1
|
Au A, Giuliani M, Harrington S, Roy P, Yip CM. Line-scan imaging for real-time phenotypic screening of C. elegans. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:063705. [PMID: 40525927 DOI: 10.1063/5.0238824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 05/30/2025] [Indexed: 06/19/2025]
Abstract
Phenotypic screens of living organisms often require real-time, high spatial resolution imaging. We report here on the design and application of a line-scan imaging platform that enables bright-field imaging of live nematodes using a 96-well plate configuration. The system optics are such that each individual well is projected across the full field of view of a 4 K line scanning camera. To minimize motional artifacts, the camera system is translated, while the sample is kept stationary. We discuss the challenges in establishing flat field illumination, image registration and stitching, and the opportunities that this platform has enabled for phenotypic screens of living systems.
Collapse
Affiliation(s)
- Aaron Au
- Institute of Biomedical Engineering University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario M5S 1E1, Canada
| | - Maximiliano Giuliani
- Institute of Biomedical Engineering University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario M5S 1E1, Canada
| | - Sean Harrington
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario M5S 1E1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 2C8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter Roy
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario M5S 1E1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 2C8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher M Yip
- Institute of Biomedical Engineering University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario M5S 1E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
2
|
Fang J, Dong W, Zheng J, Han B, Zhang Y, Wang J, Zeng X. Antiaging Effect of 2- O-β-D-Glucopyranosyl Ascorbic Acid Derived from Lycium barbarum L. Through Modulating the IIS Pathway and Gut Microbiota in Caenorhabditis elegans. Foods 2025; 14:1875. [PMID: 40509403 PMCID: PMC12154002 DOI: 10.3390/foods14111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025] Open
Abstract
2-O-β-D-Glucopyranosyl ascorbic acid (AA-2βG), a bioactive ascorbic acid derivative isolated from the fruits of Lycium barbarum L., exhibited significant antiaging effects in Caenorhabditis elegans. It significantly extended their lifespan, enhanced stress resistance, reduced lipofuscin accumulation, and improved their healthspan, while strengthening antioxidant defenses. Transcriptomic analysis identified the insulin/insulin-like growth factor (IGF)-1 signaling pathway as a key regulator, with quantitative real-time polymerase chain reaction confirming the upregulation of longevity-associated genes. Functional studies showed that the transcription factors DAF-16, HSF-1, and SIR-2.1 were essential for the lifespan-extending effects of AA-2βG, as mutations in these genes abolished lifespan extension. Moreover, 16S rRNA sequencing revealed that AA-2βG modulated gut microbiota by increasing longevity-associated taxa and reducing pro-aging species, with these alterations linked to metabolic pathways. These findings suggest that AA-2βG exerts antiaging effects through the coordinated regulation of the IIS pathway and gut microbiota composition, highlighting its potential as a natural geroprotective compound.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.F.); (W.D.); (J.Z.); (B.H.); (Y.Z.); (J.W.)
| |
Collapse
|
3
|
Shanley HT, Wang T, Taki AC, Byrne JJ, Chang BCH, Sleebs BE, Gasser RB. Advances in Anthelmintic Target Identification. Int J Mol Sci 2025; 26:3738. [PMID: 40332360 PMCID: PMC12028019 DOI: 10.3390/ijms26083738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
Parasitic nematodes pose a significant threat to human and animal health, causing widespread morbidity and substantial socioeconomic losses globally. Despite the utility of anthelmintic drugs in parasite control, the emergence of widespread resistance necessitates the discovery of novel interventions. Advances through the use of whole-organism phenotypic screening have identified some promising nematocidal compounds, including nemacol, tolfenpyrad, UMW-9729, and ABX464. This article summarises efforts in this discovery, with a focus on Haemonchus contortus and Caenorhabditis elegans as model nematodes, and discusses approaches used for drug target deconvolution, including proteomic, chemical and genetic/genomic techniques. Stability-based proteomic assays, such as thermal proteome profiling, have been useful for identifying protein targets for these compounds, shedding light on their mechanisms of action. However, challenges remain in extrapolating findings from C. elegans to parasitic nematodes, emphasising the need for validation studies. Understanding drug-target interactions in nematodes is critical for developing next-generation anthelmintics and for mitigating the growing resistance challenge. This review outlines recent progress in this area and discusses future directions in target validation and anthelmintic development to support parasite control programmes.
Collapse
Affiliation(s)
- Harrison T. Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.T.S.); (T.W.); (A.C.T.); (J.J.B.); (B.C.H.C.)
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.T.S.); (T.W.); (A.C.T.); (J.J.B.); (B.C.H.C.)
