1
|
Shi TH, Tuo DH, Azuma S, Tokuda S, Masaki M, Yasuhara K, Asakawa H, Furukawa S, Akine S, Ohtani S, Kato K, Ogoshi T. Internal and External Pockets in Pillar[ n]arene Sheets and Their Host-Guest Binding Beyond Cavity Volume Limitations. J Am Chem Soc 2025. [PMID: 40019768 DOI: 10.1021/jacs.4c16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Constructing binding pockets by hierarchically assembling tailored building blocks and understanding structure-property relationships are challenging goals. Herein, amphiphilic pillar[5]arene and pillar[6]arene were prepared and used to construct 2D sheets, which consisted of well-defined hydrophobic and hydrophilic interlayers. In the hydrophobic interlayers, internal hydrophobic pockets were created by packing pairs of pillar[n]arenes, and external hydrophobic pockets were simultaneously generated from gaps between pillar[n]arenes due to electrostatic attractions. Aromatic hydrocarbons were accommodated in these hydrophobic pockets by ball milling. Due to the external pockets, bulky guests larger than the pillar[n]arene cavity sizes were also captured in the sheets.
Collapse
Affiliation(s)
- Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - De-Hui Tuo
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shogo Azuma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shun Tokuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8317, Japan
| | - Minamo Masaki
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Hitoshi Asakawa
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shuhei Furukawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8317, Japan
| | - Shigehisa Akine
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
2
|
Roithmeyer H, Bühler J, Blacque O, Tuncay I, Moehl T, Invernizzi C, Keller F, Iannuzzi M, Tilley SD. The Swiss Army Knife of Electrodes: Pillar[6]arene-Modified Electrodes for Molecular Electrocatalysis Over a Wide pH Range. Angew Chem Int Ed Engl 2025; 64:e202413144. [PMID: 39468829 DOI: 10.1002/anie.202413144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Indexed: 10/30/2024]
Abstract
Molecularly-modified electrode materials that maintain stability over a broad pH range are rare. Typically, each electrochemical transformation necessitates a specifically tuned system to achieve strong binding and high activity of the catalyst. Here, we report the functionalisation of mesoporous indium tin oxide (mITO) electrodes with the macrocyclic host molecule pillar[6]arene (PA[6]). These electrodes are stable within the pH range of 2.4-10.8 and can be equipped with electrochemically active ruthenium complexes through host-guest interactions to perform various oxidation reactions. Benzyl alcohol oxidation serves as a model reaction in acidic media, while ammonia oxidation is conducted to assess the systems performance under basic conditions. PA[6]-modified electrodes demonstrate catalytic activity for both reactions when complexed to different guest molecules and can be reused by reabsorption of the catalyst after its degradation. Furthermore, the system can be employed to perform subsequent reactions in electrolyte with varying pH, enabling the same electrode to be utilised in multiple different electrocatalytic reactions.
Collapse
Affiliation(s)
- Helena Roithmeyer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jan Bühler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Isik Tuncay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Thomas Moehl
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Cristiano Invernizzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Science and High Technology, Insubria University and INSTM, 22100, Como, Italy
| | - Florian Keller
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - S David Tilley
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
3
|
Tsujioka S, Sumino A, Nagasawa Y, Sumikama T, Flechsig H, Puppulin L, Tomita T, Baba Y, Kakuta T, Ogoshi T, Umeda K, Kodera N, Murakoshi H, Shibata M. Imaging single CaMKII holoenzymes at work by high-speed atomic force microscopy. SCIENCE ADVANCES 2023; 9:eadh1069. [PMID: 37390213 PMCID: PMC10313165 DOI: 10.1126/sciadv.adh1069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a pivotal role in synaptic plasticity. It is a dodecameric serine/threonine kinase that has been highly conserved across metazoans for over a million years. Despite the extensive knowledge of the mechanisms underlying CaMKII activation, its behavior at the molecular level has remained unobserved. In this study, we used high-speed atomic force microscopy to visualize the activity-dependent structural dynamics of rat/hydra/C. elegans CaMKII with nanometer resolution. Our imaging results revealed that the dynamic behavior is dependent on CaM binding and subsequent pT286 phosphorylation. Among the species studies, only rat CaMKIIα with pT286/pT305/pT306 exhibited kinase domain oligomerization. Furthermore, we revealed that the sensitivity of CaMKII to PP2A in the three species differs, with rat, C. elegans, and hydra being less dephosphorylated in that order. The evolutionarily acquired features of mammalian CaMKIIα-specific structural arrangement and phosphatase tolerance may differentiate neuronal function between mammals and other species.
