1
|
Ahmed SF, Anand J, Zhang W, Buetow L, Rishi L, Mitchell L, Bohlen J, Lilla S, Sibbet GJ, Nixon C, Patel A, Majorek KA, Zanivan S, Bustamante JC, Sidhu SS, Blyth K, Huang DT. Locking CBL TKBD in its native conformation presents a novel therapeutic opportunity in mutant CBL-dependent leukemia. Mol Ther 2025:S1525-0016(25)00361-2. [PMID: 40329529 DOI: 10.1016/j.ymthe.2025.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/28/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
Casitas B-lineage lymphoma (CBL) is an E3 ubiquitin ligase critical for negatively regulating receptor protein tyrosine kinases (RTKs). Deleterious CBL mutants lose E3 activity, but act as adaptors that gain function to cause myeloproliferative neoplasms. Currently, there is no targeted treatment available for patients with CBL mutant-dependent disorders. By combining phage-display technology and structure-based optimization, we discovered CBLock, a nanomolar affinity peptide inhibitor, that binds the substrate-binding site of CBL's tyrosine kinase binding domain (TKBD). CBLock disrupts the interaction between CBL mutants and RTKs, thereby impairing RTK-mediated priming of adaptor function of CBL mutants and downstream signaling. Notably, CBLock binds TKBD without inducing conformational changes, thereby preserving its ligand-free native conformation. In contrast, when CBL binds RTK substrates, TKBD undergoes a conformational change. Maintaining the native CBL TKBD conformation was crucial for CBLock to inhibit proliferation, induce cell-cycle arrest, and promote apoptosis in leukemia cells harboring CBL mutations. In a mouse xenograft model of acute myeloid leukemia (AML), CBLock reduced tumor burden and improved survival rate. Moreover, CBLock inhibited the proliferation of cells derived from patients with CBL mutations. Therefore, inhibiting CBL TKBD in its native state presents a promising therapeutic opportunity in targeting mutant CBL-dependent leukemia.
Collapse
Affiliation(s)
- Syed Feroj Ahmed
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jayanthi Anand
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Road E, Guelph, ON N1G2W1, Canada
| | - Lori Buetow
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Loveena Rishi
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Louise Mitchell
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Gary J Sibbet
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Amrita Patel
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Karolina A Majorek
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Jacinta C Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Sachdev S Sidhu
- School of Pharmacy, University of Waterloo, 10 Victoria Street S A, Kitchener, ON N2G1C5, Canada
| | - Karen Blyth
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Danny T Huang
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
2
|
Hinterndorfer M, Spiteri VA, Ciulli A, Winter GE. Targeted protein degradation for cancer therapy. Nat Rev Cancer 2025:10.1038/s41568-025-00817-8. [PMID: 40281114 DOI: 10.1038/s41568-025-00817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Targeted protein degradation (TPD) aims at reprogramming the target specificity of the ubiquitin-proteasome system, the major cellular protein disposal machinery, to induce selective ubiquitination and degradation of therapeutically relevant proteins. Since its conception over 20 years ago, TPD has gained a lot of attention mainly due to improvements in the design of bifunctional proteolysis targeting chimeras (PROTACs) and understanding the mechanisms underlying molecular glue degraders. Today, PROTACs are on the verge of a first clinical approval and recent structural and mechanistic insights combined with technological leaps promise to unlock the rational design of protein degraders, following the lead of lenalidomide and related clinically approved analogues. At the same time, the TPD universe is expanding at a record speed with the discovery of novel modalities beyond molecular glue degraders and PROTACs. Here we review the recent progress in the field, focusing on newly discovered degrader modalities, the current state of clinical degrader candidates for cancer therapy and upcoming design approaches.
