1
|
Wohlgemuth R. Enzyme Catalysis for Sustainable Value Creation Using Renewable Biobased Resources. Molecules 2024; 29:5772. [PMID: 39683928 DOI: 10.3390/molecules29235772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Enzyme catalysis was traditionally used by various human cultures to create value long before its basic concepts were uncovered. This was achieved by transforming the raw materials available from natural resources into useful products. Tremendous scientific and technological progress has been made globally in understanding what constitutes an enzyme; what reactions enzymes can catalyze; and how to search, develop, apply, and improve enzymes to make desired products. The useful properties of enzymes as nature's preferred catalysts, such as their high selectivity, diversity, and adaptability, enable their optimal function, whether in single or multiple reactions. Excellent opportunities for the resource-efficient manufacturing of compounds are provided by the actions of enzymes working in reaction cascades and pathways within the same reaction space, like molecular robots along a production line. Enzyme catalysis plays an increasingly prominent role in industrial innovation and responsible production in various areas, such as green and sustainable chemistry and industrial or white biotechnology. Sources of inspiration include current manufacturing or supply chain challenges, the treasure of natural enzymes, and opportunities to engineer tailor-made enzymes. Making the best use of the power of enzyme catalysis is essential for changing how current products are manufactured; how renewable biobased resources can replace fossil-based resources; and improving the safety, health, and environmental aspects of manufacturing processes to support cleaner and more sustainable production.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
2
|
van der Ham MJM, Creus J, Bitter JH, Koper MTM, Pescarmona PP. Electrochemical and Non-Electrochemical Pathways in the Electrocatalytic Oxidation of Monosaccharides and Related Sugar Alcohols into Valuable Products. Chem Rev 2024; 124:11915-11961. [PMID: 39480753 PMCID: PMC11565578 DOI: 10.1021/acs.chemrev.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
In this contribution, we review the electrochemical upgrading of saccharides (e.g., glucose) and sugar alcohols (e.g., glycerol) on metal and metal-oxide electrodes by drawing conclusions on common trends and differences between these two important classes of biobased compounds. For this purpose, we critically review the literature on the electrocatalytic oxidation of saccharides and sugar alcohols, seeking trends in the effect of reaction conditions and electrocatalyst design on the selectivity for the oxidation of specific functional groups toward value-added compounds. Importantly, we highlight and discuss the competition between electrochemical and non-electrochemical pathways. This is a crucial and yet often neglected aspect that should be taken into account and optimized for achieving the efficient electrocatalytic conversion of monosaccharides and related sugar alcohols into valuable products, which is a target of growing interest in the context of the electrification of the chemical industry combined with the utilization of renewable feedstock.
Collapse
Affiliation(s)
- Matthijs
P. J. M. van der Ham
- Biobased
Chemistry and Technology, Wageningen Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jordi Creus
- Chemical
Engineering Group, Engineering and Technology Institute Groningen
(ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- TNO, Westerduinweg 3, 1755 LE Petten, The Netherlands
| | - Johannes H. Bitter
- Biobased
Chemistry and Technology, Wageningen Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Paolo P. Pescarmona
- Chemical
Engineering Group, Engineering and Technology Institute Groningen
(ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
Lu X, Li J, Huang C, Wang Z, Chen Y, Jiang S, Li J, Xie N. Development of New Multi-Glycosylation Routes to Facilitate the Biosynthesis of Sweetener Mogrosides from Bitter Immature Siraitia Grosvenorii Using Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18078-18088. [PMID: 39078882 DOI: 10.1021/acs.jafc.4c03154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Mogrosides, which have various pharmacological activities, are mainly extracted from Siraitia grosvenorii (Luo Han Guo) and are widely used as natural zero-calorie sweeteners. Unfortunately, the difficult cultivation and long maturation time of Luo Han Guo have contributed to a shortage of mogrosides. To overcome this obstacle, we developed a highly efficient biosynthetic method using engineered Escherichia coli to synthesize sweet mogrosides from bitter mogrosides. Three UDP-glycosyltransferase (UGT) genes with primary/branched glycosylation catalytic activity at the C3/C24 sites of mogrosides were screened and tested. Mutant M3, which could catalyze the glycosylation of nine types of mogrosides, was obtained through enhanced catalytic activity. This improvement in β-(1,6)-glycosidic bond formation was achieved through single nucleotide polymorphisms and direct evolution, guided by 3D structural analysis. A new multienzyme system combining three UGTs and UDP-glucose (UDPG) regeneration was developed to avoid the use of expensive UDPG. Finally, the content of sweet mogrosides in the immature Luo Han Guo extract increased significantly from 57% to 95%. This study not only established a new multienzyme system for the highly efficient production of sweet mogrosides from immature Luo Han Guo but also provided a guideline for the high-value utilization of rich bitter mogrosides from agricultural waste and residues.