Collapse
Affiliation(s)
- Shotaro Tsujioka
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Ayumi Sumino
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Takashi Sumikama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Leonardo Puppulin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takuya Tomita
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Yudai Baba
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Mikihiro Shibata
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
4
|
Alam M, Sangwan R, Agashe C, Gill AK, Patra D. Autonomous macroscopic signal deciphering the geometric self-sorting of pillar[ n]arenes. Chem Commun (Camb) 2023; 59:6016-6019. [PMID: 37128696 DOI: 10.1039/d3cc01372c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this communication, we have deciphered the geometric self-sorting of pillar[n]arenes by analyzing the fluid flow pattern obtained during the self-assembly of complementary pillar[n]arenes on the surface. The concept was further extended to demonstrate flow manipulation inside a microchannel where multiple sites were available for self-sorting, and the resultant flow velocity was tuned by the feeding ratio of the complementary pairs.
Collapse
Affiliation(s)
- Mujeeb Alam
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Rekha Sangwan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Chinmayee Agashe
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Arshdeep Kaur Gill
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Debabrata Patra
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
5
|
Morioka S, Sato S, Horikoshi N, Kujirai T, Tomita T, Baba Y, Kakuta T, Ogoshi T, Puppulin L, Sumino A, Umeda K, Kodera N, Kurumizaka H, Shibata M. High-Speed Atomic Force Microscopy Reveals Spontaneous Nucleosome Sliding of H2A.Z at the Subsecond Time Scale. NANO LETTERS 2023; 23:1696-1704. [PMID: 36779562 DOI: 10.1021/acs.nanolett.2c04346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nucleosome dynamics, such as nucleosome sliding and DNA unwrapping, are important for gene regulation in eukaryotic chromatin. H2A.Z, a variant of histone H2A that is highly evolutionarily conserved, participates in gene regulation by forming unstable multipositioned nucleosomes in vivo and in vitro. However, the subsecond dynamics of this unstable nucleosome have not been directly visualized under physiological conditions. Here, we used high-speed atomic force microscopy (HS-AFM) to directly visualize the subsecond dynamics of human H2A.Z.1-nucleosomes. HS-AFM videos show nucleosome sliding along 4 nm of DNA within 0.3 s in any direction. This sliding was also visualized in an H2A.Z.1 mutant, in which the C-terminal half was replaced by the corresponding canonical H2A amino acids, indicating that the interaction between the N-terminal region of H2A.Z.1 and the DNA is responsible for nucleosome sliding. These results may reveal the relationship between nucleosome dynamics and gene regulation by histone H2A.Z.
Collapse
Affiliation(s)
- Shin Morioka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shoko Sato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takuya Tomita
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yudai Baba
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Leonardo Puppulin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Ayumi Sumino
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mikihiro Shibata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
6
|
|
7
|
Song L, Zhou L, Li B, Zhang H. Fullerene-containing pillar[ n]arene hybrid composites. Org Biomol Chem 2022; 20:8176-8186. [DOI: 10.1039/d2ob01664h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The construction and application of fullerene-containing pillar[n]arene organic–inorganic hybrid composites/systems has been discussed and summarized.
Collapse
Affiliation(s)
- Leqian Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bing Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
8
|
Wu Y, Qin H, Shen J, Li H, Shan X, Xie M, Liao X. Pillararene-containing polymers with tunable fluorescence properties based on host-guest interactions. Chem Commun (Camb) 2021; 58:581-584. [PMID: 34918016 DOI: 10.1039/d1cc05962a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Linear polymers containing pillar[5]arenes as the pendant groups were designed and synthesized via a ring-opening metathesis polymerization. Such polymers could form supramolecular brush polymers and exhibited tunable fluorescence properties based on the host-guest interactions.
Collapse
Affiliation(s)
- Yue Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Hongyu Qin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Jun Shen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Hequn Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Xiaotao Shan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China. .,Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
9
|
Kakuta T, Baba Y, Yamagishi TA, Ogoshi T. Supramolecular exfoliation of layer silicate clay by novel cationic pillar[5]arene intercalants. Sci Rep 2021; 11:10637. [PMID: 34017028 PMCID: PMC8137868 DOI: 10.1038/s41598-021-90122-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
Clays are multi-layered inorganic materials that can be used to prepare nanocomposite fillers. Because the multi-layered structure is thermodynamically stable, it is difficult to change a multi-layered material into single layers to improve its dispersity. Previously, clays were modified with dodecylammonium cations to promote complexation with nylon 6, nylon 66, polypropylene, polyethylene, polystyrene, and polycaprolactone to increase the mechanical strength (and/or thermal stability) of the composite material; however, complete exfoliation could not be achieved in these composites. In this study, pillar[5]arenes are synthesized and functionalized with ten cationic substituents as novel intercalants for modifying bentonite clay, which is a multi-layered metal-cation-containing silicate. The pillar[5]arenes exfoliate the clay by forming polyrotaxanes with poly(ethylene glycol) through host–guest interactions.