Collapse
Affiliation(s)
- Matthias Hinterndorfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Valentina A Spiteri
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
3
|
Cui G, Shao Y, Wang J, Xu C, Zhang J, Zhong Z. Polymersome-mediated Cbl-b silencing activates T cells against solid tumors. Biomater Sci 2025; 13:2036-2046. [PMID: 40017436 DOI: 10.1039/d5bm00001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Unleashing T cell function is critical for efficacious cancer immunotherapy. Here, we present an in vivo T cell activation strategy by silencing Casitas B-lineage lymphoma proto-oncogene b (Cbl-b), an intracellular checkpoint, to effectively combat solid tumors. The polymersomes are able to efficiently load and deliver siRNA against cblb to T cells both in vitro and in vivo, successfully silencing the cblb gene expression in primary T cells and enhancing the IL-2 receptor CD25 expression, which in turn enhances T cell function and prevents T cell exhaustion. In vitro and in vivo studies showed that siRNA against cblb caused an effective inhibition of tumor progression in subcutaneous B16-F10 and LLC models, in which a significant increase of effector T cells in peripheral blood mononuclear cells and an increase of effector T cells and a significant decrease of Treg cells in the tumor were clearly observed. This polymersome-mediated down-regulation of the cblb gene in T cells provides a promising approach for activating T cells and enhancing their anti-tumor capacity.
Collapse
Affiliation(s)
- Guanhong Cui
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yu Shao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P.R. China.
| | - Junyao Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P.R. China.
| | - Congcong Xu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, 215222, P.R. China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P.R. China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, 215222, P.R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
4
|
Liu Y, Ni K, Zhao S, Zhao J, Zhong M, Cheng C, Ji W, Jiao J, Shao J. CBLB Regulates MAPK-P38 Pathway via MAP3K9 Ubiquitination to Inhibit GBM Cell Invasion and Migration. J Cell Physiol 2025; 240:e70037. [PMID: 40254893 DOI: 10.1002/jcp.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Glioma cells exhibit high invasiveness and have the ability to evade surgical resection, radiotherapy, and chemotherapy, which are major factors contributing to the challenges in effective treatment and recurrence. The ubiquitin-proteasome system (UPS) plays a crucial role in posttranslational modification, significantly contributing to the aggressive progression of glioblastoma (GBM). This study identified the E3 ubiquitin ligase CBLB as a crucial and abnormally regulated component of the UPS in GBM, noting its significant downregulation compared to normal brain tissue and its negative correlation with malignant phenotypes and poor prognosis. Experimental studies, both in vitro and in vivo, have shown that CBLB can inhibit the migration and invasion of GBM cells. Mechanistically, CBLB directly interacts with MAP3K9 through its RING domain, leading to K48-K63-linked polyubiquitination at the Lys 193 site, thereby promoting MAP3K9 proteasomal-mediated degradation. MAP3K9 downregulation suppresses MAPK-P38 pathway activation. This study identifies CBLB as a tumor suppressor that modulates the MAPK-P38 signaling pathway by promoting the polyubiquitination and degradation of MAP3K9, offering a new therapeutic approach for GBM treatment.
Collapse
Affiliation(s)
- Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Kaixiang Ni
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Jingjing Zhao
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mengmeng Zhong
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Wei Ji
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Jiantong Jiao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Junfei Shao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| |
Collapse
|
5
|
Chandler F, Reddy PAN, Bhutda S, Ross RL, Datta A, Walden M, Walker K, Di Donato S, Cassel JA, Prakesch MA, Aman A, Datti A, Campbell LJ, Foglizzo M, Bell L, Stein DN, Ault JR, Al-Awar RS, Calabrese AN, Sicheri F, Del Galdo F, Salvino JM, Greenberg RA, Zeqiraj E. Molecular glues that inhibit deubiquitylase activity and inflammatory signaling. Nat Struct Mol Biol 2025:10.1038/s41594-025-01517-5. [PMID: 40097626 DOI: 10.1038/s41594-025-01517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
Deubiquitylases (DUBs) are crucial in cell signaling and are often regulated by interactions within protein complexes. The BRCC36 isopeptidase complex (BRISC) regulates inflammatory signaling by cleaving K63-linked polyubiquitin chains on type I interferon receptors (IFNAR1). As a Zn2+-dependent JAMM/MPN (JAB1, MOV34, MPR1, Pad1 N-terminal) DUB, BRCC36 is challenging to target with selective inhibitors. Here, we discover first-in-class inhibitors, termed BRISC molecular glues (BLUEs), which stabilize a 16-subunit human BRISC dimer in an autoinhibited conformation, blocking active sites and interactions with the targeting subunit, serine hydroxymethyltransferase 2. This unique mode of action results in selective inhibition of BRISC over related complexes with the same catalytic subunit, splice variants and other JAMM/MPN DUBs. BLUE treatment reduced interferon-stimulated gene expression in cells containing wild-type BRISC and this effect was abolished when using structure-guided, inhibitor-resistant BRISC mutants. Additionally, BLUEs increase IFNAR1 ubiquitylation and decrease IFNAR1 surface levels, offering a potential strategy to mitigate type I interferon-mediated diseases. Our approach also provides a template for designing selective inhibitors of large protein complexes by promoting rather than blocking protein-protein interactions.
