1
|
Abu-Zurayk R, Alnairat N, Waleed H, Al-Khaial MQ, Khalaf A, Bozeya A, Abu-Dalo D, Al-Yousef S, Afaneh R. Polyvinylidene Fluoride (PVDF) and Nanoclay Composites' Mixed-Matrix Membranes: Exploring Structure, Properties, and Performance Relationships. Polymers (Basel) 2025; 17:1120. [PMID: 40284385 PMCID: PMC12030574 DOI: 10.3390/polym17081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Polyvinylidene fluoride (PVDF) membranes have become a favored choice for membrane filtration because of their outstanding mechanical characteristics, chemical resistance, thermal stability, and ease of handling. Nevertheless, the hydrophobic nature of PVDF membranes can result in fouling, which diminishes their efficiency over time. This study explores the impact of ZnO-Nanoclay on the properties and performance of mixed matrix membranes made from polyvinylidene fluoride (PVDF) at different loading percentages (0, 1, and 3 wt%). The ZnO-Nanoclay nanoparticles were synthesized using environmentally friendly methods, characterized, and blended into PVDF matrices via a solution-casting technique, resulting in a series of membranes. The synthesized nanoparticles were analyzed using Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The resulting mixed-matrix membranes underwent comprehensive analyses to assess their structure and surface properties, employing SEM, XRD, Atomic Force Microscopy (AFM), and contact-angle measurements. Furthermore, tensile, antibacterial, and barrier properties were evaluated. Integrating ZnO-Nanoclay into PVDF membranes greatly improves antifouling properties, achieving inhibition rates of 99.92% at a clay-loading percentage of 3 wt% and increasing water-flux rates by 16% compared to pure PVDF membranes at 1 wt%. In addition, ZnO-Nanoclay nanoparticles significantly boost the mechanical properties of PVDF membranes, enhancing maximum strength by 500% at 3 wt% loading. This study examines the interplay between the structure, properties, and performance of mixed-matrix membranes by comparing different PVDF membranes that were mixed with different nanoclay composites, providing significant insights into improving these membranes through the incorporation of nanoclay composites to enhance their overall properties and effectiveness.
Collapse
Affiliation(s)
- Rund Abu-Zurayk
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
- Nanotechnology Center, The University of Jordan, Amman 11942, Jordan;
| | - Nour Alnairat
- Nanotechnology Center, The University of Jordan, Amman 11942, Jordan;
| | - Haneen Waleed
- Chemical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | | | - Aya Khalaf
- Allied Sciences Department, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Ayat Bozeya
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Duaa Abu-Dalo
- Faculty of Pharmacy, Basic Pharmaceutical Science Department, Middle East University, Amman 11831, Jordan;
| | - Sojoud Al-Yousef
- Chemical Engineering Department, School of Engineering, The University of Jordan, Amman 11942, Jordan;
| | - Razan Afaneh
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
| |
Collapse
|
2
|
Miao X, He J, Zhai H, Jin Z. Synergistic regulation of d-band center photocatalytic hydrogen evolution at S-scheme heterojunction reduction sites through defect engineering and interface electric field. J Colloid Interface Sci 2025; 677:1016-1028. [PMID: 39128285 DOI: 10.1016/j.jcis.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The efficiency of photocatalytic hydrogen evolution can be significantly enhanced while maintaining cost-effectiveness through the synergistic effect of defect surface engineering and multi-component heterojunctions. The structure and properties of NiCo2O4 nanorods were modified by inducing oxygen vacancies at different temperatures in this study, resulting in improved optical properties and electron adsorption capacity. The presence of oxygen vacancies leads to a reduction in the band gap of NiCo2O4, thereby enhancing electron transport efficiency through band gap engineering. Simultaneously, surface properties undergo changes, and vacancy defects serve as electron trapping centers, facilitating an increased participation of electrons in the hydrogen evolution reaction process. The dodecahedron KMP with a cavity structure is additionally introduced to form an S-scheme heterojunction with NiCo2O4. This establishes a novel mechanism for electron transport, which effectively enhances the separation of electron-hole pairs and improves the redox capacity of the photocatalytic system. The adsorption of intermediates in the hydrogen production process is enhanced through synergistic regulation of d-band centers via surface defect engineering and S-scheme heterojunction. Additionally, this approach improves the separation efficiency of electron-hole pairs and accelerates electron transfer dynamics, significantly enhancing hydrogen production efficiency.