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.T.S.); (T.W.); (A.C.T.); (J.J.B.); (B.C.H.C.)
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.T.S.); (T.W.); (A.C.T.); (J.J.B.); (B.C.H.C.)
| | - Bill C. H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.T.S.); (T.W.); (A.C.T.); (J.J.B.); (B.C.H.C.)
| | - Brad E. Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.T.S.); (T.W.); (A.C.T.); (J.J.B.); (B.C.H.C.)
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; (H.T.S.); (T.W.); (A.C.T.); (J.J.B.); (B.C.H.C.)
| |
Collapse
|
4
|
Shahi N, Thapliyal S, Babu K. Sensory modulation of neuropeptide signaling by CASY-1 gates cholinergic transmission at Caenorhabditis elegans neuromuscular junction. J Biosci 2025; 50:4. [PMID: 39912398 PMCID: PMC7617471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The neuromuscular junction (NMJ) is crucial for understanding the fundamentals of synaptic transmission and activity. Various modulators operate within neuronal circuits, from sensory to motor neurons, to influence synaptic transmission at the NMJ. This study sheds light on the regulation of sensory-evoked cholinergic neurotransmission at motor neurons orchestrated by CASY-1, the mammalian calsyntenin orthologue. We report that the increased excitation-inhibition (E-I) ratio at the NMJ in casy-1 mutants is likely due to its interactions with neuromodulators in sensory neurons. We explored the intricate genetic interactions of CASY- 1 with the neuropeptide FLP-21 and its receptor, NPR-1, both of which display simultaneous alterations in cholinergic signaling at the NMJ. Through genetic, pharmacological, and bioimaging-based experiments, we proposed a mechanism by which CASY-1 potentially interacts with the neuropeptide-carrying vesicles to regulate synaptic transmission. The nematode Caenorhabditis elegans serves as an ideal model system for this study, enabling detailed insights into neuromodulatory mechanisms in the neuronal circuit.
Collapse
Affiliation(s)
- Navneet Shahi
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore, Karnataka, India
| | - Shruti Thapliyal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore, Karnataka, India
| |
Collapse
|
5
|
Ji H, Chen D, Fang-Yen C. Automated multimodal imaging of Caenorhabditis elegans behavior in multi-well plates. Genetics 2024; 228:iyae158. [PMID: 39358843 PMCID: PMC11631399 DOI: 10.1093/genetics/iyae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024] Open
Abstract
Assays of behavior in model organisms play an important role in genetic screens, drug testing, and the elucidation of gene-behavior relationships. We have developed an automated, high-throughput imaging and analysis method for assaying behaviors of the nematode C. elegans. We use high-resolution optical imaging to longitudinally record the behaviors of 96 animals at a time in multi-well plates, and computer vision software to quantify the animals' locomotor activity, behavioral states, and egg laying events. To demonstrate the capabilities of our system we used it to examine the role of serotonin in C. elegans behavior. We found that egg-laying events are preceded by a period of reduced locomotion, and that this decline in movement requires serotonin signaling. In addition, we identified novel roles of serotonin receptors SER-1 and SER-7 in regulating the effects of serotonin on egg laying across roaming, dwelling, and quiescent locomotor states. Our system will be useful for performing genetic or chemical screens for modulators of behavior.
Collapse
Affiliation(s)
- Hongfei Ji
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dian Chen
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher Fang-Yen
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Ji H, Chen D, Fang-Yen C. Automated multimodal imaging of Caenorhabditis elegans behavior in multi-well plates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579675. [PMID: 38405855 PMCID: PMC10888940 DOI: 10.1101/2024.02.09.579675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Assays of behavior in model organisms play an important role in genetic screens, drug testing, and the elucidation of gene-behavior relationships. We have developed an automated, high-throughput imaging and analysis method for assaying behaviors of the nematode C. elegans . We use high-resolution optical imaging to longitudinally record the behaviors of 96 animals at a time in multi-well plates, and computer vision software to quantify the animals' locomotor activity, behavioral states, and egg laying events. To demonstrate the capabilities of our system we used it to examine the role of serotonin in C. elegans behavior. We found that egg-laying events are preceded by a period of reduced locomotion, and that this decline in movement requires serotonin signaling. In addition, we identified novel roles of serotonin receptors SER-1 and SER-7 in regulating the effects of serotonin on egg laying across roaming, dwelling, and quiescent locomotor states. Our system will be useful for performing genetic or chemical screens for modulators of behavior.