Collapse
Affiliation(s)
- Francesca Chandler
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Poli Adi Narayana Reddy
- Medicinal Chemistry, Molecular and Cellular Oncogenesis (MCO) Program and The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Smita Bhutda
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Arindam Datta
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miriam Walden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kieran Walker
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Stefano Di Donato
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Joel A Cassel
- Medicinal Chemistry, Molecular and Cellular Oncogenesis (MCO) Program and The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Michael A Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Alessandro Datti
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Lisa J Campbell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Martina Foglizzo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lillie Bell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Daniel N Stein
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Rima S Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frank Sicheri
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK.
| | - Joseph M Salvino
- Medicinal Chemistry, Molecular and Cellular Oncogenesis (MCO) Program and The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, PA, USA.
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
6
|
Wang H, Li F, Feng Y, Ma W, Li Y, Zhao X, Wu J, Shi C, Zong L, Li J, Cong J, Wang X. Cbl-b inhibition improves manufacturing efficiency and antitumoral efficacy of anti-CD19 CAR-T cells. Int Immunopharmacol 2025; 147:113971. [PMID: 39752754 DOI: 10.1016/j.intimp.2024.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 01/29/2025]
Abstract
Chimeric antigen receptor T (CAR-T) cells represent a promising approach for cancer immunotherapy, yet their efficacy is hindered by immunosuppressive signals in the tumor microenvironment. Casitas B-cell lymphoma protein b (Cbl-b) is a key negative regulator of T cell function. This study investigated whether inhibiting Cbl-b enhances the antitumor activity of human CAR-T cells. The Cbl-b inhibitor NX-1607 was shown to significantly improve CAR-T cell production and function. When applied during the manufacturing phase, NX-1607 increased the yield of anti-CD19 CAR-T cells. Treatment during the expansion phase enhanced cytokine secretion and cytotoxic activity. Notably, continuous NX-1607 treatment throughout manufacturing and expansion maximized CAR-T cell yield, cytokine production, and cytotoxicity. In vivo, NX-1607-treated CAR-T cells exhibited superior efficacy against hematological malignancies. These findings highlight Cbl-b as a therapeutic target for enhancing CAR-T cell manufacturing efficiency and antitumor efficacy, underscoring its potential for clinical applications.
Collapse
Affiliation(s)
- Haoqi Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fei Li
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuanyuan Feng
- Department of Hematology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Wenqiang Ma
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuanhao Li
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xueqin Zhao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jingyi Wu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chenxi Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lu Zong
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Jingjing Cong
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Xuefu Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China; Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
7
|
Kozyrev V, Sindt F, Rognan D. Active Learning to Select the Most Suitable Reagents and One-Step Organic Chemistry Reactions for Prioritizing Target-Specific Hits from Ultralarge Chemical Spaces. J Chem Inf Model 2025; 65:693-704. [PMID: 39815802 DOI: 10.1021/acs.jcim.4c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Designing chemically novel and synthesizable ligands from the largest possible chemical space is a major issue in modern drug discovery to identify early hits that are easily amenable to medicinal chemistry optimization. Starting from the sole three-dimensional structure of a protein binding site, we herewith describe a fully automated active learning protocol to propose the commercial chemical reagents and one-step organic chemistry reactions necessary to enumerate target-specific primary hits from ultralarge chemical spaces. When applied in different scenarios (single transform and multiple transforms) addressing chemical spaces of various sizes (from 670 million to 4.5 billion compounds), the method was able to recover up to 98% of virtual hits discovered by an exhaustive docking-based approach while scanning only 5% of the full chemical space. It is therefore applicable to the structure-based screening of trillion-sized chemical spaces at a very high throughput with minimal computational resources.