Collapse
Affiliation(s)
- Xinyu Miao
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Jie He
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Haiyang Zhai
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
3
|
Xie W, Yuan Y, Liang X, Liu Q, Liao J, Chen Y, Yang H. Nanoclay Mediated Two-Pronged Strategy for Infected-Wound Healing. NANO LETTERS 2024; 24:14812-14820. [PMID: 39498949 DOI: 10.1021/acs.nanolett.4c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Photothermal therapy (PTT) is an efficient way to combat bacterial infections and circumvent multidrug resistance. However, balancing efficacious bacterial killing and minimizing damage to the surrounding normal tissues remain a great challenge. Herein, a highly cooperative Prussian blue/kaolinite (PB/Kaol) hybrid nanosystem is constructed for antibacterial therapy to accelerate the healing of infected wounds. After hybridization with Kaol, the prepared PB/Kaol forms interfacial Al-O-Fe bonds, a fast charge transfer channel from Kaol to PB, which contributes to the enhanced photothermal effect of PB/Kaol. Additionally, the hydroxyl and Lewis acid-base sites of the Kaol surface could promote the adhesion of PB/Kaol to bacteria, thereby ensuring that as much hyperthermia as possible is focused on the bacteria and minimizing damage to the surrounding healthy tissues. Furthermore, PB/Kaol inherits the anti-inflammatory and hemostasis functions of PB and Kaol, resulting in the rapid healing of infected wounds.
Collapse
Affiliation(s)
- Weimin Xie
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yiting Yuan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Xiaozheng Liang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qianqian Liu
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Juan Liao
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Ying Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
4
|
Yang X, Yao X, Qiu Y. Introducing and Boosting Oxygen Vacancies within CoMn 2O 4 by Loading on Planar Clay Minerals for Efficient Peroxymonosulfate Activation. Molecules 2024; 29:3825. [PMID: 39202904 PMCID: PMC11357143 DOI: 10.3390/molecules29163825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
CoMn2O4 (CMO) has been recognized as an effective peroxymonosulfate (PMS) activator; however, it still shows disadvantages such as limited reactive sites and metal leakage. Herein, an effective and environmentally friendly composite catalyst, CMO/Kln, was synthesized by anchoring CMO on kaolinite (Kln), a natural clay mineral with a special lamellar structure, to activate peroxymonosulfate (PMS) for the degradation of residue pharmaceuticals in water. The abundant hydroxyl groups located on the surface of Kln helped induce rich oxygen vacancies (OVs) into composite CMO/Kln, which not only acted as additional active sites but also accelerated working efficiency. In addition, compared with bare CMO, CMO/Kln showed lower crystallinity, and the adoption of the Kln substrate contributed to its structural stability with lower metal leaching after three rounds of reaction. The universal applicability of CMO/Kln was also verified by using three other pharmaceuticals as probes. This work shed light on the adoption of natural clay minerals in modifying CMO catalysts with promoted catalytic activity for the efficient and eco-friendly remediation of pharmaceuticals in wastewater.
