, Qi YA, Nalls MA, Bandres-Ciga S, Hardy J, Houlden H, Eng C, Burchard EG, Kachuri L, Lin CH, Black DL, Singleton AB, Fischer S, Bauer P, Reed X, Ryten M, Beetz C, Ward M, Okubadejo NU, Blauwendraat C. African ancestry neurodegeneration risk variant disrupts an intronic branchpoint in GBA1. Nat Struct Mol Biol 2024; 31:1955-1963. [PMID: 39668204 PMCID: PMC11638064 DOI: 10.1038/s41594-024-01423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/10/2024] [Indexed: 12/14/2024]
Abstract
Recently, an African ancestry-specific Parkinson disease (PD) risk signal was identified at the gene encoding glucocerebrosidase (GBA1). This variant ( rs3115534 -G) is carried by ~50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups but is almost absent in European and Asian ancestry populations. GBA1 is a gene of high clinical and therapeutic interest. Damaging biallelic protein-coding variants cause Gaucher disease and monoallelic variants confer risk for PD and dementia with Lewy bodies, likely by reducing the function of glucocerebrosidase. Interestingly, the African ancestry-specific GBA1 risk variant is a noncoding variant, suggesting a different mechanism of action. Using full-length RNA transcript sequencing, we identified partial intron 8 expression in risk variant carriers (G) but not in nonvariant carriers (T). Antibodies targeting the N terminus of glucocerebrosidase showed that this intron-retained isoform is likely not protein coding and subsequent proteomics did not identify a shorter protein isoform, suggesting that the disease mechanism is RNA based. Clustered regularly interspaced short palindromic repeats editing of the reported index variant ( rs3115534 ) revealed that this is the sequence alteration responsible for driving the production of these transcripts containing intron 8. Follow-up analysis of this variant showed that it is in a key intronic branchpoint sequence and, therefore, has important implications in splicing and disease. In addition, when measuring glucocerebrosidase activity, we identified a dose-dependent reduction in risk variant carriers. Overall, we report the functional effect of a GBA1 noncoding risk variant, which acts by interfering with the splicing of functional GBA1 transcripts, resulting in reduced protein levels and reduced glucocerebrosidase activity. This understanding reveals a potential therapeutic target in an underserved and underrepresented population.
Collapse
Affiliation(s)
- Pilar Álvarez Jerez
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Peter Wild Crea
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Daniel M Ramos
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Emil K Gustavsson
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Andrey Damianov
- Department of Microbiology, Immunology and Molecular Genetics, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mary B Makarious
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica, Washington, DC, USA
| | - Oluwadamilola O Ojo
- College of Medicine, University of Lagos, Lagos, Nigeria
- Lagos University Teaching Hospital, Lagos, Nigeria
| | - Kimberley J Billingsley
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Laksh Malik
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Sarah Bromberek
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Fangle Hu
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zachary Schneider
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Aditya L Surapaneni
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Julia Stadler
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Huw R Morris
- UCL Movement Disorders Centre, University College London, London, UK
| | - Caroline B Pantazis
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica, Washington, DC, USA
| | - Laurel Screven
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yue A Qi
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica, Washington, DC, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Celeste Eng
- Department of Biotherapeutic Sciences and Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Esteban González Burchard
- Department of Biotherapeutic Sciences and Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | | | | | - Xylena Reed
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Michael Ward
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Njideka U Okubadejo
- College of Medicine, University of Lagos, Lagos, Nigeria
- Lagos University Teaching Hospital, Lagos, Nigeria
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA.
| |
Collapse
|
8
|
Vieira SR, Mezabrovschi R, Toffoli M, Del Pozo SL, Menozzi E, Mullin S, Yalkic S, Limbachiya N, Koletsi S, Loefflad N, Lopez GJ, Gan‐Or Z, Alcalay RN, Sidransky E, Schapira AH. Consensus Guidance for Genetic Counseling in GBA1 Variants: A Focus on Parkinson's Disease. Mov Disord 2024; 39:2144-2154. [PMID: 39258449 PMCID: PMC11657020 DOI: 10.1002/mds.30006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Glucocerebrosidase (GBA1) variants constitute numerically the most common known genetic risk factor for Parkinson's disease (PD) and are distributed worldwide. Access to GBA1 genotyping varies across the world and even regionally within countries. Guidelines for GBA1 variant counseling are evolving. We review the current knowledge of the link between GBA1 and PD, and discuss the practicalities of GBA1 testing. Lastly, we provide a consensus for an approach to counseling people with GBA1 variants, notably the communication of PD risk. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sophia R.L. Vieira
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Roxana Mezabrovschi
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Marco Toffoli
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Sara Lucas Del Pozo
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Elisa Menozzi
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Stephen Mullin
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Faculty of HealthUniversity of PlymouthPlymouthUnited Kingdom
| | - Selen Yalkic
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Naomi Limbachiya
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Sofia Koletsi
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Aligning Science Across Parkinson's Collaborative Research NetworkChevy ChaseMarylandUSA
| | - Nadine Loefflad
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Grisel J. Lopez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Ziv Gan‐Or
- Department of Neurology and Neurosurgery, The Neuro (Montreal Neurological Institute‐Hospital), and Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Roy N. Alcalay
- Columbia University Irving Medical CenterNew YorkNew YorkUSA
- Tel Aviv Sourasky Medical Center, Tel Aviv School of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Ellen Sidransky
- Aligning Science Across Parkinson's Collaborative Research NetworkChevy ChaseMarylandUSA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Anthony H.V. Schapira
- Department of Clinical and Movement NeurosciencesUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
- Aligning Science Across Parkinson's Collaborative Research NetworkChevy ChaseMarylandUSA
| |
Collapse
|
9
|
Scholz SW, Cobos I. Genetics and Neuropathology of Neurodegenerative Dementias. Continuum (Minneap Minn) 2024; 30:1801-1822. [PMID: 39620845 DOI: 10.1212/con.0000000000001505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OBJECTIVE This article provides an overview of the current understanding of the genetic and pathologic features of neurodegenerative dementias, with an emphasis on Alzheimer disease and related dementias. LATEST DEVELOPMENTS In recent years, there has been substantial progress in genetic research, contributing significant knowledge to our understanding of the molecular risk factors involved in neurodegenerative dementia syndromes. Several genes have been linked to monogenic forms of dementia (eg, APP, PSEN1, PSEN2, SNCA, GRN, C9orf72, MAPT) and an even larger number of genetic variants are known to influence susceptibility for developing dementia. As anti-amyloid therapies for patients with early-stage Alzheimer disease have entered the clinical arena, screening for the apolipoprotein E ε4 high-risk allele has come into focus, emphasizing the importance of genetic counseling. Similarly, advances in the pathologic classifications of neurodegenerative dementia syndromes and molecular pathology highlight their heterogeneity and overlapping features and provide insights into the pathogenesis of these conditions. ESSENTIAL POINTS Recent progress in neurogenetics and molecular pathology has improved our understanding of the complex pathogenetic changes associated with neurodegenerative dementias, facilitating improved disease modeling, enhanced diagnostics, and individualized counseling. The hope is that this knowledge will ultimately pave the way for the development of novel therapeutics.