Collapse
Affiliation(s)
- Xinyi Lu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Jianxiu Li
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Chuanqing Huang
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Zhefei Wang
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Yanchi Chen
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Shuiyuan Jiang
- Guangxi Zhuangzu Autonomous Region and the Chinese Academy of Sciences, Guangxi Institute of Botany, Guilin 541006, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Nengzhong Xie
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| |
Collapse
|
4
|
Liu J, Ren M, Ma H, Zhang H, Cui X, Kang R, Feng X, Meng D. One-pot sustainable synthesis of glucosylglycerate from starch and glycerol through artificial in vitro enzymatic cascade. BIORESOURCE TECHNOLOGY 2024; 399:130611. [PMID: 38508282 DOI: 10.1016/j.biortech.2024.130611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Glucosylglycerate (R-2-O-α-D-glucopyranosyl-glycerate, GG) is a negatively charged compatible solution with versatile functions. Here, an artificial in vitro enzymatic cascade was designed to feasibly and sustainably produce GG from affordable starch and glycerol. First, Spirochaeta thermophila glucosylglycerate phosphorylase (GGP) was carefully selected because of its excellent heterologous expression, specific activity, and thermostability. The optimized two-enzyme cascade, consisting of alpha-glucan phosphorylase (αGP) and GGP, achieved a remarkable 81 % conversion rate from maltodextrin and D-glycerate. Scaling up this cascade resulted in a practical concentration of 58 g/L GG with a 62 % conversion rate based on the added D-glycerate. Additionally, the production of GG from inexpensive starch and glycerol in one-pot using artificial four-enzyme cascade was successfully implemented, which integrates alditol oxidase and catalase with αGP and GGP. Collectively, this sustainable enzymatic cascade demonstrates the feasibility of the practical synthesis of GG and has the potential to produce other glycosides using the phosphorylase-and-phosphorylase paradigm.
Collapse
Affiliation(s)
- Juanjuan Liu
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Mengfei Ren
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Haoran Ma
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Huilin Zhang
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Xinyu Cui
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Runyuan Kang
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Xinming Feng
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China; Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Yantai University, Yantai 264005, Shandong, China
| | - Dongdong Meng
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China; Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
5
|
Chandnani M, Patel D, Patel T, Buch A. Tartrate Dehydrogenase in Bacillus Species: Deciphering Unique Catalytic Diversity Through Kinetic, Structural and Molecular Docking Analysis. Protein J 2024; 43:96-114. [PMID: 38127181 DOI: 10.1007/s10930-023-10170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Divergently evolved Tartrate dehydrogenase (TDH) exhibits multiple catalytic activities at a single active site; the enzyme from P. putida (pTDH) being structurally and biochemically well-characterized. Occurrence of TDH-associated ability to aerobically metabolize L-tartrate in Bacillus isolates and limited resemblance of ycsA-encoded protein sequences with pTDH rendered Bacillus TDH as an intriguing enzyme with possible catalytic diversity as well as evolutionary significance. The present study explores substrate interactions of TDHs from B. subtilis 168 (168bTDH) and B. licheniformis DSM-13 (429bTDH) through kinetic, structural and molecular docking-based analysis. Heterologously expressed bTDHs, purified from insoluble fractions of E. coli BL21(DE3) cells, could significantly catalyze L-tartrate and meso-tartrate as substrates in forward reaction. Unlike pTDH, bTDHs distinctly and more efficiently catalyzed the reverse reaction using dihydroxyfumarate substrate following sigmoidal kinetics; the ability being ~ 4 fold higher in 168bTDH. Their binding energies predicted from molecular docking, further substantiated the relative substrate specificities, while revealing major residues involved in protein-ligand interactions at active site. The kinetic analysis and homology modelling validated using Ramachandran Plot analysis predicted a dimeric nature for bTDH. Collectively, the results highlight unique catalytic potential of phylogenetically recent bTDHs, offering an important protein engineering target to mediate efficient enantioselective enzymatic biotransformations.
Collapse
Affiliation(s)
- Manali Chandnani
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Dist. Anand, Changa, Gujarat, 388 421, India
| | - Disha Patel
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Dist. Anand, Changa, Gujarat, 388 421, India
| | - Twinkle Patel
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Dist. Anand, Changa, Gujarat, 388 421, India
| | - Aditi Buch
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Dist. Anand, Changa, Gujarat, 388 421, India.
| |
Collapse
|
6
|
Nie M, Wang J, Chen Z, Cao C, Zhang K. Systematic engineering enables efficient biosynthesis of L-phenylalanine in E. coli from inexpensive aromatic precursors. Microb Cell Fact 2024; 23:12. [PMID: 38183119 PMCID: PMC10768146 DOI: 10.1186/s12934-023-02282-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND L-phenylalanine is an essential amino acid with various promising applications. The microbial pathway for L-phenylalanine synthesis from glucose in wild strains involves lengthy steps and stringent feedback regulation that limits the production yield. It is attractive to find other candidates, which could be used to establish a succinct and cost-effective pathway for L-phenylalanine production. Here, we developed an artificial bioconversion process to synthesize L-phenylalanine from inexpensive aromatic precursors (benzaldehyde or benzyl alcohol). In particular, this work opens the possibility of L-phenylalanine production from benzyl alcohol in a cofactor self-sufficient system without any addition of reductant. RESULTS The engineered L-phenylalanine biosynthesis pathway comprises two modules: in the first module, aromatic precursors and glycine were converted into phenylpyruvate, the key precursor for L-phenylalanine. The highly active enzyme combination was natural threonine aldolase LtaEP.p and threonine dehydratase A8HB.t, which could produce phenylpyruvate in a titer of 4.3 g/L. Overexpression of gene ridA could further increase phenylpyruvate production by 16.3%, reaching up to 5 g/L. The second module catalyzed phenylpyruvate to L-phenylalanine, and the conversion rate of phenylpyruvate was up to 93% by co-expressing PheDH and FDHV120S. Then, the engineered E. coli containing these two modules could produce L-phenylalanine from benzaldehyde with a conversion rate of 69%. Finally, we expanded the aromatic precursors to produce L-phenylalanine from benzyl alcohol, and firstly constructed the cofactor self-sufficient biosynthetic pathway to synthesize L-phenylalanine without any additional reductant such as formate. CONCLUSION Systematical bioconversion processes have been designed and constructed, which could provide a potential bio-based strategy for the production of high-value L-phenylalanine from low-cost starting materials aromatic precursors.