Collapse
Affiliation(s)
- Xue Yang
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China;
| | - Xiao Yao
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China;
| | - Yinyuan Qiu
- Fujian Special Equipment Inspection and Research Institute, Fuzhou 350008, China
- School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China
| |
Collapse
|
5
|
Khachatryan L, Rezk MY, Nde D, Hasan F, Lomnicki S, Boldor D, Cook R, Sprunger P, Hall R, Cormier S. New Features of Laboratory-Generated EPFRs from 1,2-Dichlorobenzene (DCB) and 2-Monochlorophenol (MCP). ACS OMEGA 2024; 9:9226-9235. [PMID: 38434874 PMCID: PMC10905596 DOI: 10.1021/acsomega.3c08271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
The present research is primarily focused on investigating the characteristics of environmentally persistent free radicals (EPFRs) generated from commonly recognized aromatic precursors, namely, 1,2-dichlorobenzene (DCB) and 2-monochlorophenol (MCP), within controlled laboratory conditions at a temperature of 230 °C, termed as DCB230 and MCP230 EPFRs, respectively. An intriguing observation has emerged during the creation of EPFRs from MCP and DCB utilizing a catalyst 5% CuO/SiO2, which was prepared through various methods. A previously proposed mechanism, advanced by Dellinger and colleagues (a conventional model), postulated a positive correlation between the degree of hydroxylation on the catalyst's surface (higher hydroxylated, HH and less hydroxylated, LH) and the anticipated EPFR yields. In the present study, this correlation was specifically confirmed for the DCB precursor. Particularly, it was observed that increasing the degree of hydroxylation at the catalyst's surface resulted in a greater yield of EPFRs for DCB230. The unexpected finding was the indifferent behavior of MCP230 EPFRs to the surface morphology of the catalyst, i.e., no matter whether copper oxide nanoparticles are distributed densely, sparsely, or completely agglomerated. The yields of MCP230 EPFRs remained consistent regardless of the catalyst type or preparation protocol. Although current experimental results confirm the early model for the generation of DCB EPFRs (i.e., the higher the hydroxylation is, the higher the yield of EPFRs), it is of utmost importance to closely explore the heterogeneous alternative mechanism(s) responsible for generating MCP230 EPFRs, which may run parallel to the conventional model. In this study, detailed spectral analysis was conducted using the EPR technique to examine the nature of DCB230 EPFRs and the aging phenomenon of DCB230 EPFRs while they exist as surface-bound o-semiquinone radicals (o-SQ) on copper sites. Various aspects concerning bound radicals were explored, including the hydrogen-bonding tendencies of o-semiquinone (o-SQ) radicals, the potential reversibility of hydroxylation processes occurring on the catalyst's surface, and the analysis of selected EPR spectra using EasySpin MATLAB. Furthermore, alternative routes for EPFR generation were thoroughly discussed and compared with the conventional model.
Collapse
Affiliation(s)
- Lavrent Khachatryan
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Marwan Y. Rezk
- Department
of Engineering Science, Biological Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Divine Nde
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Farhana Hasan
- Department
of Environmental Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Slawomir Lomnicki
- Department
of Environmental Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Dorin Boldor
- Department
of Engineering Science, Biological Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Robert Cook
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Phillip Sprunger
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Randall Hall
- Natural
Sciences and Mathematics, School of Health and Natural Sciences, Dominican University of California, San Rafael, California 94901, United States
| | - Stephania Cormier
- Department
of Biological Sciences, LSU Superfund Research
Program and Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, United States
| |
Collapse
|
6
|
Hong K, Choi M, Bae Y, Min J, Lee J, Kim D, Bang S, Lee HK, Lee W, Hong J. Direct methane protonic ceramic fuel cells with self-assembled Ni-Rh bimetallic catalyst. Nat Commun 2023; 14:7485. [PMID: 37980343 PMCID: PMC10657466 DOI: 10.1038/s41467-023-43388-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Direct methane protonic ceramic fuel cells are promising electrochemical devices that address the technical and economic challenges of conventional ceramic fuel cells. However, Ni, a catalyst of protonic ceramic fuel cells exhibits sluggish reaction kinetics for CH4 conversion and a low tolerance against carbon-coking, limiting its wider applications. Herein, we introduce a self-assembled Ni-Rh bimetallic catalyst that exhibits a significantly high CH4 conversion and carbon-coking tolerance. It enables direct methane protonic ceramic fuel cells to operate with a high maximum power density of ~0.50 W·cm-2 at 500 °C, surpassing all other previously reported values from direct methane protonic ceramic fuel cells and even solid oxide fuel cells. Moreover, it allows stable operation with a degradation rate of 0.02%·h-1 at 500 °C over 500 h, which is ~20-fold lower than that of conventional protonic ceramic fuel cells (0.4%·h-1). High-resolution in-situ surface characterization techniques reveal that high-water interaction on the Ni-Rh surface facilitates the carbon cleaning process, enabling sustainable long-term operation.