Collapse
Affiliation(s)
- Vladimir Kozyrev
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, F-67400 Illkirch, France
| | - François Sindt
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, F-67400 Illkirch, France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, F-67400 Illkirch, France
| |
Collapse
|
8
|
Lim K, Kan WL, Nair PC, Kutyna M, Lopez AF, Hercus T, Ross DM, Lane S, Fong CY, Brown A, Yong A, Yeung D, Hughes T, Hiwase D, Thomas D. CBL mutations in chronic myelomonocytic leukemia often occur in the RING domain with multiple subclones per patient: Implications for targeting. PLoS One 2024; 19:e0310641. [PMID: 39298477 PMCID: PMC11412512 DOI: 10.1371/journal.pone.0310641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a rare blood cancer of older adults (3 in every 1,000,000 persons) characterized by poor survival and lacking effective mutation-specific therapy. Mutations in the ubiquitin ligase Cbl occur frequently in CMML and share biological and molecular features with a clonal disease occurring in children, juvenile myelomonocytic leukemia (JMML). Here we analyzed the clinical presentations, molecular features and immunophenotype of CMML patients with CBL mutations enrolled in a prospective Phase II clinical trial stratified according to molecular markers. Clinically, CBL mutations were associated with increased bone marrow blasts at diagnosis, leukocytosis and splenomegaly, similar to patients harboring NRAS or KRAS mutations. Interestingly, 64% of patients presented with more than one CBL variant implying a complex subclonal architecture, often with co-occurrence of TET2 mutations. We found CBL mutations in CMML frequently clustered in the RING domain in contrast to JMML, where mutations frequently involve the linker helix region (P<0.0001). According to our comparative alignment of available X-ray structures, mutations in the linker helix region such as Y371E give rise to conformational differences that could be exploited by targeted therapy approaches. Furthermore, we noted an increased percentage of CMML CD34+ stem and progenitor cells expressing CD116 and CD131 in all CBL mutant cases and increased CD116 receptor density compared to healthy controls, similar to CMML overall. In summary, our data demonstrate that CBL mutations are associated with distinct molecular and clinical features in CMML and are potentially targetable with CD116-directed immunotherapy.
Collapse
Affiliation(s)
- Kelly Lim
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Winnie L Kan
- Cytokine Receptor Laboratory, SA Pathology, Adelaide, SA, Australia
| | - Pramod C Nair
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Monika Kutyna
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Angel F Lopez
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Cytokine Receptor Laboratory, SA Pathology, Adelaide, SA, Australia
| | - Timothy Hercus
- Cytokine Receptor Laboratory, SA Pathology, Adelaide, SA, Australia
| | - David M Ross
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
- SA Pathology, Adelaide, SA, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Steven Lane
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | - Agnes Yong
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- Royal Perth Hospital, Perth, WA, Australia
- The University of Western Australia Medical School, Perth, WA, Australia
| | - David Yeung
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Timothy Hughes
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
| | - Devendra Hiwase
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- SA Pathology, Adelaide, SA, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Daniel Thomas
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA, Australia
- SA Pathology, Adelaide, SA, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
9
|
Quinn TR, Giblin KA, Thomson C, Boerth JA, Bommakanti G, Braybrooke E, Chan C, Chinn AJ, Code E, Cui C, Fan Y, Grimster NP, Kohara K, Lamb ML, Ma L, Mfuh AM, Robb GR, Robbins KJ, Schimpl M, Tang H, Ware J, Wrigley GL, Xue L, Zhang Y, Zhu H, Hughes SJ. Accelerated Discovery of Carbamate Cbl-b Inhibitors Using Generative AI Models and Structure-Based Drug Design. J Med Chem 2024; 67:14210-14233. [PMID: 39132828 DOI: 10.1021/acs.jmedchem.4c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Casitas B-lymphoma proto-oncogene-b (Cbl-b) is a RING finger E3 ligase that has an important role in effector T cell function, acting as a negative regulator of T cell, natural killer (NK) cell, and B cell activation. A discovery effort toward Cbl-b inhibitors was pursued in which a generative AI design engine, REINVENT, was combined with a medicinal chemistry structure-based design to discover novel inhibitors of Cbl-b. Key to the success of this effort was the evolution of the "Design" phase of the Design-Make-Test-Analyze cycle to involve iterative rounds of an in silico structure-based drug design, strongly guided by physics-based affinity prediction and machine learning DMPK predictive models, prior to selection for synthesis. This led to the accelerated discovery of a potent series of carbamate Cbl-b inhibitors.