Collapse
Affiliation(s)
- Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Yudai Baba
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan. .,Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
10
|
Zhang J, Lucas RA, Gu Y, Yang Y, Sun K, Li H. Nanopore-Based Electrodes for Quinotrione Detection: Host-Guest-Induced Electrochemical Signal Switching. Anal Chem 2021; 93:5430-5436. [PMID: 33760588 DOI: 10.1021/acs.analchem.0c05033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanopore-based detection techniques, with a wide range of transport properties, exhibit impressive selectivity and sensitivity for analytes. To expand the application of nanoporous sensors, real-time and fast detection of targets, all within a portable device, is highly desired for nanopore-based sensors. In addition, to improve the accuracy of the output signal, more appropriate readout methods also need to be explored. In this manuscript, we describe a nanopore-based electrode, regarded as NAC-P6-PC@AuE, prepared by coupling a pillararene-based nanoporous membrane with an electrochemical impedance measurement method. The fabricated device is demonstrated by exposing pillararene-based receptors to trace amounts of pesticide molecules. NAC-P6-PC@AuE devices exhibit distinguished selectivity to quinotrione, as well as the ability to quantify quinotrione with a limit of quantitation (LOQ) of 10 nM. The mechanism that allows sensing was verified using finite-element simulations and may be explained as host-guest-induced surface charge shielding, which influences the electrochemical response of probe molecules. The applications of this nanopore-based electrode may be extended toward other target molecules by decorating the nanopore surfaces with specifically chosen receptors.
Collapse
Affiliation(s)
- Jin Zhang
- National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, P. R. China.,Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Rachel A Lucas
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Yulin Gu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yuxia Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Kunpeng Sun
- National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
11
|
Acikbas Y, Aksoy M, Aksoy M, Karaagac D, Bastug E, Kursunlu AN, Erdogan M, Capan R, Ozmen M, Ersoz M. Recent progress in pillar[n]arene-based thin films on chemical sensor applications. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01059-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Ogoshi T, Kotera D, Fa S, Nishida S, Kakuta T, Yamagishi TA, Brouwer AM. A light-operated pillar[6]arene-based molecular shuttle. Chem Commun (Camb) 2020; 56:10871-10874. [PMID: 32789406 DOI: 10.1039/d0cc03945d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A molecular shuttle comprising a pillar[6]arene macrocyclic ring and an axle with two equal-energy-level stations connected by an azobenzene unit was synthesised. The E isomer of the azobenzene functioned as "open gate", allowing the pillar[6]arene ring to rapidly shuttle back-and-forth between the two stations. Ultraviolet irradiation induced photo-isomerisation of the azobenzene from E to Z form. The Z isomer of the azobenzene functioned as a "closed gate", inhibiting shuttling of the pillar[6]arene ring.
Collapse
Affiliation(s)
- Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. and WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daisuke Kotera
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Shungo Nishida
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan and Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
13
|
Yang Z, Lehn JM. Dynamic Covalent Self-Sorting and Kinetic Switching Processes in Two Cyclic Orders: Macrocycles and Macrobicyclic Cages. J Am Chem Soc 2020; 142:15137-15145. [PMID: 32809804 DOI: 10.1021/jacs.0c07131] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic covalent component self-sorting processes have been investigated for constituents of different cyclic orders, macrocycles and macrobicyclic cages based on multiple reversible imine formation. The progressive assembly of the final structures from dialdehyde and polyamine components involved the generation of kinetic products and mixtures of intermediates which underwent component selection and self-correction to generate the final thermodynamic constituents. Importantly, constitutional dynamic networks (CDNs) of macrocycles and macrobicyclic cages were set up either from separately prepared constituents or by in situ assembly from their components. Over time, these CDNs underwent conversion from a kinetically trapped out-of-equilibrium distribution of constituents to the thermodynamically self-sorted one through component exchange in different dimensional orders.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Jean-Marie Lehn
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| |
Collapse
|
14
|
Fukuma T. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy. Microscopy (Oxf) 2020; 69:340-349. [PMID: 32780817 DOI: 10.1093/jmicro/dfaa045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
In-liquid frequency modulation atomic force microscopy (FM-AFM) has been used for visualizing subnanometer-scale surface structures of minerals, organic thin films and biological systems. In addition, three-dimensional atomic force microscopy (3D-AFM) has been developed by combining it with a three-dimensional (3D) tip scanning method. This method enabled the visualization of 3D distributions of water (i.e. hydration structures) and flexible molecular chains at subnanometer-scale resolution. While these applications highlighted the unique capabilities of FM-AFM, its force resolution, speed and stability are not necessarily at a satisfactory level for practical applications. Recently, there have been significant advancements in these fundamental performances. The force resolution was dramatically improved by using a small cantilever, which enabled the imaging of a 3D hydration structure even in pure water and made it possible to directly compare experimental results with simulated ones. In addition, the improved force resolution allowed the enhancement of imaging speed without compromising spatial resolution. To achieve this goal, efforts have been made for improving bandwidth, resonance frequency and/or latency of various components, including a high-speed phase-locked loop (PLL) circuit. With these improvements, now atomic-resolution in-liquid FM-AFM imaging can be performed at ∼1 s/frame. Furthermore, a Si-coating method was found to improve stability and reproducibility of atomic-resolution imaging owing to formation of a stable hydration structure on a tip apex. These improvements have opened up new possibilities of atomic-scale studies on solid-liquid interfacial phenomena by in-liquid FM-AFM.