Collapse
Affiliation(s)
- Kyungpyo Hong
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Mingi Choi
- Department of Future Energy Convergence, Seoul National University of Science & Technology, Seoul, Republic of Korea
| | - Yonggyun Bae
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
- Department of Zero-carbon Fuel & Power Generation, Korea Institute of Machinery & Materials, Daejeon, Republic of Korea
| | - Jihong Min
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jaeyeob Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Donguk Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Sehee Bang
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Han-Koo Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Wonyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea.
| | - Jongsup Hong
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Wang Y, Zhang Y, Gao G, Fan Y, Wang R, Feng J, Yang L, Meng A, Zhao J, Li Z. Effectively Modulating Oxygen Vacancies in Flower-Like δ-MnO 2 Nanostructures for Large Capacity and High-Rate Zinc-Ion Storage. NANO-MICRO LETTERS 2023; 15:219. [PMID: 37804457 PMCID: PMC10560176 DOI: 10.1007/s40820-023-01194-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/31/2023] [Indexed: 10/09/2023]
Abstract
In recent years, manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries (ZIBs) have attracted a great deal of attentions from numerous researchers. However, their slow reaction kinetics, limited active sites and poor electrical conductivity inevitably give rise to the severe performance degradation. To solve these problems, herein, we introduce abundant oxygen vacancies into the flower-like δ-MnO2 nanostructure and effectively modulate the vacancy defects to reach the optimal level (δ-MnO2-x-2.0). The smart design intrinsically tunes the electronic structure, guarantees ion chemisorption-desorption equilibrium and increases the electroactive sites, which not only effectively accelerates charge transfer rate during reaction processes, but also endows more redox reactions, as verified by first-principle calculations. These merits can help the fabricated δ-MnO2-x-2.0 cathode to present a large specific capacity of 551.8 mAh g-1 at 0.5 A g-1, high-rate capability of 262.2 mAh g-1 at 10 A g-1 and an excellent cycle lifespan (83% of capacity retention after 1500 cycles), which is far superior to those of the other metal compound cathodes. In addition, the charge/discharge mechanism of the δ-MnO2-x-2.0 cathode has also been elaborated through ex situ techniques. This work opens up a new pathway for constructing the next-generation high-performance ZIBs cathode materials.
Collapse
Affiliation(s)
- Yiwei Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Yuxiao Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Ge Gao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Yawen Fan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Ruoxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Jie Feng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Lina Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Alan Meng
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Jian Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China.
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Wang H, Bao W, Sarwar MT, Tian L, Tang A, Yang H. Mineral-Enhanced Manganese Ferrite with Multiple Enzyme-Mimicking Activities for Visual Detection of Disease Markers. Inorg Chem 2023; 62:8418-8427. [PMID: 37196355 DOI: 10.1021/acs.inorgchem.3c01047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Local geometric configurations of metal cations in inorganic enzyme mimics determine their catalytic behaviors, while their optimization remains challenging. Herein, kaolinite, a naturally layered clay mineral, achieves the optimization of cationic geometric configuration in manganese ferrite. We demonstrate that the exfoliated kaolinite induces the formation of defective manganese ferrite and makes more iron cations fill into the octahedral sites, significantly enhancing the multiple enzyme-mimicking activities. The steady-state kinetic assay results show that the catalytic constant of composites toward 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 are more than 7.4- and 5.7-fold higher than manganese ferrite, respectively. Furthermore, density functional theory (DFT) calculations reveal that the outstanding enzyme-mimicking activity of composites is attributed to the optimized iron cation geometry configuration, which has a higher affinity and activation ability toward H2O2 and lowers the energy barrier of key intermediate formation. As a proof of concept, the novel structure with multiple enzyme-mimicking activities amplifies the colorimetric signal, realizing the ultrasensitive visual detection of disease marker acid phosphatase (ACP), with a detection limit of 0.25 mU/mL. Our findings provide a novel strategy for the rational design of enzyme mimics and an in-depth investigation of their enzyme-mimicking properties.