Collapse
Affiliation(s)
- Taylor R Quinn
- Early TDE Discovery, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Kathryn A Giblin
- Early TDE Discovery, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Clare Thomson
- Early TDE Discovery, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Jeffrey A Boerth
- Early TDE Discovery, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Gayathri Bommakanti
- Early TDE Discovery, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Erin Braybrooke
- Early TDE Discovery, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Christina Chan
- Early TDE Discovery, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Alex J Chinn
- Early TDE Discovery, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Erin Code
- Discovery Sciences, R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Caifeng Cui
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Yukai Fan
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Neil P Grimster
- Early TDE Discovery, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Keishi Kohara
- Early TDE Discovery, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Michelle L Lamb
- Early TDE Discovery, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Lina Ma
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Adelphe M Mfuh
- Early TDE Discovery, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Graeme R Robb
- Early TDE Discovery, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Kevin J Robbins
- Early TDE Discovery, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Marianne Schimpl
- Discovery Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Haoran Tang
- Discovery Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Jamie Ware
- Discovery Sciences, R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Gail L Wrigley
- Early TDE Discovery, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Lin Xue
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Yun Zhang
- Early TDE Discovery, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Huimin Zhu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Samantha J Hughes
- Early TDE Discovery, Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| |
Collapse
|
10
|
Ren J, Lv L, Tao X, Zhai X, Chen X, Yu H, Zhao X, Kong X, Yu Z, Dong D, Liu J. The role of CBL family ubiquitin ligases in cancer progression and therapeutic strategies. Front Pharmacol 2024; 15:1432545. [PMID: 39130630 PMCID: PMC11310040 DOI: 10.3389/fphar.2024.1432545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The CBL (Casitas B-lineage lymphoma) family, as a class of ubiquitin ligases, can regulate signal transduction and activate receptor tyrosine kinases through various tyrosine kinase-dependent pathways. There are three members of the family: c-CBL, CBL-b, and CBL-c. Numerous studies have demonstrated the important role of CBL in various cellular pathways, particularly those involved in the occurrence and progression of cancer, hematopoietic development, and regulation of T cell receptors. Therefore, the purpose of this review is to comprehensively summarize the function and regulatory role of CBL family proteins in different human tumors, as well as the progress of drug research targeting CBL family, so as to provide a broader clinical measurement strategy for the treatment of tumors.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hao Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xinya Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xin Kong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhan Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Liang J, Lambrecht MJ, Arenzana TL, Aubert-Nicol S, Bao L, Broccatelli F, Cai J, Eidenschenk C, Everett C, Garner T, Gruber F, Haghshenas P, Huestis MP, Hsu PL, Kou P, Jakalian A, Larouche-Gauthier R, Leclerc JP, Leung DH, Martin A, Murray J, Prangley M, Rutz S, Kakiuchi-Kiyota S, Satz AL, Skelton NJ, Steffek M, Stoffler D, Sudhamsu J, Tan S, Wang J, Wang S, Wang Q, Wendorff TJ, Wichert M, Yadav A, Yu C, Wang X. Optimization of a Novel DEL Hit That Binds in the Cbl-b SH2 Domain and Blocks Substrate Binding. ACS Med Chem Lett 2024; 15:864-872. [PMID: 38894924 PMCID: PMC11181488 DOI: 10.1021/acsmedchemlett.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
