1
|
Guselnikov SV, Baranov KO, Kulemzin SV, Belovezhets TN, Chikaev AN, Murasheva SV, Volkova OY, Mechetina LV, Najakshin AM, Chikaev NA, Solodkov PP, Sergeeva MV, Smirnov AV, Serova IA, Serov OL, Markhaev AG, Kononova YV, Alekseev AY, Gulyaeva MA, Danilenko DM, Battulin NR, Shestopalov AM, Taranin AV. A potent, broadly neutralizing human monoclonal antibody that efficiently protects hACE2-transgenic mice from infection with the Wuhan, BA.5, and XBB.1.5 SARS-CoV-2 variants. Front Immunol 2024; 15:1442160. [PMID: 39100673 PMCID: PMC11294225 DOI: 10.3389/fimmu.2024.1442160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
The COVID-19 pandemic has uncovered the high genetic variability of the SARS-CoV-2 virus and its ability to evade the immune responses that were induced by earlier viral variants. Only a few monoclonal antibodies that have been reported to date are capable of neutralizing a broad spectrum of SARS-CoV-2 variants. Here, we report the isolation of a new broadly neutralizing human monoclonal antibody, iC1. The antibody was identified through sorting the SARS-CoV-1 RBD-stained individual B cells that were isolated from the blood of a vaccinated donor following a breakthrough infection. In vitro, iC1 potently neutralizes pseudoviruses expressing a wide range of SARS-CoV-2 Spike variants, including those of the XBB sublineage. In an hACE2-transgenic mouse model, iC1 provided effective protection against the Wuhan strain of the virus as well as the BA.5 and XBB.1.5 variants. Therefore, iC1 can be considered as a potential component of the broadly neutralizing antibody cocktails resisting the SARS-CoV-2 mutation escape.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- Humans
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- Mice, Transgenic
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Mice
- Antibodies, Viral/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Pandemics/prevention & control
- Betacoronavirus/immunology
- Betacoronavirus/genetics
- Broadly Neutralizing Antibodies/immunology
- Disease Models, Animal
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- Pneumonia, Viral/prevention & control
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Coronavirus Infections/prevention & control
Collapse
Affiliation(s)
- Sergey V. Guselnikov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Konstantin O. Baranov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey V. Kulemzin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana N. Belovezhets
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anton N. Chikaev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Svetlana V. Murasheva
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga Y. Volkova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ludmila V. Mechetina
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander M. Najakshin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolai A. Chikaev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel P. Solodkov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maria V. Sergeeva
- Department of Vaccinology, Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Alexander V. Smirnov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina A. Serova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oleg L. Serov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander G. Markhaev
- Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Yulia V. Kononova
- Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Y. Alekseev
- Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Marina A. Gulyaeva
- Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Daria M. Danilenko
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia
| | - Nariman R. Battulin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alexander M. Shestopalov
- Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alexander V. Taranin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Bruun TU, Do J, Weidenbacher PAB, Kim PS. Engineering a SARS-CoV-2 vaccine targeting the RBD cryptic-face via immunofocusing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597541. [PMID: 38895327 PMCID: PMC11185595 DOI: 10.1101/2024.06.05.597541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the main target of neutralizing antibodies. Although they are infrequently elicited during infection or vaccination, antibodies that bind to the conformation-specific cryptic face of the RBD display remarkable breadth of binding and neutralization across Sarbecoviruses. Here, we employed the immunofocusing technique PMD (protect, modify, deprotect) to create RBD immunogens (PMD-RBD) specifically designed to focus the antibody response towards the cryptic-face epitope recognized by the broadly neutralizing antibody S2X259. Immunization with PMD-RBD antigens induced robust binding titers and broad neutralizing activity against homologous and heterologous Sarbecovirus strains. A serum-depletion assay provided direct evidence that PMD successfully skewed the polyclonal antibody response towards the cryptic face of the RBD. Our work demonstrates the ability of PMD to overcome immunodominance and refocus humoral immunity, with implications for the development of broader and more resilient vaccines against current and emerging viruses with pandemic potential.
Collapse
Affiliation(s)
- Theodora U.J. Bruun
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Jonathan Do
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Payton A.-B. Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
3
|
Boyd LF, Jiang J, Ahmad J, Natarajan K, Margulies DH. Experimental Structures of Antibody/MHC-I Complexes Reveal Details of Epitopes Overlooked by Computational Prediction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1366-1380. [PMID: 38456672 PMCID: PMC10982845 DOI: 10.4049/jimmunol.2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
mAbs to MHC class I (MHC-I) molecules have proved to be crucial reagents for tissue typing and fundamental studies of immune recognition. To augment our understanding of epitopic sites seen by a set of anti-MHC-I mAb, we determined X-ray crystal structures of four complexes of anti-MHC-I Fabs bound to peptide/MHC-I/β2-microglobulin (pMHC-I). An anti-H2-Dd mAb, two anti-MHC-I α3 domain mAbs, and an anti-β2-microglobulin mAb bind pMHC-I at sites consistent with earlier mutational and functional experiments, and the structures explain allelomorph specificity. Comparison of the experimentally determined structures with computationally derived models using AlphaFold Multimer showed that although predictions of the individual pMHC-I heterodimers were quite acceptable, the computational models failed to properly identify the docking sites of the mAb on pMHC-I. The experimental and predicted structures provide insight into strengths and weaknesses of purely computational approaches and suggest areas that merit additional attention.