Collapse
Affiliation(s)
- Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wenxin Bao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Luyuan Tian
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
9
|
Zhang S, Wang Q, Zhang P, Wang J, Li Y, Lu C, Sarwar MT, Dong X, Zhao Q, Tang A, Fu L, Yang H. Nanoclay-Modulated Interfacial Chemical Bond and Internal Electric Field at the Co 3 O 4 /TiO 2 p-n Junction for Efficient Charge Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300770. [PMID: 37035990 DOI: 10.1002/smll.202300770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/08/2023] [Indexed: 06/19/2023]
Abstract
To achieve a high separation efficiency of photogenerated carriers in semiconductors, constructing high-quality heterogeneous interfaces as charge flow highways is critical and challenging. This study successfully demonstrates an interfacial chemical bond and internal electric field (IEF) simultaneously modulated 0D/0D/1D-Co3 O4 /TiO2 /sepiolite composite catalyst by exploiting sepiolite surface-interfacial interactions to adjust the Co2+ /Co3+ ratio at the Co3 O4 /TiO2 heterointerface. In situ irradiation X-ray photoelectron spectroscopy and density functional theory (DFT) calculations reveal that the interfacial Co2+ OTi bond (compared to the Co3+ OTi bond) plays a major role as an atomic-level charge transport channel at the p-n junction. Co2+ /Co3+ ratio increase also enhances the IEF intensity. Therefore, the enhanced IEF cooperates with the interfacial Co2+ OTi bond to enhance the photoelectron separation and migration efficiency. A coupled photocatalysis-peroxymonosulfate activation system is used to evaluate the catalytic activity of Co3 O4 /TiO2 /sepiolite. Furthermore, this work demonstrates how efficiently separated photoelectrons facilitate the synergy between photocatalysis and peroxymonosulfate activation to achieve deep pollutant degradation and reduce its ecotoxicity. This study presents a new strategy for constructing high-quality heterogeneous interfaces by consciously modulating interfacial chemical bonds and IEF, and the strategy is expected to extend to this class of spinel-structured semiconductors.
Collapse
Affiliation(s)
- Shilin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Qingjie Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Peng Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Wang
- College of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yue Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Chang Lu
- College of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Xiongbo Dong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Qihang Zhao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Aidong Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Liangjie Fu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- College of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- College of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
10
|
Zhao Q, Gao C, Hou L, Yang H. Emerging Phosphate-Functionalized Co 3O 4/Kaolinite Composites for Enhanced Activation of Peroxymonosulfate. Inorg Chem 2023; 62:4823-4834. [PMID: 36848666 DOI: 10.1021/acs.inorgchem.2c04059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The Fenton-like reaction, as one of the most efficient strategies to generate radical species for the degradation of environmental pollutants, has attracted considerable attention. However, engineering low-cost catalysts with excellent activity by phosphate surface functionalization has seldom been used for the activation of peroxymonosulfate (PMS). Herein, emerging phosphate-functionalized Co3O4/kaolinite (P-Co3O4/Kaol) catalysts have been prepared by hydrothermal and phosphorization. Kaolinite nanoclay with rich hydroxyl groups plays a vital role in realizing phosphate functionalization. The results indicate that P-Co3O4/Kaol shows superior catalytic performance and excellent stability to the degradation of Orange II, which could be attributed to the existence of phosphate that promotes the adsorption of PMS and the electron transfer of Co2+/Co3+ cycles. Furthermore, the •OH radical was identified as the dominating reactive species for the degradation of Orange II compared to the SO4•- radical. This work could offer a novel preparation strategy for emerging functionalized nanoclay-based catalysts for effective pollutant degradation.