Collapse
|
10
|
Behera S, Catreux S, Rossi M, Truong S, Huang Z, Ruehle M, Visvanath A, Parnaby G, Roddey C, Onuchic V, Finocchio A, Cameron DL, English A, Mehtalia S, Han J, Mehio R, Sedlazeck FJ. Comprehensive genome analysis and variant detection at scale using DRAGEN. Nat Biotechnol 2024:10.1038/s41587-024-02382-1. [PMID: 39455800 PMCID: PMC12022141 DOI: 10.1038/s41587-024-02382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 08/08/2024] [Indexed: 10/28/2024]
Abstract
Research and medical genomics require comprehensive, scalable methods for the discovery of novel disease targets, evolutionary drivers and genetic markers with clinical significance. This necessitates a framework to identify all types of variants independent of their size or location. Here we present DRAGEN, which uses multigenome mapping with pangenome references, hardware acceleration and machine learning-based variant detection to provide insights into individual genomes, with ~30 min of computation time from raw reads to variant detection. DRAGEN outperforms current state-of-the-art methods in speed and accuracy across all variant types (single-nucleotide variations, insertions or deletions, short tandem repeats, structural variations and copy number variations) and incorporates specialized methods for analysis of medically relevant genes. We demonstrate the performance of DRAGEN across 3,202 whole-genome sequencing datasets by generating fully genotyped multisample variant call format files and demonstrate its scalability, accuracy and innovation to further advance the integration of comprehensive genomics. Overall, DRAGEN marks a major milestone in sequencing data analysis and will provide insights across various diseases, including Mendelian and rare diseases, with a highly comprehensive and scalable platform.
Collapse
Affiliation(s)
- Sairam Behera
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Adam English
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
11
|
Chahine LM, Louie N, Solle J, Akçimen F, Ameri A, Augenbraun S, Avripas S, Breaux S, Causey C, Chandra S, Dean M, Disbrow EA, Fanty L, Fernandez J, Foster ER, Furr Stimming E, Hall D, Hinson V, Johnson-Turbes A, Jonas C, Kilbane C, Norris SA, Nguyen BT, Padmanaban M, Paquette K, Parry C, Pessoa Rocha N, Rawls A, Shamim EA, Shulman LM, Sipma R, Staisch J, Traurig R, von Coelln R, Wild Crea P, Xie T, Fang ZH, O'Grady A, Kopil CM, McGuire Kuhl M, Singleton A, Blauwendraat C, Bandres-Ciga S. The Black and African American Connections to Parkinson's Disease (BLAAC PD) study protocol. BMC Neurol 2024; 24:403. [PMID: 39434044 PMCID: PMC11492614 DOI: 10.1186/s12883-024-03914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Determining the genetic contributions to Parkinson's disease (PD) across diverse ancestries is a high priority as this work can guide therapeutic development in a global setting. The genetics of PD spans the etiological risk spectrum, from rare, highly deleterious variants linked to monogenic forms with Mendelian patterns of inheritance, to common variation involved in sporadic disease. A major limitation in PD genomics research is lack of racial and ethnic diversity. Enrollment disparities have detrimental consequences on the generalizability of results and exacerbate existing inequities in care. The Black and African American Connections to Parkinson's Disease (BLAAC PD) study is part of the Global Parkinson's Genetics Program, supported by the Aligning Science Across Parkinson's initiative. The goal of the study is to investigate the genetic architecture underlying PD risk and progression in the Black and/or African American populations. This cross-sectional multicenter study in the United States has a recruitment target of up to 2,000 individuals with PD and up to 2,000 controls, all of Black and/or African American ancestry. The study design incorporates several strategies to reduce barriers to research participation. The multifaceted recruitment strategy aims to involve individuals with and without PD in various settings, emphasizing community outreach and engagement. The BLAAC PD study is an important first step toward informing understanding of the genetics of PD in a more diverse population.
Collapse
Affiliation(s)
- Lana M Chahine
- University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA.
| | - Naomi Louie
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - J Solle
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Fulya Akçimen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Ameri
- Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | - Christopher Causey
- Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Shivika Chandra
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Marissa Dean
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth A Disbrow
- Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | | | | | - Erin R Foster
- University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Erin Furr Stimming
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Deborah Hall
- Rush University Medical Center, Chicago, IL, USA
| | - Vanessa Hinson
- Medical University of South Carolina, Charleston, SC, USA
| | | | - Cabell Jonas
- Kaiser Permanente Mid-Atlantic States, Largo, MD, USA
| | - Camilla Kilbane
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | | | | | - Kimberly Paquette
- Center for Alzheimer's Disease and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Carly Parry
- NORC at the University of Chicago, Chicago, IL, USA
| | | | | | - Ejaz A Shamim
- Kaiser Permanente Mid-Atlantic States, Largo, MD, USA
| | | | - Rebeka Sipma
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Rami Traurig
- Center for Alzheimer's Disease and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Peter Wild Crea
- Center for Alzheimer's Disease and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tao Xie
- University of Chicago, Chicago, IL, USA
| | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alyssa O'Grady
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Catherine M Kopil
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | | | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's Disease and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Sara Bandres-Ciga
- Center for Alzheimer's Disease and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Towns C, Fang ZH, Tan MMX, Jasaityte S, Schmaderer TM, Stafford EJ, Pollard M, Tilney R, Hodgson M, Wu L, Labrum R, Hehir J, Polke J, Lange LM, Schapira AHV, Bhatia KP, Singleton AB, Blauwendraat C, Klein C, Houlden H, Wood NW, Jarman PR, Morris HR, Real R. Parkinson's families project: a UK-wide study of early onset and familial Parkinson's disease. NPJ Parkinsons Dis 2024; 10:188. [PMID: 39420034 PMCID: PMC11487259 DOI: 10.1038/s41531-024-00778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/12/2024] [Indexed: 10/19/2024] Open
Abstract
The Parkinson's Families Project is a UK-wide study aimed at identifying genetic variation associated with familial and early-onset Parkinson's disease (PD). We recruited individuals with a clinical diagnosis of PD and age at motor symptom onset ≤45 years and/or a family history of PD in up to third-degree relatives. Where possible, we also recruited affected and unaffected relatives. We analysed DNA samples with a combination of single nucleotide polymorphism (SNP) array genotyping, multiplex ligation-dependent probe amplification (MLPA), and whole-genome sequencing (WGS). We investigated the association between identified pathogenic mutations and demographic and clinical factors such as age at motor symptom onset, family history, motor symptoms (MDS-UPDRS) and cognitive performance (MoCA). We performed baseline genetic analysis in 718 families, of which 205 had sporadic early-onset PD (sEOPD), 113 had familial early-onset PD (fEOPD), and 400 had late-onset familial PD (fLOPD). 69 (9.6%) of these families carried pathogenic variants in known monogenic PD-related genes. The rate of a molecular diagnosis increased to 28.1% in PD with motor onset ≤35 years. We identified pathogenic variants in LRRK2 in 4.2% of families, and biallelic pathogenic variants in PRKN in 3.6% of families. We also identified two families with SNCA duplications and three families with a pathogenic repeat expansion in ATXN2, as well as single families with pathogenic variants in VCP, PINK1, PNPLA6, PLA2G6, SPG7, GCH1, and RAB32. An additional 73 (10.2%) families were carriers of at least one pathogenic or risk GBA1 variant. Most early-onset and familial PD cases do not have a known genetic cause, indicating that there are likely to be further monogenic causes for PD.