Collapse
Affiliation(s)
- Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
15
|
Fa S, Sakata Y, Akine S, Ogoshi T. Non‐Covalent Interactions Enable the Length‐Controlled Generation of Discrete Tubes Capable of Guest Exchange. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoko Sakata
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
16
|
Fa S, Sakata Y, Akine S, Ogoshi T. Non‐Covalent Interactions Enable the Length‐Controlled Generation of Discrete Tubes Capable of Guest Exchange. Angew Chem Int Ed Engl 2020; 59:9309-9313. [DOI: 10.1002/anie.201916515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoko Sakata
- Graduate School of Natural Science and TechnologyKanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and TechnologyKanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
17
|
Aratsu K, Takeya R, Pauw BR, Hollamby MJ, Kitamoto Y, Shimizu N, Takagi H, Haruki R, Adachi SI, Yagai S. Supramolecular copolymerization driven by integrative self-sorting of hydrogen-bonded rosettes. Nat Commun 2020; 11:1623. [PMID: 32238806 PMCID: PMC7113319 DOI: 10.1038/s41467-020-15422-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/09/2020] [Indexed: 11/12/2022] Open
Abstract
Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes. Over days, the electrostatic interaction between two monomers induces an integrative self-sorting of rosettes. While the electron-rich monomer inherently forms toroidal homopolymers, the additional electrostatic interaction that can also guide rosette association allows helicoidal growth of supramolecular copolymers that are comprised of an alternating array of two monomers. Upon heating, the helicoidal copolymers undergo a catastrophic transition into amorphous coaggregates via entropy-driven randomization of the monomers in the rosette. Unlike natural supramolecular polymers, artificial counterparts do not have molecular recognition processes to preorganize the supramolecular complexes before final assembly. Here, the authors show supramolecular copolymerization driven by integrative self-sorting of two different monomers into discrete six-membered supramolecular complexes (rosettes).
Collapse
Affiliation(s)
- Keisuke Aratsu
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Rika Takeya
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Brian R Pauw
- BAM Federal Institute for Materials Research and Testing Unter den Eichen 87, 12205, Berlin, Germany.
| | - Martin J Hollamby
- School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire, ST55BG, UK.
| | - Yuichi Kitamoto
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Hideaki Takagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan. .,Graduate School of Engineering, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan.
| |
Collapse
|
18
|
Wu Y, Li H, Yan Y, Shan X, Zhao M, Zhao Q, Liao X, Xie M. Pillararene-Containing Polymers with Tunable Conductivity Based on Host-Guest Complexations. ACS Macro Lett 2019; 8:1588-1593. [PMID: 35619394 DOI: 10.1021/acsmacrolett.9b00621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulating the conductivity of conducting polymers has spurred increasing studies, aiming at meeting different demands in various fields, including chemosensors, photovoltaic cells, and so on. Herein, linear pillar[5]arene-containing conjugated polymers were designed and synthesized via metathesis cyclopolymerization of pillar[5]arene-functionalized 1,6-heptadiyne. Upon addition of an ionic guest, such polymers could form inclusion complexes, of which the glass transition temperature decreased dramatically. With the aid of ionic guest and host-guest complexations between the pendant pillararenes and guest, these supramolecular materials exhibited tunable conductivity from 10-12 to 10-3 S·cm-1 at 30 °C. In addition, compared with the polymers without pendant pillar[5]arenes, such polymers showed better compatibility with the ionic guest, which could prevent the leakage of the latter one and was good for the conductivity of the material.
Collapse
Affiliation(s)
- Yue Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Hongfei Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yiqing Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaotao Shan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Meng Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
19
|
Kaizerman-Kane D, Hadar M, Granot E, Patolsky F, Zafrani Y, Cohen Y. Shape induced sorting via rim-to-rim complementarity in the formation of pillar[5, 6]arene-based supramolecular organogels. Org Chem Front 2019. [DOI: 10.1039/c9qo00717b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The first two-component rim-to-rim pillar[6]arene-based supramolecular organogels were prepared. Shape complementarity was found to be an important determinant in the formation of such gels which also show shape-induced sorting in their formation.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Maya Hadar
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Eran Granot
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Fernando Patolsky
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Yossi Zafrani
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Yoram Cohen
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|