Collapse
Affiliation(s)
- Qihang Zhao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China.,Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Chao Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Lirong Hou
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China.,Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
11
|
Core-shell Bi-containing spheres and TiO2 nanoparticles co-loaded on kaolinite as an efficient photocatalyst for methyl orange degradation. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
12
|
Miao C, Chen S, Shang K, Liang L, Ouyang J. Highly Active Ni-Ru Bimetallic Catalyst Integrated with MFI Zeolite-Loaded Cerium Zirconium Oxide for Dry Reforming of Methane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47616-47632. [PMID: 36223106 DOI: 10.1021/acsami.2c12123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The dry reforming of methane (DRM) is a new potential technology that converts two major greenhouse gases into useful chemical feedstocks. The main challenge faced by this process is maintaining the catalyst with high catalytic activity and long-term stability. Here, a simple and effective preparation route for the synthesis of functional nanomolecular sieve catalysts (NiRuxCZZ5) from kaolinite tailings was developed for dry reforming of methane with CO2. The silica monoliths with flower-like spherical and micropore structures (ZSM-5) were prepared by crystal growth method, and the metal components were loaded by ultrasonic-assisted impregnation method. The NiRu0.5CZZ5 catalyst exhibited excellent catalytic performance (maxmium CO2 and CH4 conversions up to 100 and 95.6%, respectively) and very good stability (up to 100h). The interfacial confinement and the strong support interaction are principally responsible for the excellent catalytic activity of the catalyst. The in situ DRIFTS was used to elucidate the possible carbon conversion steps, and stable surface intermediates were also identified.
Collapse
Affiliation(s)
- Chao Miao
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha410083, China
- Centre for Mineral Materials, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Shumei Chen
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha410083, China
- Centre for Mineral Materials, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Kaixuan Shang
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha410083, China
- Centre for Mineral Materials, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Lixing Liang
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha410083, China
- Centre for Mineral Materials, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Jing Ouyang
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha410083, China
- Centre for Mineral Materials, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
- Key Lab of Clay Mineral Functional Materials in China Building Materials Industry, Central South University, Changsha410083, China
| |
Collapse
|
13
|
Wang H, Sarwar MT, Tian L, Bao W, Yang H. Nanoclay Modulates Cation Occupancy in Manganese Ferrite for Catalytic Antibacterial Treatment. Inorg Chem 2022; 61:17692-17702. [DOI: 10.1021/acs.inorgchem.2c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| | - Luyuan Tian
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| | - Wenxin Bao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| |
Collapse
|
14
|
Yang X, Wei G, Wu P, Liu P, Liang X, Chu W. Controlling oxygen vacancies of CoMn 2O 4 by loading on planar and tubular clay minerals and its application for boosted PMS activation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129060. [PMID: 35594679 DOI: 10.1016/j.jhazmat.2022.129060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
A representative transition metal oxide (TMO), CoMn2O4 (CMO), is recognized as an effective peroxymonosulfate (PMS) activator with disadvantages like limited reactive sites and metal leakage. Herein, novel catalysts were synthesized by anchoring CMO on kaolinite (Kln) and halloysite (Hal) matrixes, two natural clay minerals with lamellar and tubular structures, for PMS activation in pharmaceutical degradation. Hal and Kln helped to control the crystallinity of CMO spontaneously with induce oxygen vacancies (OVs), which significantly enhanced the working efficiency. The reaction rate constants of Hal/CMO and Kln/CMO towards OFX degradation were nearly triple and twice that of bare CMO, respectively, with a 60% decrease in metal usage. The formation of OVs provided additional active sites for the reaction and accelerated the electron transfer. CMO/Hal and CMO/Kln exhibited better stability and durability than CMO, while CMO/Kln showed higher structural stability with lower metal leaching after 3 rounds of reaction. The higher crystallinity of CMO/Kln resulted in less OVs, but higher structural stability. The universal applicability of CMO/Hal and CMO/Kln were verified by using three other pharmaceuticals as probes. This work shed light on the modification of TMO catalysts by introducing clay mineral substrates for the efficient and ecofriendly remediation of pharmaceuticals in wastewater.