Collapse
Affiliation(s)
- Clodagh Towns
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Simona Jasaityte
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Theresa M Schmaderer
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Eleanor J Stafford
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Miriam Pollard
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Russel Tilney
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Megan Hodgson
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Lesley Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Robyn Labrum
- Neurogenetics Laboratory, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Jason Hehir
- Neurogenetics Laboratory, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - James Polke
- Neurogenetics Laboratory, National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul R Jarman
- National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- UCL Movement Disorders Centre, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- UCL Movement Disorders Centre, University College London, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
13
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
14
|
Hertz E, Chen Y, Sidransky E. Gaucher disease provides a unique window into Parkinson disease pathogenesis. Nat Rev Neurol 2024; 20:526-540. [PMID: 39107435 DOI: 10.1038/s41582-024-00999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
An exciting development in the field of neurodegeneration is the association between the rare monogenic disorder Gaucher disease and the common complex disorder Parkinson disease (PD). Gaucher disease is a lysosomal storage disorder resulting from an inherited deficiency of the enzyme glucocerebrosidase, encoded by GBA1, which hydrolyses the glycosphingolipids glucosylceramide and glucosylsphingosine. The observation of parkinsonism in a rare subgroup of individuals with Gaucher disease first directed attention to the role of glucocerebrosidase deficiency in the pathogenesis of PD. PD occurs more frequently in people heterozygous for Gaucher GBA1 mutations, and 3-25% of people with Parkinson disease carry a GBA1 variant. However, only a small percentage of individuals with GBA1 variants develop parkinsonism, suggesting that the penetrance is low. Despite over a decade of intense research in this field, including clinical and radiological evaluations, genetic studies and investigations using model systems, the mechanism underlying GBA1-PD is still being pursued. Insights from this association have emphasized the role of lysosomal pathways in parkinsonism. Furthermore, different therapeutic strategies considered or developed for Gaucher disease can now inform drug development for PD.
Collapse
Affiliation(s)
- Ellen Hertz
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Guha S, Reddi HV, Aarabi M, DiStefano M, Wakeling E, Dungan JS, Gregg AR. Laboratory testing for preconception/prenatal carrier screening: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2024; 26:101137. [PMID: 38814327 DOI: 10.1016/j.gim.2024.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/31/2024] Open
Abstract
Carrier screening has historically assessed a relatively small number of autosomal recessive and X-linked conditions selected based on frequency in a specific subpopulation and association with severe morbidity or mortality. Advances in genomic technologies enable simultaneous screening of individuals for several conditions. The American College of Medical Genetics and Genomics recently published a clinical practice resource that presents a framework when offering screening for autosomal recessive and X-linked conditions during pregnancy and preconception and recommends a tier-based approach when considering the number of conditions to screen for and their frequency within the US population in general. This laboratory technical standard aims to complement the practice resource and to put forth considerations for clinical laboratories and clinicians who offer preconception/prenatal carrier screening.
Collapse
Affiliation(s)
| | - Honey V Reddi
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Mahmoud Aarabi
- UPMC Medical Genetics and Genomics Laboratories, UPMC Magee-Womens Hospital, Pittsburgh, PA; Departments of Pathology and Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | | - Jeffrey S Dungan
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Anthony R Gregg
- Department of Obstetrics and Gynecology, Prisma Health, Columbia, SC
| |
Collapse
|
16
|
Gustavsson EK, Sethi S, Gao Y, Brenton JW, García-Ruiz S, Zhang D, Garza R, Reynolds RH, Evans JR, Chen Z, Grant-Peters M, Macpherson H, Montgomery K, Dore R, Wernick AI, Arber C, Wray S, Gandhi S, Esselborn J, Blauwendraat C, Douse CH, Adami A, Atacho DAM, Kouli A, Quaegebeur A, Barker RA, Englund E, Platt F, Jakobsson J, Wood NW, Houlden H, Saini H, Bento CF, Hardy J, Ryten M. The annotation of GBA1 has been concealed by its protein-coding pseudogene GBAP1. SCIENCE ADVANCES 2024; 10:eadk1296. [PMID: 38924406 PMCID: PMC11204300 DOI: 10.1126/sciadv.adk1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Mutations in GBA1 cause Gaucher disease and are the most important genetic risk factor for Parkinson's disease. However, analysis of transcription at this locus is complicated by its highly homologous pseudogene, GBAP1. We show that >50% of short RNA-sequencing reads mapping to GBA1 also map to GBAP1. Thus, we used long-read RNA sequencing in the human brain, which allowed us to accurately quantify expression from both GBA1 and GBAP1. We discovered significant differences in expression compared to short-read data and identify currently unannotated transcripts of both GBA1 and GBAP1. These included protein-coding transcripts from both genes that were translated in human brain, but without the known lysosomal function-yet accounting for almost a third of transcription. Analyzing brain-specific cell types using long-read and single-nucleus RNA sequencing revealed region-specific variations in transcript expression. Overall, these findings suggest nonlysosomal roles for GBA1 and GBAP1 with implications for our understanding of the role of GBA1 in health and disease.
Collapse
Affiliation(s)
- Emil K. Gustavsson
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Siddharth Sethi
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Yujing Gao
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Jonathan W. Brenton
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sonia García-Ruiz
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - David Zhang
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Regina H. Reynolds
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - James R. Evans
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Zhongbo Chen
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Melissa Grant-Peters
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Hannah Macpherson
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kylie Montgomery
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rhys Dore
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Anna I. Wernick
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sonia Gandhi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Julian Esselborn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher H. Douse
- Laboratory of Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anita Adami
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Diahann A. M. Atacho
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Antonina Kouli
- Wellcome-MRC Cambridge Stem Cell Institute and John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Annelies Quaegebeur
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge, UK
| | - Roger A. Barker
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Wellcome-MRC Cambridge Stem Cell Institute and John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Frances Platt
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Johan Jakobsson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund, Sweden
| | - Nicholas W. Wood
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Harpreet Saini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - Carla F. Bento
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK
| | - John Hardy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, UCL, London, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, UCL, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
17
|
Jerez PÁ, Wild Crea PA, Ramos DM, Gustavsson EK, Radefeldt M, Makarious MB, Ojo OO, Billingsley KJ, Malik L, Daida K, Bromberek S, Hu C, Schneider Z, Surapaneni AL, Stadler J, Rizig M, Morris HR, Pantazis CB, Leonard HL, Screven L, Qi YA, Nalls MA, Bandres-Ciga S, Hardy J, Houlden H, Eng C, Burchard EG, Kachuri L, Singleton AB, Fischer S, Bauer P, Reed X, Ryten M, Beetz C, Ward M, Okubadejo NU, Blauwendraat C. African ancestry neurodegeneration risk variant disrupts an intronic branchpoint in GBA1. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.20.24302827. [PMID: 39802803 PMCID: PMC11722498 DOI: 10.1101/2024.02.20.24302827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Recently, a novel African ancestry specific Parkinson's disease (PD) risk signal was identified at the gene encoding glucocerebrosidase (GBA1). This variant (rs3115534-G) is carried by ~50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups, but is almost absent in European and Asian ancestry populations. GBA1 is a gene of high clinical and therapeutic interest. Damaging bi-allelic protein-coding variants cause Gaucher disease and mono-allelic variants confer risk for PD and Dementia with Lewy Bodies, likely by reducing the function of glucocerebrosidase. Interestingly, the novel African ancestry specific GBA1 risk variant is a non-coding variant, suggesting a different mechanism of action. Using full length RNA transcript sequencing, we identified intron 8 expression in risk variant carriers (G) but not in non-variant carriers (T). Antibodies targeting the N-terminus of glucocerebrosidase showed that this intron-retained isoform is likely not protein coding and subsequent proteomics did not identify a shorter protein isoform, suggesting the disease mechanism is RNA-based. CRISPR editing of the reported index variant (rs3115534) revealed that this is the responsible sequence alteration driving production of these intron 8 containing transcripts. Follow-up analysis of this variant showed that it is in a key intronic branchpoint sequence and therefore has important implications in splicing and disease. In addition, when measuring glucocerebrosidase activity we identified a dose-dependent reduction in risk variant carriers (G). Overall, we report the functional effect of a GBA1 non-coding risk variant, which acts by interfering with the splicing of functional GBA1 transcripts, resulting in reduced protein levels and reduced glucocerebrosidase activity. This understanding reveals a novel therapeutic target in an underserved and underrepresented population.