Collapse
|
7
|
Kamal M, Mukherjee S, Joshi B, Sindhu ZUD, Wangchuk P, Haider S, Ahmed N, Talukder MH, Geary TG, Yadav AK. Model nematodes as a practical innovation to promote high throughput screening of natural products for anthelmintics discovery in South Asia: Current challenges, proposed practical and conceptual solutions. Mol Biochem Parasitol 2023; 256:111594. [PMID: 37730126 DOI: 10.1016/j.molbiopara.2023.111594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
With the increasing prevalence of anthelmintic resistance in animals recorded globally, and the threat of resistance in human helminths, the need for novel anthelmintic drugs is greater than ever. Most research aimed at discovering novel anthelmintic leads relies on high throughput screening (HTS) of large libraries of synthetic small molecules in industrial and academic settings in developed countries, even though it is the tropical countries that are most plagued by helminth infections. Tropical countries, however, have the advantage of possessing a rich flora that may yield natural products (NP) with promising anthelmintic activity. Focusing on South Asia, which produces one of the world's highest research outputs in NP and NP-based anthelmintic discovery, we find that limited basic research and funding, a lack of awareness of the utility of model organisms, poor industry-academia partnerships and lack of technological innovations greatly limit anthelmintics research in the region. Here we propose that utilizing model organisms including the free-living nematode Caenorhabditis elegans, that can potentially allow rapid target identification of novel anthelmintics, and Oscheius tipulae, a closely related, free-living nematode which is found abundantly in soil in hotter temperatures, could be a much-needed innovation that can enable cost-effective and efficient HTS of NPs for discovering compounds with anthelmintic/antiparasitic potential in South Asia and other tropical regions that historically have devoted limited funding for such research. Additionally, increased collaborations at the national, regional and international level between parasitologists and pharmacologists/ethnobotanists, setting up government-industry-academia partnerships to fund academic research, creating a centralized, regional collection of plant extracts or purified NPs as a dereplication strategy and HTS library, and holding regional C. elegans/O. tipulae-based anthelmintics workshops and conferences to share knowledge and resources regarding model organisms may collectively promote and foster a NP-based anthelmintics landscape in South Asia and beyond.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Suprabhat Mukherjee
- Department of Animal Science, Kazi Nazrul University, Asansol 713340, West Bengal, India
| | - Bishnu Joshi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zia-Ud-Din Sindhu
- Department of Parasitology, University of Agriculture Faisalabad, Pakistan
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD 4878, Australia
| | | | - Nurnabi Ahmed
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Timothy G Geary
- Institute of Parasitology, McGill University, Montreal, Canada; School of Biological Sciences, Queen's University-Belfast, Belfast, NI, UK
| | - Arun K Yadav
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
8
|
Harrington S, Pyche J, Burns AR, Spalholz T, Ryan KT, Baker RJ, Ching J, Rufener L, Lautens M, Kulke D, Vernudachi A, Zamanian M, Deuther-Conrad W, Brust P, Roy PJ. Nemacol is a small molecule inhibitor of C. elegans vesicular acetylcholine transporter with anthelmintic potential. Nat Commun 2023; 14:1816. [PMID: 37002199 PMCID: PMC10066365 DOI: 10.1038/s41467-023-37452-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Nematode parasites of humans and livestock pose a significant burden to human health, economic development, and food security. Anthelmintic drug resistance is widespread among parasites of livestock and many nematode parasites of humans lack effective treatments. Here, we present a nitrophenyl-piperazine scaffold that induces motor defects rapidly in the model nematode Caenorhabditis elegans. We call this scaffold Nemacol and show that it inhibits the vesicular acetylcholine transporter (VAChT), a target recognized by commercial animal and crop health groups as a viable anthelmintic target. We demonstrate that it is possible to create Nemacol analogs that maintain potent in vivo activity whilst lowering their affinity to the mammalian VAChT 10-fold. We also show that Nemacol enhances the ability of the anthelmintic Ivermectin to paralyze C. elegans and the ruminant nematode parasite Haemonchus contortus. Hence, Nemacol represents a promising new anthelmintic scaffold that acts through a validated anthelmintic target.
Collapse
Affiliation(s)
- Sean Harrington
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jacob Pyche
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Andrew R Burns
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tina Spalholz
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
| | - Kaetlyn T Ryan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel J Baker
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Justin Ching
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Lucien Rufener
- INVENesis Sàrl, Route de Neuchâtel 15A, 2072, St Blaise (NE), Switzerland
| | - Mark Lautens
- The Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Daniel Kulke
- Research Parasiticides, Bayer Animal Health GmbH, Monheim, Germany
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
- Global Innovation, Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55218, Ingelheim am Rhein, Germany
| | | | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318, Leipzig, Germany
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562, Lübeck, Germany
| | - Peter J Roy
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|