Collapse
Affiliation(s)
- Mengzhen Nie
- Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Jingyu Wang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Zeyao Chen
- Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Chenkai Cao
- Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Kechun Zhang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China.
| |
Collapse
|
7
|
Dhabhai R, Koranian P, Huang Q, Scheibelhoffer DSB, Dalai AK. Purification of glycerol and its conversion to value-added chemicals: A review. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2189054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
| | | | | | | | - Ajay Kumar Dalai
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
de Mello AFM, Vandenberghe LPDS, Machado CMB, Valladares-Diestra KK, de Carvalho JC, Soccol CR. Polyhydroxybutyrate production by Cupriavidus necator in a corn biorefinery concept. BIORESOURCE TECHNOLOGY 2023; 370:128537. [PMID: 36581233 DOI: 10.1016/j.biortech.2022.128537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The high costs of bioplastics' production may hinder their commercialization. Development of new processes with high yields and in biorefineries can enhance diffusion of these materials. This work evaluated the production of polyhydroxybutyrate (PHB) from the combination of milled corn starchy fraction hydrolysate and crude glycerol as substrates by the strain Cupriavidus necator LPB 1421. After optimization steps, maximum accumulation of 62 % of PHB was obtained, which represents 11.64 g.L-1 and productivity of 0.162 g.Lh-1. In a stirred tank bioreactor system with 8 L of operational volume, 70 % of PHB accumulation was reported, representing 14.17 g.L-1 of the biopolymer with 0.197 g.Lh-1 productivity. PHB recovery was conducted using a chemical digestion method, reaching >99 % purity. Therefore, the potential application of milled corn as substrate for PHB production was confirmed. The developed bioplastic process could be coupled to a bioethanol producing unit creating the opportunity of a sustainable and economic biorefinery.
Collapse
Affiliation(s)
- Ariane Fátima Murawski de Mello
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil.
| | - Clara Matte Borges Machado
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Kim Kley Valladares-Diestra
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Júlio César de Carvalho
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980 Curitiba, Paraná, Brazil
| |
Collapse
|
9
|
Fung V, Xiao Y, Tan ZJD, Ma X, Zhou JFJ, Panda S, Yan N, Zhou K. Producing aromatic amino acid from corn husk by using polyols as intermediates. Biomaterials 2022; 287:121661. [PMID: 35842981 DOI: 10.1016/j.biomaterials.2022.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
Agricultural biomass remains as one of the commonly found waste on Earth. Although valorisation of these wastes has been studied in detail, the fermentation-based processes still need improvement due to the high cost of hydrolysing enzymes, and the presence of growth inhibitors which constrains the fermentation to produce high-value products. To address these challenges, we developed an integrated process in this study combining abiotic- and bio-catalysis to produce l-tyrosine from corn husk. The first step involved a one-pot hydrolytic hydrogenation tandem reaction without the use of the expensive enzymes, which yielded a mixture of polyols and sugars. Without any purification, these crude hydrolysates can be almost completely utilized by an engineered Escherichia coli strain, which did not exhibit any growth inhibition. The strain produced 0.44 g/L l-tyrosine from 10 g/L crude corn husk hydrolysates, demonstrating the feasibility of converting agricultural biomass into a valuable aromatic amino acid via an integrated process.
Collapse
Affiliation(s)
- Vincent Fung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yiying Xiao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore; Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Zhi Jun Daniel Tan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Xiaoqiang Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jie Fu J Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Smaranika Panda
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
| |
Collapse
|
10
|
Wang J, Qu G, Xie L, Gao C, Jiang Y, Zhang YHPJ, Sun Z, You C. Engineering of a thermophilic dihydroxy-acid dehydratase toward glycerate dehydration for in vitro biosystems. Appl Microbiol Biotechnol 2022; 106:3625-3637. [PMID: 35546366 DOI: 10.1007/s00253-022-11936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022]
Abstract
Dihydroxy-acid dehydratase (DHAD) plays an important role in the utilization of glycerol or glucose for the production of value-added chemicals in the in vitro synthetic enzymatic biosystem. The low activity of DHAD in the dehydration of glycerate to pyruvate hampers its applications in biosystems. Protein engineering of a thermophilic DHAD from Sulfolobus solfataricus (SsDHAD) was performed to increase its dehydration activity. A triple mutant (I161M/Y145S/G205K) with a 10-fold higher activity on glycerate dehydration was obtained after three rounds of iterative saturation mutagenesis (ISM) based on computational analysis. The shrunken substrate-binding pocket and newly formed hydrogen bonds were the reason for the activity improvement of the mutant. For the in vitro synthetic enzymatic biosystems of converting glucose or glycerol to L-lactate, the biosystems with the mutant SsDHAD showed 3.32- and 2.34-fold higher reaction rates than the wild type, respectively. This study demonstrates the potential of protein engineering to improve the efficiency of in vitro synthetic enzymatic biosystems by enhancing the enzyme activity of rate-limited enzymes. KEY POINTS: • A screening method was established for the protein engineering of SsDHAD. • A R3 mutant of SsDHAD with 10-fold higher activity was obtained. • The R3 mutant exhibits higher productivity in the in vitro biosystems.