Collapse
Affiliation(s)
- Pilar Álvarez Jerez
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Peter A. Wild Crea
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Daniel M. Ramos
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Emil K. Gustavsson
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Mary B. Makarious
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
- UCL Movement Disorders Centre, University College London, London, UK
| | - Oluwadamilola O. Ojo
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Kimberley J. Billingsley
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Laksh Malik
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Sarah Bromberek
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Carol Hu
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zachary Schneider
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Aditya L. Surapaneni
- Department of Medicine, New York University Langone School of Medicine, New York, New York, USA
| | - Julia Stadler
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Huw R. Morris
- UCL Movement Disorders Centre, University College London, London, UK
| | - Caroline B. Pantazis
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hampton L. Leonard
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Laurel Screven
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Medicine, New York University Langone School of Medicine, New York, New York, USA
| | - Celeste Eng
- Department of Biotherapeutic Sciences and Department of Medicine, University of California, San Francisco, CA, USA
| | - Esteban González Burchard
- Department of Biotherapeutic Sciences and Department of Medicine, University of California, San Francisco, CA, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | | | | | - Xylena Reed
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | - Michael Ward
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Njideka U. Okubadejo
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
- Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Rački V, Bergant G, Papić E, Kovanda A, Hero M, Rožmarić G, Starčević Čizmarević N, Ristić S, Ostojić S, Kapović M, Maver A, Peterlin B, Vuletić V. GiOPARK Project: The Genetic Study of Parkinson's Disease in the Croatian Population. Genes (Basel) 2024; 15:255. [PMID: 38397244 PMCID: PMC10888376 DOI: 10.3390/genes15020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Parkinson's disease is a neurological disorder that affects motor function, autonomic functions, and cognitive abilities. It is likely that both genetic and environmental factors, along with age, contribute to the cause. However, there is no comprehensive guideline for genetic testing for Parkinson's disease, and more research is needed to understand genetic variations in different populations. There has been no research on the genetic background of Parkinson's disease in Croatia so far. Therefore, with the GiOPARK project, we aimed to investigate the genetic variants responsible for Parkinson's disease in 153 Croatian patients with early onset, familial onset, and sporadic late-onset using whole-exome sequencing, along with multiplex ligation-dependent probe amplification and Sanger sequencing in select patients. We found causative variants in 7.84% of the patients, with GBA being the most common gene (4.58%), followed by PRKN (1.96%), ITM2B (0.65%), and MAPT (0.65%). Moreover, variants of uncertain significance were identified in 26.14% of the patients. The causative variants were found in all three subgroups, indicating that genetic factors play a role in all the analyzed Parkinson's disease subtypes. This study emphasizes the need for more inclusive research and improved guidelines to better understand the genetic basis of Parkinson's disease and facilitate more effective clinical management.
Collapse
Affiliation(s)
- Valentino Rački
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.); (M.H.); (G.R.)
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Gaber Bergant
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (G.B.); (A.K.); (A.M.); (B.P.)
| | - Eliša Papić
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.); (M.H.); (G.R.)
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Anja Kovanda
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (G.B.); (A.K.); (A.M.); (B.P.)
| | - Mario Hero
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.); (M.H.); (G.R.)
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Gloria Rožmarić
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.); (M.H.); (G.R.)
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Nada Starčević Čizmarević
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (N.S.Č.); (S.R.); (S.O.); (M.K.)
| | - Smiljana Ristić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (N.S.Č.); (S.R.); (S.O.); (M.K.)
| | - Saša Ostojić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (N.S.Č.); (S.R.); (S.O.); (M.K.)
| | - Miljenko Kapović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (N.S.Č.); (S.R.); (S.O.); (M.K.)
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (G.B.); (A.K.); (A.M.); (B.P.)
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (G.B.); (A.K.); (A.M.); (B.P.)
| | - Vladimira Vuletić
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.R.); (E.P.); (M.H.); (G.R.)
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
19
|
Behera S, Catreux S, Rossi M, Truong S, Huang Z, Ruehle M, Visvanath A, Parnaby G, Roddey C, Onuchic V, Cameron DL, English A, Mehtalia S, Han J, Mehio R, Sedlazeck FJ. Comprehensive and accurate genome analysis at scale using DRAGEN accelerated algorithms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573821. [PMID: 38260545 PMCID: PMC10802302 DOI: 10.1101/2024.01.02.573821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Research and medical genomics require comprehensive and scalable solutions to drive the discovery of novel disease targets, evolutionary drivers, and genetic markers with clinical significance. This necessitates a framework to identify all types of variants independent of their size (e.g., SNV/SV) or location (e.g., repeats). Here we present DRAGEN that utilizes novel methods based on multigenomes, hardware acceleration, and machine learning based variant detection to provide novel insights into individual genomes with ~30min computation time (from raw reads to variant detection). DRAGEN outperforms all other state-of-the-art methods in speed and accuracy across all variant types (SNV, indel, STR, SV, CNV) and further incorporates specialized methods to obtain key insights in medically relevant genes (e.g., HLA, SMN, GBA). We showcase DRAGEN across 3,202 genomes and demonstrate its scalability, accuracy, and innovations to further advance the integration of comprehensive genomics for research and medical applications.
Collapse
Affiliation(s)
- Sairam Behera
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | - Adam English
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, TX, USA
- Department of Computer Science, Rice University, TX, USA
| |
Collapse
|
20
|
Pachchek S, Landoulsi Z, Pavelka L, Schulte C, Buena-Atienza E, Gross C, Hauser AK, Reddy Bobbili D, Casadei N, May P, Krüger R. Accurate long-read sequencing identified GBA1 as major risk factor in the Luxembourgish Parkinson's study. NPJ Parkinsons Dis 2023; 9:156. [PMID: 37996455 PMCID: PMC10667262 DOI: 10.1038/s41531-023-00595-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Heterozygous variants in the glucocerebrosidase GBA1 gene are an increasingly recognized risk factor for Parkinson's disease (PD). Due to the GBAP1 pseudogene, which shares 96% sequence homology with the GBA1 coding region, accurate variant calling by array-based or short-read sequencing methods remains a major challenge in understanding the genetic landscape of GBA1-associated PD. We analyzed 660 patients with PD, 100 patients with Parkinsonism and 808 healthy controls from the Luxembourg Parkinson's study, sequenced using amplicon-based long-read DNA sequencing technology. We found that 12.1% (77/637) of PD patients carried GBA1 variants, with 10.5% (67/637) of them carrying known pathogenic variants (including severe, mild, risk variants). In comparison, 5% (34/675) of the healthy controls carried GBA1 variants, and among them, 4.3% (29/675) were identified as pathogenic variant carriers. We found four GBA1 variants in patients with atypical parkinsonism. Pathogenic GBA1 variants were 2.6-fold more frequently observed in PD patients compared to controls (OR = 2.6; CI = [1.6,4.1]). Three novel variants of unknown significance (VUS) were identified. Using a structure-based approach, we defined a potential risk prediction method for VUS. This study describes the full landscape of GBA1-related parkinsonism in Luxembourg, showing a high prevalence of GBA1 variants as the major genetic risk for PD. Although the long-read DNA sequencing technique used in our study may be limited in its effectiveness to detect potential structural variants, our approach provides an important advancement for highly accurate GBA1 variant calling, which is essential for providing access to emerging causative therapies for GBA1 carriers.