Collapse
Affiliation(s)
- Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Vance DJ, Basir S, Piazza CL, Willsey GG, Haque HME, Tremblay JM, Rudolph MJ, Muriuki B, Cavacini L, Weis DD, Shoemaker CB, Mantis NJ. Single-domain antibodies reveal unique borrelicidal epitopes on the Lyme disease vaccine antigen, outer surface protein A (OspA). Infect Immun 2024; 92:e0008424. [PMID: 38470113 PMCID: PMC11003225 DOI: 10.1128/iai.00084-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Camelid-derived, single-domain antibodies (VHHs) have proven to be extremely powerful tools in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this report, we generated a phage-displayed VHH library directed against the candidate Lyme disease vaccine antigen, outer surface protein A (OspA). Two alpacas were immunized with recombinant OspA serotype 1 from Borrelia burgdorferi sensu stricto strain B31, in combination with the canine vaccine RECOMBITEK Lyme containing lipidated OspA. The phage library was subjected to two rounds of affinity enrichment ("panning") against recombinant OspA, yielding 21 unique VHHs within two epitope bins, as determined through competition enzyme linked immunosorbent assays (ELISAs) with a panel of OspA-specific human monoclonal antibodies. Epitope refinement was conducted by hydrogen exchange-mass spectrometry. Six of the monovalent VHHs were expressed as human IgG1-Fc fusion proteins and shown to have functional properties associated with protective human monoclonal antibodies, including B. burgdorferi agglutination, outer membrane damage, and complement-dependent borreliacidal activity. The VHHs displayed unique reactivity profiles with the seven OspA serotypes associated with B. burgdorferi genospecies in the United States and Europe consistent with there being unique epitopes across OspA serotypes that should be considered when designing and evaluating multivalent Lyme disease vaccines.
Collapse
Affiliation(s)
- David J. Vance
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Saiful Basir
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Carol Lyn Piazza
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - Graham G. Willsey
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | | | - Jacque M. Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | | | - Beatrice Muriuki
- Department of Medicine, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, USA
| | - Lisa Cavacini
- Department of Medicine, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, USA
| | - David D. Weis
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Nicholas J. Mantis
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
5
|
Casasnovas JM. Virus-Receptor Interactions and Receptor-Mediated Virus Entry into Host Cells. Subcell Biochem 2024; 105:533-566. [PMID: 39738957 DOI: 10.1007/978-3-031-65187-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The virus particles described in the previous chapters of this book are vehicles that transmit the viral genome and the infection from cell to cell. To initiate the infective cycle, the viral genome must therefore translocate from the viral particle to the cell cytoplasm. Via distinct proteins or motifs in their outermost shell, the particles of animal viruses or bacteriophages attach initially to specific receptors on the host cell surface. These viral receptors thus mediate penetration of the viral genome inside the cell, where the intracellular infective cycle starts. The presence of these receptors on the cell surface is a principal determinant of virus-host tropism. Viruses can use diverse types of molecules to attach to and enter into cells. In addition, virus-receptor recognition can evolve over the course of an infection, and viral variants with distinct receptor-binding specificities and tropism can appear. The identification of viral receptors and the characterization of virus-receptor interactions have been major research goals in virology. In this chapter, we will describe, from a structural perspective, several virus-receptor interactions and the active role of receptor molecules in virus cell entry.
Collapse
Affiliation(s)
- José M Casasnovas
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
6
|
Boyd LF, Jiang J, Ahmad J, Natarajan K, Margulies DH. Experimental structures of antibody/MHC-I complexes reveal details of epitopes overlooked by computational prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569627. [PMID: 38106040 PMCID: PMC10723347 DOI: 10.1101/2023.12.01.569627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Monoclonal antibodies (mAb) to major histocompatibility complex class I (MHC-I) molecules have proved to be crucial reagents for tissue typing and fundamental studies of immune recognition. To augment our understanding of epitopic sites seen by a set of anti-MHC-I mAb, we determined X-ray crystal structures of four complexes of anti-MHC-I antigen-binding fragments (Fab) bound to peptide/MHC-I/β2m (pMHC-I). An anti-H2-Dd mAb, two anti-MHC-I α3 domain mAb, and an anti-β2-microglobulin (β2m) mAb bind pMHC-I at sites consistent with earlier mutational and functional experiments, and the structures explain allelomorph specificity. Comparison of the experimentally determined structures with computationally derived models using AlphaFold Multimer (AF-M) showed that although predictions of the individual pMHC-I heterodimers were quite acceptable, the computational models failed to properly identify the docking sites of the mAb on pMHC-I. The experimental and predicted structures provide insight into strengths and weaknesses of purely computational approaches and suggest areas that merit additional attention.
Collapse
Affiliation(s)
| | | | - Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892-1892
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892-1892
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, 20892-1892
| |
Collapse
|