Collapse
Affiliation(s)
- Juan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Leipeng Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Yingying Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
11
|
Parvez A, Ravikumar Y, Bisht R, Yun J, Wang Y, Chandrika SP, Zabed HM, Qi X. Functional and Structural Roles of the Dimer Interface in the Activity and Stability of Clostridium butyricum 1,3-Propanediol Oxidoreductase. ACS Synth Biol 2022; 11:1261-1271. [PMID: 35258945 DOI: 10.1021/acssynbio.1c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biosynthesis of 1,3-propanediol (1,3-PD) by 1,3-propanediol oxidoreductase (PDOR) is often limited by the stability issues. To address this issue, the goal of the present study was to engineer the Clostridium butyricum PDOR dimeric interface. The interface exists between the chains and plays a role in the synthesis of 1,3-PD, which is hindered by the increased temperature and pH. Herein, we engineered PDOR by HotSpot Wizard 3.0 and molecular dynamics simulations, improving its thermal stability, pH tolerance, and catalytic properties with respect to the wild-type PDOR activity at 37 °C. Compared to the activity of the wild-type PDOR, the N298C mutant showed 0.5-fold greater activity at pH 8.0, while the P299E mutant showed significantly increased activity of over five fold at pH 4.0. Further structural comparisons between the wild-type and P299E mutant revealed that the extraordinary stability of the P299E mutant could be due to the formation of additional hydrogen bonds and salt bridges. The N298C mutant also exhibits thermal stability at a broad range of temperature at pH 8 with respect to wild-type PDOR and other mutants. The molecular dynamics simulations revealed that stability profiles of P299E mutants at pH 4.0 are attributed to identical root mean square deviation values and stable conformations in the motif region present in the dimer interface of the enzyme. These findings suggest that the dimer interface motifs are essential for the compactness and stability of the PDOR enzyme; therefore, engineering the PDOR using a structure-guided approach could aid in improving its activity and stability under various physiological conditions (pH and temperature).
Collapse
Affiliation(s)
- Amreesh Parvez
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Renu Bisht
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Sabapathy Poorna Chandrika
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Hossain M. Zabed
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
12
|
Lin Z, Ammal SC, Denny SR, Rykov SA, You KE, Heyden A, Chen JG. Unraveling Unique Surface Chemistry of Transition Metal Nitrides in Controlling Selective C-O Bond Scission Pathways of Glycerol. JACS AU 2022; 2:367-379. [PMID: 35252987 PMCID: PMC8889611 DOI: 10.1021/jacsau.1c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 05/24/2023]
Abstract
Controlled C-O bond scission is an important step for upgrading glycerol, a major byproduct from the continuously increasing biodiesel production. Transition metal nitride catalysts have been identified as promising hydrodeoxygenation (HDO) catalysts, but fundamental understanding regarding the active sites of the catalysts and reaction mechanism remains unclear. This work demonstrates a fundamental surface science study of Mo2N and Cu/Mo2N for the selective HDO reaction of glycerol, using a combination of model surface experiments and first-principles calculations. Temperature-programmed desorption (TPD) experiments showed that clean Mo2N cleaved two or three C-O bonds of glycerol to produce allyl alcohol, propanal, and propylene. The addition of Cu to Mo2N changed the reaction pathway to one C-O bond scission to produce acetol. High-resolution electron energy loss spectroscopy (HREELS) results identified the surface intermediates, showing a facile C-H bond activation on Mo2N. Density functional theory (DFT) calculations revealed that the surface N on Mo2N interacted with the H atoms in glycerol and blocked some Mo sites to enable selective C-O bond scission. This work shows that Mo2N and Cu/Mo2N are active and selective for the controlled C-O bond scission of glycerol and in turn provides insights into the rational catalyst design for selective oxygen removal of relevant biomass-derived oxygenates.