Collapse
Grants
- FNR/NCER13/BM/11264123 Fonds National de la Recherche Luxembourg (National Research Fund)
- funded by the Luxembourg National Research (FNR/NCER13/BM/11264123), the PEARL program (FNR/P13/6682797 to RK), MotaSYN (12719684 to RK), MAMaSyn (to RK), MiRisk‐PD (C17/BM/11676395 to RK, PM), the FNR/DFG Core INTER (ProtectMove, FNR11250962 to PM), and the PARK-QC DTU (PRIDE17/12244779/PARK-QC to RK, SP)
- Luxembourg National Research Fund (FNR/NCER13/BM/11264123), the PEARL program (FNR/P13/6682797), MotaSYN (12719684), MAMaSyn, MiRisk‐PD (C17/BM/11676395), and the PARK-QC DTU (PRIDE17/12244779/PARK-QC)
Collapse
Affiliation(s)
- Sinthuja Pachchek
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
| | - Zied Landoulsi
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Lukas Pavelka
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Claudia Schulte
- Department of Neurodegeneration, Center of Neurology, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Elena Buena-Atienza
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Caspar Gross
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Ann-Kathrin Hauser
- Department of Neurodegeneration, Center of Neurology, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Dheeraj Reddy Bobbili
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Patrick May
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
| | - Rejko Krüger
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
| |
Collapse
|
21
|
Rizig M, Bandres-Ciga S, Makarious MB, Ojo OO, Crea PW, Abiodun OV, Levine KS, Abubakar SA, Achoru CO, Vitale D, Adeniji OA, Agabi OP, Koretsky MJ, Agulanna U, Hall DA, Akinyemi RO, Xie T, Ali MW, Shamim EA, Ani-Osheku I, Padmanaban M, Arigbodi OM, Standaert DG, Bello AH, Dean MN, Erameh CO, Elsayed I, Farombi TH, Okunoye O, Fawale MB, Billingsley KJ, Imarhiagbe FA, Jerez PA, Iwuozo EU, Baker B, Komolafe MA, Malik L, Nwani PO, Daida K, Nwazor EO, Miano-Burkhardt A, Nyandaiti YW, Fang ZH, Obiabo YO, Kluss JH, Odeniyi OA, Hernandez DG, Odiase FE, Tayebi N, Ojini FI, Sidranksy E, Onwuegbuzie GA, D'Souza AM, Osaigbovo GO, Berhe B, Osemwegie N, Reed X, Oshinaike OO, Leonard HL, Otubogun FM, Alvarado CX, Oyakhire SI, Ozomma SI, Samuel SC, Taiwo FT, Wahab KW, Zubair YA, Iwaki H, Kim JJ, Morris HR, Hardy J, Nalls MA, Heilbron K, Norcliffe-Kaufmann L, Blauwendraat C, Houlden H, Singleton A, Okubadejo NU. Identification of genetic risk loci and causal insights associated with Parkinson's disease in African and African admixed populations: a genome-wide association study. Lancet Neurol 2023; 22:1015-1025. [PMID: 37633302 PMCID: PMC10593199 DOI: 10.1016/s1474-4422(23)00283-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND An understanding of the genetic mechanisms underlying diseases in ancestrally diverse populations is an important step towards development of targeted treatments. Research in African and African admixed populations can enable mapping of complex traits, because of their genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. We aimed to do a comprehensive genome-wide assessment in African and African admixed individuals to better understand the genetic architecture of Parkinson's disease in these underserved populations. METHODS We performed a genome-wide association study (GWAS) in people of African and African admixed ancestry with and without Parkinson's disease. Individuals were included from several cohorts that were available as a part of the Global Parkinson's Genetics Program, the International Parkinson's Disease Genomics Consortium Africa, and 23andMe. A diagnosis of Parkinson's disease was confirmed clinically by a movement disorder specialist for every individual in each cohort, except for 23andMe, in which it was self-reported based on clinical diagnosis. We characterised ancestry-specific risk, differential haplotype structure and admixture, coding and structural genetic variation, and enzymatic activity. FINDINGS We included 197 918 individuals (1488 cases and 196 430 controls) in our genome-wide analysis. We identified a novel common risk factor for Parkinson's disease (overall meta-analysis odds ratio for risk of Parkinson's disease 1·58 [95% CI 1·37-1·80], p=2·397 × 10-14) and age at onset at the GBA1 locus, rs3115534-G (age at onset β=-2·00 [SE=0·57], p=0·0005, for African ancestry; and β=-4·15 [0·58], p=0·015, for African admixed ancestry), which was rare in non-African or non-African admixed populations. Downstream short-read and long-read whole-genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. The identified signal seems to be associated with decreased glucocerebrosidase activity. INTERPRETATION Our study identified a novel genetic risk factor in GBA1 in people of African ancestry, which has not been seen in European populations, and it could be a major mechanistic basis of Parkinson's disease in African populations. This population-specific variant exerts substantial risk on Parkinson's disease as compared with common variation identified through GWAS and it was found to be present in 39% of the cases assessed in this study. This finding highlights the importance of understanding ancestry-specific genetic risk in complex diseases, a particularly crucial point as the Parkinson's disease field moves towards targeted treatments in clinical trials. The distinctive genetics of African populations highlights the need for equitable inclusion of ancestrally diverse groups in future trials, which will be a valuable step towards gaining insights into novel genetic determinants underlying the causes of Parkinson's disease. This finding opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk of Parkinson's disease. FUNDING The Global Parkinson's Genetics Program, which is funded by the Aligning Science Across Parkinson's initiative, and The Michael J Fox Foundation for Parkinson's Research.
Collapse
Affiliation(s)
- Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mary B Makarious
- UCL Movement Disorders Centre, University College London, London, UK; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Peter Wild Crea
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Kristin S Levine
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Washington, DC, USA
| | | | | | - Dan Vitale
- Data Tecnica International, Washington, DC, USA
| | | | - Osigwe Paul Agabi
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Mathew J Koretsky
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Uchechi Agulanna
- Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rufus Olusola Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, IL, USA
| | | | - Ejaz A Shamim
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Kaiser Permanente Mid-Atlantic States, Largo, MD, USA; MidAtlantic Permanente Research Institute, Rockville, MD, USA
| | | | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, IL, USA
| | | | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Marissa N Dean
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wadmadani, Sudan
| | | | - Olaitan Okunoye
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | - Kimberley J Billingsley
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Pilar Alvarez Jerez
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Breeana Baker
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Laksh Malik
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Paul Osemeke Nwani
- Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Kensuke Daida
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Abigail Miano-Burkhardt
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases, Tuebingen, Germany
| | | | - Jillian H Kluss
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francis Ibe Ojini
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Ellen Sidranksy
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Andrea M D'Souza
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Bahafta Berhe
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Xylena Reed
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Washington, DC, USA
| | | | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Washington, DC, USA
| | | | | | | | | | - Kolawole Wasiu Wahab
- University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria; University of Ilorin, Ilorin, Kwara State, Nigeria
| | | | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Washington, DC, USA
| | - Jonggeol Jeffrey Kim
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Huw R Morris
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | | | | | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Njideka Ulunma Okubadejo
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria; Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria.
| |
Collapse
|
22
|
Toffoli M, Schapira AHV, Proukakis C. Sex Distribution of GBA1 Variants Carriers with Dementia with Lewy Bodies and Parkinson's Disease. Mov Disord 2023; 38:2137-2139. [PMID: 37736925 DOI: 10.1002/mds.29609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Affiliation(s)
- Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
23
|
Tayebi N, Lichtenberg J, Hertz E, Sidransky E. Is Gauchian genotyping of GBA1 variants reliable? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.26.23297627. [PMID: 37986861 PMCID: PMC10659459 DOI: 10.1101/2023.10.26.23297627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Biallelic mutations in GBA1 result in Gaucher disease (GD), the inherited deficiency of glucocerebrosidase. Variants in GBA1 are also a common genetic risk factor for Parkinson disease (PD). Currently, some PD centers screen for mutant GBA1 alleles to stratify patients who may ultimately benefit from GBA1-targeted therapeutics. However, accurately detecting variants, especially recombinant alleles resulting from a crossover between GBA1 and its pseudogene, is challenging, impacting studies of both GD and GBA1-associated parkinsonism. Recently, the software tool Gauchian was introduced to identify GBA1 variants from whole genome sequencing. We evaluated Gauchian in 90 Sanger-sequenced patients with GD and five GBA1 heterozygotes. While Gauchian genotyped most patients correctly, it missed some rare or de novo mutations due to its limited internal database and over-reliance on intergenic structural variants. This resulted in misreported homozygosity, incomplete genotypes, and undetected recombination events, limiting Gauchian's utility in variant screening and precluding its use in diagnostics.