We were attracted to the therapeutic potential of inhibiting Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING E3 ligase that plays a critical role in regulating the activation of T cells. However, given that only protein-protein interactions were involved, it was unclear whether inhibition by a small molecule would be a viable approach. After screening an ∼6 billion member DNA-encoded library (DEL) using activated Cbl-b, we identified compound 1 as a hit for which the cis-isomer (2) was confirmed by biochemical and surface plasmon resonance (SPR) assays. Our hit optimization effort was greatly accelerated when we obtained a cocrystal structure of 2 with Cbl-b, which demonstrated induced binding at the substrate binding site, namely, the Src homology-2 (SH2) domain. This was quite noteworthy given that there are few reports of small molecule inhibitors that bind to SH2 domains and block protein-protein interactions. Structure- and property-guided optimization led to compound 27, which demonstrated measurable cell activity, albeit only at high concentrations.
Collapse
Affiliation(s)
- Jun Liang
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael J. Lambrecht
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Teresita L. Arenzana
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Linda Bao
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Fabio Broccatelli
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianping Cai
- Roche
Pharma Research and Early Development (pRED), Roche Innovation Center
Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Celine Eidenschenk
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christine Everett
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas Garner
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Felix Gruber
- Roche
Pharma Research and Early Development (pRED), Roche Innovation Center
Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Pouyan Haghshenas
- Paraza
Pharma, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Malcolm P. Huestis
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter L. Hsu
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ponien Kou
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Araz Jakalian
- Paraza
Pharma, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | | | | | - Dennis H. Leung
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aaron Martin
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeremy Murray
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Madeleine Prangley
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sascha Rutz
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Alexander Lee Satz
- Roche
Pharma Research and Early Development (pRED), Roche Innovation Center
Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Nicholas J. Skelton
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Micah Steffek
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel Stoffler
- Roche
Pharma Research and Early Development (pRED), Roche Innovation Center
Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jawahar Sudhamsu
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sophia Tan
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jian Wang
- WuXi
AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, P. R. China
| | - Shouliang Wang
- WuXi
AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, P. R. China
| | - Qiuyue Wang
- WuXi
AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, P. R. China
| | - Timothy J. Wendorff
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Moreno Wichert
- Roche
Pharma Research and Early Development (pRED), Roche Innovation Center
Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Arun Yadav
- Paraza
Pharma, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Christine Yu
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaojing Wang
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
12
|
Hu X, Li E, Zhou Y, You Q, Jiang Z. Casitas b cell lymphoma‑B (Cbl-b): A new therapeutic avenue for small-molecule immunotherapy. Bioorg Med Chem 2024; 102:117677. [PMID: 38457911 DOI: 10.1016/j.bmc.2024.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Immunotherapy has revolutionized the area of cancer treatment. Although most immunotherapies now are antibodies targeting membrane checkpoint molecules, there is an increasing demand for small-molecule drugs that address intracellular pathways. The E3 ubiquitin ligase Casitas B cell lymphoma‑b (Cbl-b) has been regarded as a promising intracellular immunotherapy target. Cbl-b regulates the downstream proteins of multiple membrane receptors and co-receptors, restricting the activation of the innate and adaptive immune system. Recently, Cbl-b inhibitors have been reported with promising effects on immune surveillance activation and anti-tumor efficacy. Several molecules have entered phase Ⅰ clinical trials. In this review, the biological rationale of Cbl-b as a promising target for cancer immunotherapy and the latest research progress of Cbl-b are summarized, with special emphasis on the allosteric small-molecule inhibitors of Cbl-b.
Collapse
Affiliation(s)
- Xiuqi Hu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Erdong Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yangguo Zhou
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|