Collapse
Affiliation(s)
- Zhexi Lin
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Salai C. Ammal
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Steven R. Denny
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Sergei A. Rykov
- Department
of Semiconductors Physics and Nano-electronics, Peter the Great St. Petersburg Polytechnic University 195251 St. Petersburg, Russia
| | - Kyung-Eun You
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Andreas Heyden
- Department
of Chemical Engineering, University of South
Carolina, Columbia, South Carolina 29208, United States
| | - Jingguang G. Chen
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
13
|
Antenucci A, Messina M, Bertolone M, Bella M, Carlone A, Salvio R, Dughera S. Turning Renewable Feedstocks into a Valuable and Efficient Chiral Phosphate Salt Catalyst. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Achille Antenucci
- Department of Chemistry University of Turin Via P. Giuria 7 10125 Turin Italy
- NIS Interdepartmental Centre Reference Centre for INSTM University of Turin Via Gioacchino Quarello 15/A 10135 Turin Italy
- Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Monica Messina
- Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
| | | | - Marco Bella
- Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Armando Carlone
- Department of Physical and Chemical Sciences University of L'Aquila via Vetoio 67100 L'Aquila Italy
| | - Riccardo Salvio
- Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
- Department Chemical Sciences and Technologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 1 00133 Rome Italy
- CNR Institute for Biological Systems Rome Headquarter- Reaction Mechanisms Department of Chemistry University of Rome “Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Stefano Dughera
- Department of Chemistry University of Turin Via P. Giuria 7 10125 Turin Italy
| |
Collapse
|
14
|
Cui Z, Wang Z, Zheng M, Chen T. Advances in biological production of acetoin: a comprehensive overview. Crit Rev Biotechnol 2021; 42:1135-1156. [PMID: 34806505 DOI: 10.1080/07388551.2021.1995319] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acetoin, a high-value-added bio-based platform chemical, is widely used in foods, cosmetics, agriculture, and the chemical industry. It is an important precursor for the synthesis of: 2,3-butanediol, liquid hydrocarbon fuels and heterocyclic compounds. Since the fossil resources are becoming increasingly scarce, biological production of acetoin has received increasing attention as an alternative to chemical synthesis. Although there are excellent reviews on the: application, catabolism and fermentative production of acetoin, little attention has been paid to acetoin production via: electrode-assisted fermentation, whole-cell biocatalysis, and in vitro/cell-free biocatalysis. In this review, acetoin biosynthesis pathways and relevant key enzymes are firstly reviewed. In addition, various strategies for biological acetoin production are summarized including: cell-free biocatalysis, whole-cell biocatalysis, microbial fermentation, and electrode-assisted fermentation. The advantages and disadvantages of the different approaches are discussed and weighed, illustrating the increasing progress toward economical, green and efficient production of acetoin. Additionally, recent advances in acetoin extraction and recovery in downstream processing are also briefly reviewed. Moreover, the current issues and future prospects of diverse strategies for biological acetoin production are discussed, with the hope of realizing the promises of industrial acetoin biomanufacturing in the near future.
Collapse
Affiliation(s)
- Zhenzhen Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Meiyu Zheng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| |
Collapse
|
15
|
Le HTQ, Nguyen AD, Park YR, Lee EY. Sustainable biosynthesis of chemicals from methane and glycerol via reconstruction of multi-carbon utilizing pathway in obligate methanotrophic bacteria. Microb Biotechnol 2021; 14:2552-2565. [PMID: 33830652 PMCID: PMC8601198 DOI: 10.1111/1751-7915.13809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 01/26/2023] Open
Abstract
Obligate methanotrophic bacteria can utilize methane, an inexpensive carbon feedstock, as a sole energy and carbon substrate, thus are considered as the only nature-provided biocatalyst for sustainable biomanufacturing of fuels and chemicals from methane. To address the limitation of native C1 metabolism of obligate type I methanotrophs, we proposed a novel platform strain that can utilize methane and multi-carbon substrates, such as glycerol, simultaneously to boost growth rates and chemical production in Methylotuvimicrobium alcaliphilum 20Z. To demonstrate the uses of this concept, we reconstructed a 2,3-butanediol biosynthetic pathway and achieved a fourfold higher titer of 2,3-butanediol production by co-utilizing methane and glycerol compared with that of methanotrophic growth. In addition, we reported the creation of a methanotrophic biocatalyst for one-step bioconversion of methane to methanol in which glycerol was used for cell growth, and methane was mainly used for methanol production. After the deletion of genes encoding methanol dehydrogenase (MDH), 11.6 mM methanol was obtained after 72 h using living cells in the absence of any chemical inhibitors of MDH and exogenous NADH source. A further improvement of this bioconversion was attained by using resting cells with a significantly increased titre of 76 mM methanol after 3.5 h with the supply of 40 mM formate. The work presented here provides a novel framework for a variety of approaches in methane-based biomanufacturing.
Collapse
Affiliation(s)
- Hoa Thi Quynh Le
- Department of Chemical Engineering (Integrated Engineering)Kyung Hee University17104Yongin‐siGyeonggi‐doSouth Korea
| | - Anh Duc Nguyen
- Department of Chemical Engineering (Integrated Engineering)Kyung Hee University17104Yongin‐siGyeonggi‐doSouth Korea
| | - Ye Rim Park
- Department of Chemical Engineering (Integrated Engineering)Kyung Hee University17104Yongin‐siGyeonggi‐doSouth Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering)Kyung Hee University17104Yongin‐siGyeonggi‐doSouth Korea
| |
Collapse
|
16
|
Tang S, Liao D, Li X, Lin Y, Han S, Zheng S. Cell-Free Biosynthesis System: Methodology and Perspective of in Vitro Efficient Platform for Pyruvate Biosynthesis and Transformation. ACS Synth Biol 2021; 10:2417-2433. [PMID: 34529398 DOI: 10.1021/acssynbio.1c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The modification of intracellular metabolic pathways by metabolic engineering has generated many engineered strains with relatively high yields of various target products in the past few decades. However, the unpredictable accumulation of toxic products, the cell membrane barrier, and competition between the carbon flux of cell growth and product synthesis have severely retarded progress toward the industrial-scale production of many essential chemicals. On the basis of an in-depth understanding of intracellular metabolic pathways, scientists intend to explore more sustainable methods and construct a cell-free biosynthesis system in vitro. In this review, the synthesis and application of pyruvate as a platform compound is used as an example to introduce cell-free biosynthesis systems. We systematically summarize a proposed methodology workflow of cell-free biosynthesis systems, including pathway design, enzyme mining, enzyme modification, multienzyme assembly, and pathway optimization. Some new methods, such as machine learning, are also mentioned in this review.