Collapse
Affiliation(s)
- Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Jens Lichtenberg
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Ellen Hertz
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| |
Collapse
|
24
|
Chatterjee D, Krainc D. Mechanisms of Glucocerebrosidase Dysfunction in Parkinson's Disease. J Mol Biol 2023; 435:168023. [PMID: 36828270 PMCID: PMC10247409 DOI: 10.1016/j.jmb.2023.168023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Beta-glucocerebrosidase is a lysosomal hydrolase, encoded by GBA1 that represents the most common risk gene associated with Parkinson's disease (PD) and Lewy Body Dementia. Glucocerebrosidase dysfunction has been also observed in the absence of GBA1 mutations across different genetic and sporadic forms of PD and related disorders, suggesting a broader role of glucocerebrosidase in neurodegeneration. In this review, we highlight recent advances in mechanistic characterization of glucocerebrosidase function as the foundation for development of novel therapeutics targeting glucocerebrosidase in PD and related disorders.
Collapse
Affiliation(s)
- Diptaman Chatterjee
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. https://twitter.com/NeilChatterBox
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA; Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
25
|
Kaivola K, Chia R, Ding J, Rasheed M, Fujita M, Menon V, Walton RL, Collins RL, Billingsley K, Brand H, Talkowski M, Zhao X, Dewan R, Stark A, Ray A, Solaiman S, Alvarez Jerez P, Malik L, Dawson TM, Rosenthal LS, Albert MS, Pletnikova O, Troncoso JC, Masellis M, Keith J, Black SE, Ferrucci L, Resnick SM, Tanaka T, Topol E, Torkamani A, Tienari P, Foroud TM, Ghetti B, Landers JE, Ryten M, Morris HR, Hardy JA, Mazzini L, D'Alfonso S, Moglia C, Calvo A, Serrano GE, Beach TG, Ferman T, Graff-Radford NR, Boeve BF, Wszolek ZK, Dickson DW, Chiò A, Bennett DA, De Jager PL, Ross OA, Dalgard CL, Gibbs JR, Traynor BJ, Scholz SW. Genome-wide structural variant analysis identifies risk loci for non-Alzheimer's dementias. CELL GENOMICS 2023; 3:100316. [PMID: 37388914 PMCID: PMC10300553 DOI: 10.1016/j.xgen.2023.100316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 07/01/2023]
Abstract
We characterized the role of structural variants, a largely unexplored type of genetic variation, in two non-Alzheimer's dementias, namely Lewy body dementia (LBD) and frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS). To do this, we applied an advanced structural variant calling pipeline (GATK-SV) to short-read whole-genome sequence data from 5,213 European-ancestry cases and 4,132 controls. We discovered, replicated, and validated a deletion in TPCN1 as a novel risk locus for LBD and detected the known structural variants at the C9orf72 and MAPT loci as associated with FTD/ALS. We also identified rare pathogenic structural variants in both LBD and FTD/ALS. Finally, we assembled a catalog of structural variants that can be mined for new insights into the pathogenesis of these understudied forms of dementia.
Collapse
Affiliation(s)
- Karri Kaivola
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Memoona Rasheed
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York, NY, USA
| | - Ronald L. Walton
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - Ryan L. Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.), Cambridge, MA, USA
- Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kimberley Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Centre for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.), Cambridge, MA, USA
- Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Michael Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.), Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuefang Zhao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.), Cambridge, MA, USA
| | - Ramita Dewan
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Ali Stark
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Sultana Solaiman
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Pilar Alvarez Jerez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Centre for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Laksh Malik
- Centre for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Ted M. Dawson
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Neuroregeneration and Stem Cell Programs, Institute of Cell Engineering, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Liana S. Rosenthal
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Juan C. Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Mario Masellis
- Cognitive & Movement Disorders Clinic, Sunnybrook Health Sciences Centre, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada
| | - Julia Keith
- Department of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
| | - Sandra E. Black
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD, USA
| | - PROSPECT Consortium
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York, NY, USA
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.), Cambridge, MA, USA
- Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Centre for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Neuroregeneration and Stem Cell Programs, Institute of Cell Engineering, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
- Cognitive & Movement Disorders Clinic, Sunnybrook Health Sciences Centre, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada
- Department of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, ON, Canada
- Longitudinal Studies Section, National Institute on Aging, Baltimore, MD, USA
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- UK Dementia Research Institute, Department of Neurogenerative Disease and Reta Lila Weston Institute, London, UK
- Institute of Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Maggiore della Carita University Hospital, Novara, Italy
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Città, della Salute e della Scienza, Corso Bramante, 88, Turin, Italy
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
- Department of Psychiatry and Psychology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
- Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
- Institute of Cognitive Sciences and Technologies, C.N.R., Via S. Martino della Battaglia, 44, Rome, Italy
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- RNA Therapeutics Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Eric Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Ali Torkamani
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Pentti Tienari
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John E. Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mina Ryten
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Huw R. Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - John A. Hardy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- UK Dementia Research Institute, Department of Neurogenerative Disease and Reta Lila Weston Institute, London, UK
- Institute of Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | - Sandra D'Alfonso
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Cristina Moglia
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Città, della Salute e della Scienza, Corso Bramante, 88, Turin, Italy
| | - Andrea Calvo
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Città, della Salute e della Scienza, Corso Bramante, 88, Turin, Italy
| | - Geidy E. Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Tanis Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | | | | | - Zbigniew K. Wszolek
- Institute of Cognitive Sciences and Technologies, C.N.R., Via S. Martino della Battaglia, 44, Rome, Italy
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero Universitaria Città, della Salute e della Scienza, Corso Bramante, 88, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R., Via S. Martino della Battaglia, 44, Rome, Italy
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, New York, NY, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - J. Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Bryan J. Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- RNA Therapeutics Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| |
Collapse
|
26
|
Gabbert C, Schaake S, Lüth T, Much C, Klein C, Aasly JO, Farrer MJ, Trinh J. GBA1 in Parkinson's disease: variant detection and pathogenicity scoring matters. BMC Genomics 2023; 24:322. [PMID: 37312046 DOI: 10.1186/s12864-023-09417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND GBA1 variants are the strongest genetic risk factor for Parkinson's disease (PD). However, the pathogenicity of GBA1 variants concerning PD is still not fully understood. Additionally, the frequency of GBA1 variants varies widely across populations. OBJECTIVES To evaluate Oxford Nanopore sequencing as a strategy, to determine the frequency of GBA1 variants in Norwegian PD patients and controls, and to review the current literature on newly identified variants that add to pathogenicity determination. METHODS We included 462 Norwegian PD patients and 367 healthy controls. We sequenced the full-length GBA1 gene on the Oxford Nanopore GridION as an 8.9 kb amplicon. Six analysis pipelines were compared using two aligners (NGMLR, Minimap2) and three variant callers (BCFtools, Clair3, Pepper-Margin-Deepvariant). Confirmation of GBA1 variants was performed by Sanger sequencing and the pathogenicity of variants was evaluated. RESULTS We found 95.8% (115/120) true-positive GBA1 variant calls, while 4.2% (5/120) variant calls were false-positive, with the NGMLR/Minimap2-BCFtools pipeline performing best. In total, 13 rare GBA1 variants were detected: two were predicted to be (likely) pathogenic and eleven were of uncertain significance. The odds of carrying one of the two common GBA1 variants, p.L483P or p.N409S, in PD patients were estimated to be 4.11 times the odds of carrying one of these variants in controls (OR = 4.11 [1.39, 12.12]). CONCLUSIONS In conclusion, we have demonstrated that Oxford long-read Nanopore sequencing, along with the NGMLR/Minimap2-BCFtools pipeline is an effective tool to investigate GBA1 variants. Further studies on the pathogenicity of GBA1 variants are needed to assess their effect on PD.