Collapse
Affiliation(s)
- Shiming Tang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Daocheng Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Xuewen Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
17
|
Zhou Y, Wu S, Bornscheuer UT. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chem Commun (Camb) 2021; 57:10661-10674. [PMID: 34585190 DOI: 10.1039/d1cc04243b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developing (chemo)enzymatic cascades is very attractive for green synthesis, because they streamline multistep synthetic processes. In this Feature Article, we have summarized the recent advances in in vitro or whole-cell cascade reactions with a focus on the use of renewable bio-based resources as starting materials. This includes the synthesis of rare sugars (such as ketoses, L-ribulose, D-tagatose, myo-inositol or aminosugars) from readily available carbohydrate sources (cellulose, hemi-cellulose, starch), in vitro enzyme pathways to convert glucose to various biochemicals, cascades to convert 5-hydroxymethylfurfural and furfural obtained from lignin or xylose into novel precursors for polymer synthesis, the syntheses of phenolic compounds, cascade syntheses of aliphatic and highly reduced chemicals from plant oils and fatty acids, upgrading of glycerol or ethanol as well as cascades to transform natural L-amino acids into high-value (chiral) compounds. In several examples these processes have demonstrated their efficiency with respect to high space-time yields and low E-factors enabling mature green chemistry processes. Also, the strengths and limitations are discussed and an outlook is provided for improving the existing and developing new cascades.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China.
| | - Shuke Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China. .,Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
18
|
Wang Y, Xiao G, Zhao Y, Wang S, Jin Y, Wang Z, Su H. Zirconia supported gold-palladium nanocatalyst for NAD(P)H regeneration via two-step mechanism. NANOTECHNOLOGY 2021; 32:485703. [PMID: 34404039 DOI: 10.1088/1361-6528/ac1e51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The regeneration cycle of expensive cofactor, NAD(P)H, is of paramount importance for the bio-catalyzed redox reactions. Here a ZrO2supported bimetallic nanocatalyst of gold-palladium (Au-Pd/ZrO2) was prepared to catalyze the regeneration of NAD(P)H without using electron mediators and extra energy input. Over 98% of regeneration efficiency can be achieved catlyzed by Au-Pd/ZrO2using TEOA as the electron donor. Mechanism study showed that the regeneration of NAD(P)H took place through a two-step process: Au-Pd/ZrO2nanocatalyst first catalyzed the oxidation of triethanolamine (TEOA) to glycolaldehyde (GA), then the generated GA induced the non-catalytic reducing of NAD(P)+to NAD(P)H under an alkaline environment maintained by TEOA. This two-step mechanism enables the decoupling of the regeneration of NAD(P)H in space and time into a catalytic oxidation and non-catalytic reducing cascade process which has been further verified using a variety of electron donors. The application significance of this procedure is further demonstrated both by the favorable stability of Au-Pd/ZrO2nanocatalyst in 5 successive cycles preserving over 90% of its original activity, and by the excellent performance of the regenerated NADH as the cofactor in the catalytic hydrogenation of acetaldehyde using an ethanol dehydrogenase.