Collapse
Affiliation(s)
- Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Christoph Much
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Jan O Aasly
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany.
| |
Collapse
|
27
|
Kopytova AE, Rychkov GN, Cheblokov AA, Grigor'eva EV, Nikolaev MA, Yarkova ES, Sorogina DA, Ibatullin FM, Baydakova GV, Izyumchenko AD, Bogdanova DA, Boitsov VM, Rybakov AV, Miliukhina IV, Bezrukikh VA, Salogub GN, Zakharova EY, Pchelina SN, Emelyanov AK. Potential Binding Sites of Pharmacological Chaperone NCGC00241607 on Mutant β-Glucocerebrosidase and Its Efficacy on Patient-Derived Cell Cultures in Gaucher and Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24109105. [PMID: 37240451 DOI: 10.3390/ijms24109105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Mutations in the GBA1 gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), cause Gaucher disease (GD) and are the most common genetic risk factor for Parkinson's disease (PD). Pharmacological chaperones (PCs) are being developed as an alternative treatment approach for GD and PD. To date, NCGC00241607 (NCGC607) is one of the most promising PCs. Using molecular docking and molecular dynamics simulation we identified and characterized six allosteric binding sites on the GCase surface suitable for PCs. Two sites were energetically more preferable for NCGC607 and located nearby to the active site of the enzyme. We evaluated the effects of NCGC607 treatment on GCase activity and protein levels, glycolipids concentration in cultured macrophages from GD (n = 9) and GBA-PD (n = 5) patients as well as in induced human pluripotent stem cells (iPSC)-derived dopaminergic (DA) neurons from GBA-PD patient. The results showed that NCGC607 treatment increased GCase activity (by 1.3-fold) and protein levels (by 1.5-fold), decreased glycolipids concentration (by 4.0-fold) in cultured macrophages derived from GD patients and also enhanced GCase activity (by 1.5-fold) in cultured macrophages derived from GBA-PD patients with N370S mutation (p < 0.05). In iPSC-derived DA neurons from GBA-PD patients with N370S mutation NCGC607 treatment increased GCase activity and protein levels by 1.1-fold and 1.7-fold (p < 0.05). Thus, our results showed that NCGC607 could bind to allosteric sites on the GCase surface and confirmed its efficacy on cultured macrophages from GD and GBA-PD patients as well as on iPSC-derived DA neurons from GBA-PD patients.
Collapse
Affiliation(s)
- Alena E Kopytova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - George N Rychkov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg 195251, Russia
| | - Alexander A Cheblokov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
| | - Elena V Grigor'eva
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Mikhail A Nikolaev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Elena S Yarkova
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Diana A Sorogina
- Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Farid M Ibatullin
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
| | | | - Artem D Izyumchenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Daria A Bogdanova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
| | - Vitali M Boitsov
- Laboratory of Nanobiotechnology, Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint-Petersburg 194021, Russia
| | - Akim V Rybakov
- N.P. Bechtereva Institute of the Human Brain RAS, Saint-Petersburg 197376, Russia
| | - Irina V Miliukhina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- N.P. Bechtereva Institute of the Human Brain RAS, Saint-Petersburg 197376, Russia
| | - Vadim A Bezrukikh
- Almazov National Medical Research Centre, Saint-Petersburg 197341, Russia
| | - Galina N Salogub
- Almazov National Medical Research Centre, Saint-Petersburg 197341, Russia
| | | | - Sofya N Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Anton K Emelyanov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina 188300, Russia
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia
| |
Collapse
|
28
|
Rizig M, Bandres-Ciga S, Makarious MB, Ojo O, Crea PW, Abiodun O, Levine KS, Abubakar S, Achoru C, Vitale D, Adeniji O, Agabi O, Koretsky MJ, Agulanna U, Hall DA, Akinyemi R, Xie T, Ali M, Shamim EA, Ani-Osheku I, Padmanaban M, Arigbodi O, Standaert DG, Bello A, Dean M, Erameh C, Elsayed I, Farombi T, Okunoye O, Fawale M, Billingsley KJ, Imarhiagbe F, Jerez PA, Iwuozo E, Baker B, Komolafe M, Malik L, Nwani P, Daida K, Nwazor E, Miano-Burkhardt A, Nyandaiti Y, Fang ZH, Obiabo Y, Kluss JH, Odeniyi O, Hernandez D, Odiase F, Tayebi N, Ojini F, Sidranksy E, Onwuegbuzie G, D’Souza AM, Osaigbovo G, Berhe B, Osemwegie N, Reed X, Oshinaike O, Leonard H, Otubogun F, Alvarado CX, Oyakhire S, Ozomma S, Samuel S, Taiwo F, Wahab K, Zubair Y, Iwaki H, Kim JJ, Morris HR, Hardy J, Nalls M, Heilbron K, Norcliffe-Kaufmann L, Blauwendraat C, Houlden H, Singleton A, Okubadejo N. Genome-wide Association Identifies Novel Etiological Insights Associated with Parkinson's Disease in African and African Admixed Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.05.23289529. [PMID: 37398408 PMCID: PMC10312852 DOI: 10.1101/2023.05.05.23289529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Understanding the genetic mechanisms underlying diseases in ancestrally diverse populations is a critical step towards the realization of the global application of precision medicine. The African and African admixed populations enable mapping of complex traits given their greater levels of genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. Methods Here we perform a comprehensive genome-wide assessment of Parkinson's disease (PD) in 197,918 individuals (1,488 cases; 196,430 controls) of African and African admixed ancestry, characterizing population-specific risk, differential haplotype structure and admixture, coding and structural genetic variation and polygenic risk profiling. Findings We identified a novel common risk factor for PD and age at onset at the GBA1 locus (risk, rs3115534-G; OR=1.58, 95% CI = 1.37 - 1.80, P=2.397E-14; age at onset, BETA =-2.004, SE =0.57, P = 0.0005), that was found to be rare in non-African/African admixed populations. Downstream short- and long-read whole genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. However, we identified that this signal mediates PD risk via expression quantitative trait locus (eQTL) mechanisms. While previously identified GBA1 associated disease risk variants are coding mutations, here we suggest a novel functional mechanism consistent with a trend in decreasing glucocerebrosidase activity levels. Given the high population frequency of the underlying signal and the phenotypic characteristics of the homozygous carriers, we hypothesize that this variant may not cause Gaucher disease. Additionally, the prevalence of Gaucher's disease in Africa is low. Interpretation The present study identifies a novel African-ancestry genetic risk factor in GBA1 as a major mechanistic basis of PD in the African and African admixed populations. This striking result contrasts to previous work in Northern European populations, both in terms of mechanism and attributable risk. This finding highlights the importance of understanding population-specific genetic risk in complex diseases, a particularly crucial point as the field moves toward precision medicine in PD clinical trials and while recognizing the need for equitable inclusion of ancestrally diverse groups in such trials. Given the distinctive genetics of these underrepresented populations, their inclusion represents a valuable step towards insights into novel genetic determinants underlying PD etiology. This opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk. Research in Context Evidence Before this Study Our current understanding of Parkinson's disease (PD) is disproportionately based on studying populations of European ancestry, leading to a significant gap in our knowledge about the genetics, clinical characteristics, and pathophysiology in underrepresented populations. This is particularly notable in individuals of African and African admixed ancestries. Over the last two decades, we have witnessed a revolution in the research area of complex genetic diseases. In the PD field, large-scale genome-wide association studies in the European, Asian, and Latin American populations have identified multiple risk loci associated with disease. These include 78 loci and 90 independent signals associated with PD risk in the European population, nine replicated loci and two novel population-specific signals in the Asian population, and a total of 11 novel loci recently nominated through multi-ancestry GWAS efforts.Nevertheless, the African and African admixed populations remain completely unexplored in the context of PD genetics. Added Value of this Study To address the lack of diversity in our research field, this study aimed to conduct the first genome-wide assessment of PD genetics in the African and African admixed populations. Here, we identified a genetic risk factor linked to PD etiology, dissected African-specific differences in risk and age at onset, characterized known genetic risk factors, and highlighted the utility of the African and African admixed risk haplotype substructure for future fine-mapping efforts. We identified a novel disease mechanism via expression changes consistent with decreased GBA1 activity levels. Future large scale single cell expression studies should investigate the neuronal populations in which expression differences are most prominent. This novel mechanism may hold promise for future efficient RNA-based therapeutic strategies such as antisense oligonucleotides or short interfering RNAs aimed at preventing and decreasing disease risk. We envisage that these data generated under the umbrella of the Global Parkinson's Genetics Program (GP2) will shed light on the molecular mechanisms involved in the disease process and might pave the way for future clinical trials and therapeutic interventions. This work represents a valuable resource in an underserved population, supporting pioneering research within GP2 and beyond. Deciphering causal and genetic risk factors in all these ancestries will help determine whether interventions, potential targets for disease modifying treatment, and prevention strategies that are being studied in the European populations are relevant to the African and African admixed populations. Implications of all the Available Evidence We nominate a novel signal impacting GBA1 as the major genetic risk factor for PD in the African and African admixed populations. The present study could inform future GBA1 clinical trials, improving patient stratification. In this regard, genetic testing can help to design trials likely to provide meaningful and actionable answers. It is our hope that these findings may ultimately have clinical utility for this underrepresented population.