Collapse
Affiliation(s)
- Yaoqiang Wang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Gang Xiao
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yilin Zhao
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yu Jin
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zishuai Wang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
19
|
Zhang C, Chen Q, Fan F, Tang J, Zhan T, Wang H, Zhang X. Directed evolution of alditol oxidase for the production of optically pure D-glycerate from glycerol in the engineered Escherichia coli. J Ind Microbiol Biotechnol 2021; 48:6312499. [PMID: 34196357 PMCID: PMC8788829 DOI: 10.1093/jimb/kuab041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022]
Abstract
D-glycerate is an attractive chemical for a wide variety of pharmaceutical, cosmetic, biodegradable polymers, and other applications. Now several studies have been reported about the synthesis of glycerate by different biotechnological and chemical routes from glycerol or other feedstock. Here, we present the construction of an Escherichia coli engineered strain to produce optically pure D-glycerate by oxidizing glycerol with an evolved variant of alditol oxidase (AldO) from Streptomyces coelicolor. This is achieved by starting from a previously reported variant mAldO and employing three rounds of directed evolution, as well as the combination of growth-coupled high throughput selection with colorimetric screening. The variant eAldO3-24 displays a higher substrate affinity toward glycerol with 5.23-fold than the wild-type AldO, and a 1.85-fold increase of catalytic efficiency (kcat/KM). Then we introduced an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible T7 expression system in E. coli to overexpress the variant eAldO3-24, and deleted glucosylglycerate phosphorylase encoding gene ycjM to block the consumption of D-glycerate. Finally, the resulting strain TZ-170 produced 30.1 g/l D-glycerate at 70 h with a yield of 0.376 mol/mol in 5-l fed-batch fermentation.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China.,College of Chemistry and Life Science, Changchun University of Technology, Jilin, Changchun 130012, China
| | - Qian Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Feiyu Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Jinlei Tang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Tao Zhan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Honglei Wang
- College of Chemistry and Life Science, Changchun University of Technology, Jilin, Changchun 130012, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| |
Collapse
|
20
|
Abstract
Glycerol is a readily available and inexpensive substance that is mostly generated during biofuel production processes. In order to ensure the viability of the biofuel industry, it is essential to develop complementing technologies for the resource utilization of glycerol. Ethylene glycol is a two-carbon organic chemical with multiple applications and a huge market. In this study, an artificial enzymatic cascade comprised alditol oxidase, catalase, glyoxylate/hydroxypyruvate reductase, pyruvate decarboxylase and lactaldehyde:propanediol oxidoreductase was developed for the production of ethylene glycol from glycerol. The reduced nicotinamide adenine dinucleotide (NADH) generated during the dehydrogenation of the glycerol oxidation product d-glycerate can be as the reductant to support the ethylene glycol production. Using this in vitro synthetic system with self-sufficient NADH recycling, 7.64 ± 0.15 mM ethylene glycol was produced from 10 mM glycerol in 10 h, with a high yield of 0.515 ± 0.1 g/g. The in vitro enzymatic cascade is not only a promising alternative for the generation of ethylene glycol but also a successful example of the value-added utilization of glycerol.
Collapse
|
21
|
Development of a Cofactor Balanced, Multi Enzymatic Cascade Reaction for the Simultaneous Production of L-Alanine and L-Serine from 2-Keto-3-deoxy-gluconate. Catalysts 2020. [DOI: 10.3390/catal11010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Enzymatic reaction cascades represent a powerful tool to convert biogenic resources into valuable chemicals for fuel and commodity markets. Sugars and their breakdown products constitute a significant group of possible substrates for such biocatalytic conversion strategies to value-added products. However, one major drawback of sugar cascades is the need for cofactor recycling without using additional enzymes and/or creating unwanted by-products. Here, we describe a novel, multi-enzymatic reaction cascade for the one-pot simultaneous synthesis of L-alanine and L-serine, using the sugar degradation product 2-keto-3-deoxygluconate and ammonium as precursors. To pursue this aim, we used four different, thermostable enzymes, while the necessary cofactor NADH is recycled entirely self-sufficiently. Buffer and pH optimisation in combination with an enzyme titration study yielded an optimised production of 21.3 +/− 1.0 mM L-alanine and 8.9 +/− 0.4 mM L-serine in one pot after 21 h.
Collapse
|
22
|
Zhan T, Chen Q, Zhang C, Bi C, Zhang X. Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in Escherichia coli. ACS Synth Biol 2020; 9:2600-2609. [PMID: 32794740 DOI: 10.1021/acssynbio.0c00404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycolate is an important α-hydroxy acid with a wide range of industrial applications. The current industrial production of glycolate mainly depends on chemical synthesis, but biochemical production from renewable resources using engineered microorganisms is increasingly viewed as an attractive alternative. Crude glycerol is an abundant byproduct of biodiesel production and a widely investigated potential sustainable feedstock. Here, we constructed a novel biosynthetic pathway for the production of glycolate from glycerol in Escherichia coli. The pathway starts from the oxidation of glycerol to d-glycerate by alditol oxidase, followed by sequential enzymatic dehydrogenation and decarboxylation as well as reduction reactions. We screened and characterized the catalytic activity of candidate enzymes, and a variant of alditol oxidase from Streptomyces coelicolor A3(2), 2-hydroxyglutarate-pyruvate transhydrogenase from Saccharomyces cerevisiae, α-ketoisovalerate decarboxylase from Lactococcus lactis, and aldehyde dehydrogenase from Escherichia coli were selected and assembled to create an artificial operon for the biosynthetic production of glycolate from glycerol. We also characterized the native strong constitutive promoter Plpp from E. coli and compared it with the PT7 promoter, which was employed to express the artificial operon on the plasmid pSC105-ADKA. To redirect glycerol flux toward glycolate synthesis, we deleted key genes of the native glycerol assimilation pathways and other branches of native E. coli metabolism, and we introduced a second plasmid expressing Dld3 to reduce the accumulation of the intermediate d-glycerate. Finally, the engineered strain TZ-108 harboring pSC105-ADKA and pACYC184-Plpp-Dld3 produced 0.64 g/L glycolate in shake flasks, which was increased to 4.74 g/L in fed-batch fermentation. This study provides an alternative pathway for glycolate synthesis and demonstrates the potential for producing other commodity chemicals by redesigning glycerol metabolism.
Collapse
Affiliation(s)
- Tao Zhan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qian Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chao Zhang
- College of Chemistry and Life Sciences, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
23
|
|
24
|
Chen Z, Li Z, Li F, Wang N, Gao XD. Characterization of alditol oxidase from Streptomyces coelicolor and its application in the production of rare sugars. Bioorg Med Chem 2020; 28:115464. [DOI: 10.1016/j.bmc.2020.115464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 01/06/2023]
|
25
|
Sutiono S, Teshima M, Beer B, Schenk G, Sieber V. Enabling the Direct Enzymatic Dehydration of d-Glycerate to Pyruvate as the Key Step in Synthetic Enzyme Cascades Used in the Cell-Free Production of Fine Chemicals. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Samuel Sutiono
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Mariko Teshima
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Barbara Beer
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia, Queensland 4072, Australia
- Sustainable Minerals Institute, The University of Queensland, 47 Staff House Road, St. Lucia, Queensland 4072, Australia
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia, Queensland 4072, Australia
- Straubing Branch BioCat, Fraunhofer IGB, Schulgasse 11a, 94315 Straubing, Germany
| |
Collapse
|
26
|
Begander B, Huber A, Döring M, Sperl J, Sieber V. Development of an Improved Peroxidase-Based High-Throughput Screening for the Optimization of D-Glycerate Dehydratase Activity. Int J Mol Sci 2020; 21:ijms21010335. [PMID: 31947885 PMCID: PMC6982167 DOI: 10.3390/ijms21010335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Successful directed evolution examples span a broad range of improved enzyme properties. Nevertheless, the most challenging step for each single directed evolution approach is an efficient identification of improved variants from a large genetic library. Thus, the development and choice of a proper high-throughput screening is a central key for the optimization of enzymes. The detection of low enzymatic activities is especially complicated when they lead to products that are present in the metabolism of the utilized genetic host. Coupled enzymatic assays based on colorimetric products have enabled the optimization of many of such enzymes, but are susceptible to problems when applied on cell extract samples. The purpose of this study was the development of a high-throughput screening for D-glycerate dehydratase activity in cell lysates. With the aid of an automated liquid handling system, we developed a high-throughput assay that relied on a pre-treatment step of cell extract prior to performing the enzymatic and assay reactions. We could successfully apply our method, which should also be transferable to other cell extract-based peroxidase assays, to identify an improved enzyme for the dehydration of D-glycerate.
Collapse
Affiliation(s)
- Benjamin Begander
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
| | - Anna Huber
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
| | - Manuel Döring
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
| | - Josef Sperl
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, D-94315 Straubing, Germany
- Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: ; Tel.: +49-9421-187-300
| |
Collapse
|
27
|
Cao H, Qian R, Yu L. Selenium-catalyzed oxidation of alkenes: insight into the mechanisms and developing trend. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00400f] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent progresses of the selenium-catalyzed oxidation of alkenes are summarized at the mechanism level. It may be beneficial for designing novel selenium-containing catalysts and alkene oxidation protocols for the next phase of studies.
Collapse
Affiliation(s)
- Hongen Cao
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | | | - Lei Yu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|
28
|
Abstract
Dry reforming of ethanol and glycerol using CO2 are promising technologies for H2 production while mitigating CO2 emission. Current studies mainly focused on steam reforming technology, while dry reforming has been typically less studied. Nevertheless, the urgent problem of CO2 emissions directly linked to global warming has sparked a renewed interest on the catalysis community to pursue dry reforming routes. Indeed, dry reforming represents a straightforward route to utilize CO2 while producing added value products such as syngas or hydrogen. In the absence of catalysts, the direct decomposition for H2 production is less efficient. In this mini-review, ethanol and glycerol dry reforming processes have been discussed including their mechanistic aspects and strategies for catalysts successful design. The effect of support and promoters is addressed for better elucidating the catalytic mechanism of dry reforming of ethanol and glycerol. Activity and stability of state-of-the-art catalysts are comprehensively discussed in this review along with challenges and future opportunities to further develop the dry reforming routes as viable CO2 utilization alternatives.
Collapse
|
29
|
Switching the substrate specificity from NADH to NADPH by a single mutation of NADH oxidase from Lactobacillus rhamnosus. Int J Biol Macromol 2019; 135:328-336. [PMID: 31128193 DOI: 10.1016/j.ijbiomac.2019.05.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Enzymatic NADP+ regeneration is a promising approach to produce valuable chemicals under economic conditions. Among all the enzymatic routes, using water-forming NADH oxidase is an ideal one because there is no by-product. However, most NADH oxidases have a low specific activity to NADPH. In this work, a thermostable NADH oxidase from Lactobacillus rhamnosus (LrNox) was rationally engineered to switch its specificity from NADH to NADPH. The results show that mutants D177A, G178R, D177A/G178R, D177A/G178R/L179S improved the NADPH activity by a factor of 4-6. The highest NADPH catalytic efficiency (Kcat/Km 223.71 S-1 μm-1, 47.6-fold higher than wild-type LrNox) and 51% of NADH activity retention were achieved by replacing the single amino acid Leu179 for serine (L179S) in LrNox. Modeling of L179S-NADPH complex reveals that the phosphate group of NADPH interacts with the hydroxyl of Ser179 with a strong hydrogen bond and several shorter hydrogen bonds with the amino group of Lys185 could stabilize the binding of NADPH in the L179S mutant. This work provides an efficient method for converting NAD(P)H specificity and shows that L179S mutant is a potential and efficient auxiliary enzyme for NADP+ regeneration.
Collapse
|