Collapse
Affiliation(s)
- Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London, WC1N 3BG, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Mary B Makarious
- UCL Movement Disorders Centre, University College London, London, WC1N 3BG, UK
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Oluwadamilola Ojo
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Peter Wild Crea
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Kristin S Levine
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA
| | - Sani Abubakar
- Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Charles Achoru
- Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Dan Vitale
- Data Tecnica International, Washington, DC, USA
| | | | - Osigwe Agabi
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Mathew J Koretsky
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Uchechi Agulanna
- Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rufus Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Mohammed Ali
- Federal Teaching Hospital Gombe, Gombe State, Nigeria
| | - Ejaz A. Shamim
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Kaiser Permanente Mid-Atlantic States, Largo, Maryland, USA
- MidAtlantic Permanente Research Institute, Rockville, Maryland, USA
| | | | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | | | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abiodun Bello
- University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Marissa Dean
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cyril Erameh
- Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wadmadani, 20, Sudan
| | | | - Olaitan Okunoye
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Michael Fawale
- Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Kimberley J Billingsley
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Pilar Alvarez Jerez
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | | | - Breeana Baker
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | | | - Laksh Malik
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | - Paul Nwani
- Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria
| | - Kensuke Daida
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ernest Nwazor
- Rivers State University Teaching Hospital, Port Harcourt, Rivers State, Nigeria
| | - Abigail Miano-Burkhardt
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Yakub Nyandaiti
- University of Maiduguri Teaching Hospital, Maiduguri, Borno State, Nigeria
| | - Zih-Hua Fang
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Yahaya Obiabo
- Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - Jillian H. Kluss
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis Ojini
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| | - Ellen Sidranksy
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Andrea M. D’Souza
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Bahafta Berhe
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Xylena Reed
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
| | | | - Hampton Leonard
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA
| | | | - Chelsea X Alvarado
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA
| | | | - Simon Ozomma
- University of Calabar Teaching Hospital, Calabar, Cross River State, Nigeria
| | - Sarah Samuel
- University of Maiduguri Teaching Hospital, Maiduguri, Borno State, Nigeria
| | | | - Kolawole Wahab
- University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria
- University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Yusuf Zubair
- National Hospital, Abuja, Federal Capital Territory, Nigeria
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Data Tecnica International, Washington, DC, USA
| | - Jonggeol Jeffrey Kim
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Huw R Morris
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London, WC1N 3BG, UK
| | - John Hardy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mike Nalls
- Data Tecnica International, Washington, DC, USA
| | | | | | | | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Andrew Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA, 20814
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Njideka Okubadejo
- College of Medicine, University of Lagos, Idi Araba, Lagos State, Nigeria
| |
Collapse
|
29
|
Sex-Specific Microglial Responses to Glucocerebrosidase Inhibition: Relevance to GBA1-Linked Parkinson's Disease. Cells 2023; 12:cells12030343. [PMID: 36766684 PMCID: PMC9913749 DOI: 10.3390/cells12030343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Microglia are heterogenous cells characterized by distinct populations each contributing to specific biological processes in the nervous system, including neuroprotection. To elucidate the impact of sex-specific microglia heterogenicity to the susceptibility of neuronal stress, we video-recorded with time-lapse microscopy the changes in shape and motility occurring in primary cells derived from mice of both sexes in response to pro-inflammatory or neurotoxic stimulations. With this morpho-functional analysis, we documented distinct microglia subpopulations eliciting sex-specific responses to stimulation: male microglia tended to have a more pro-inflammatory phenotype, while female microglia showed increased sensitivity to conduritol-B-epoxide (CBE), a small molecule inhibitor of glucocerebrosidase, the enzyme encoded by the GBA1 gene, mutations of which are the major risk factor for Parkinson's Disease (PD). Interestingly, glucocerebrosidase inhibition particularly impaired the ability of female microglia to enhance the Nrf2-dependent detoxification pathway in neurons, attenuating the sex differences observed in this neuroprotective function. This finding is consistent with the clinical impact of GBA1 mutations, in which the 1.5-2-fold reduced risk of developing idiopathic PD observed in female individuals is lost in the GBA1 carrier population, thus suggesting a sex-specific role for microglia in the etiopathogenesis of PD-GBA1.
Collapse
|
30
|
Liu Q, Shen Z, Pan H, Ma S, Xiong F, He F. The molecular mechanism of Gaucher disease caused by compound heterozygous mutations in GBA1 gene. Front Pediatr 2023; 11:1092645. [PMID: 36776904 PMCID: PMC9909548 DOI: 10.3389/fped.2023.1092645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Gaucher disease (GD, ORPHA355) is a rare autosomal recessive genetic disease caused by mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). Here, we report a patient with GD who carried the heterozygous c.1240G > C (p.Val414Leu) mutation and the heterozygous pathogenic c.1342G > C (p.Asp448His) mutation in GBA1. Bioinformatics analysis suggested that the two mutations are pathogenic. Functional studies showed that GBA1 mRNA and GCase protein levels of mutant types were significantly less than the wild-type. In the cell lysates, the two mutations of GBA1 c.1240G > C and c.1342G > C caused a decreased GCase concentration, while the two mutations did not change the distribution in the cell. The pathogenicity of the compound heterozygous mutations was verified. Early diagnosis and treatment can improve the quality of life and prevent unnecessary procedures in patients with GD.
Collapse
Affiliation(s)
- Qi Liu
- Department of Transfusion, Shaoxing People's Hospital, Shaoxing, China
| | - Zongrui Shen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Hong Pan
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, China
| | - Shunfei Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Fei He
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|