Collapse
Affiliation(s)
- Xue Yang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Gaoling Wei
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Puqiu Wu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| | - Peng Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China.
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
15
|
3D porous carbon network-reinforced defective CoFeOx@C as a high-rate electrode for lithium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Shaw M, Samanta D, Bera S, Mahto MK, Salam Shaik MA, Konar S, Mondal I, Dhara D, Pathak A. Role of Surface Oxygen Vacancies and Oxygen Species on CuO Nanostructured Surfaces in Model Catalytic Oxidation and Reductions: Insight into the Structure-Activity Relationship Toward the Performance. Inorg Chem 2022; 61:14568-14581. [PMID: 35914234 DOI: 10.1021/acs.inorgchem.2c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Defect engineering, such as modification of oxygen vacancy density, has been considered as an effective approach to tailor the catalytic performance on transition-metal oxide nanostructured surfaces. The role of oxygen vacancies (OV) on the surface of the as-prepared, zinnia-shaped morphology of CuO nanostructures and their marigold forms on calcination at 800 °C has been investigated through the study of model catalytic reactions of reduction of 4-nitrophenol and aerobic oxidation of benzyl alcohol. The OV on the surfaces of different morphologies of CuO have been identified and quantified through Rietveld analysis and HRTEM, EPR, and XPS studies. The structure-activity relationships between surface oxygen vacancies (OV) and catalytic performance have been systematically investigated. The enhanced catalytic performance of the cubic CuO nanostructures compared to their as-prepared forms has been attributed to the formation of surface oxygen species on the reactive and dominant (110) surface that has low oxygen vacancy formation energy. The mechanistic role of surface oxygen species in the studied reactions has been quantitatively correlated with the catalytic activity of the different morphological forms of the CuO nanostructures.
Collapse
Affiliation(s)
- Manisha Shaw
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Dipanjan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sharmita Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Madhusudan Kr Mahto
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Md Abdus Salam Shaik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Suraj Konar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.,Department of Chemistry, R.D. & D.J. College, Munger, Bihar 811201, India
| | - Imran Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
17
|
Xu GM, Wang M, Bao HL, Fang PF, Zeng YH, Du L, Wang XL. Design of Ni(OH)2/M-MMT Nanocomposite With Higher Charge Transport as a High Capacity Supercapacitor. Front Chem 2022; 10:916860. [PMID: 35711949 PMCID: PMC9197183 DOI: 10.3389/fchem.2022.916860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Nano-petal nickel hydroxide was prepared on multilayered modified montmorillonite (M-MMT) using one-step hydrothermal method for the first time. This nano-petal multilayered nanostructure dominated the ion diffusion path to be shorted and the higher charge transport ability, which caused the higher specific capacitance. The results showed that in the three-electrode system, the specific capacitance of the nanocomposite with 4% M-MMT reached 1068 F/g at 1 A/g and the capacity retention rate was 70.2% after 1,000 cycles at 10 A/g, which was much higher than that of pure Ni(OH)2 (824 F/g at 1 A/g), indicating that the Ni(OH)2/M-MMT nanocomposite would be a new type of environmentally friendly energy storage supercapacitor.
Collapse
Affiliation(s)
- G. M. Xu
- School of Mechanical Engineering, Liaoning Technical University, Fuxin, China
| | - M. Wang
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China
- Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Fuxin, China
- *Correspondence: M. Wang,
| | - H. L. Bao
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China
| | - P. F. Fang
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China
| | - Y. H. Zeng
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China
| | - L. Du
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China
| | - X. L. Wang
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China
- Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Fuxin, China
| |
Collapse
|
18
|
Khederlou K, Bagheri R, Shojaei A, Gontard N, Tamsilian Y. Oxygen Scavenging Hybrid Nanostructure: Localization of Different Iron Nanoparticles on Montmorillonite Clays Host. ACS OMEGA 2022; 7:16391-16401. [PMID: 35601309 PMCID: PMC9118393 DOI: 10.1021/acsomega.2c00286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
According to the great potential of zero-valent iron nanoparticle applications in the environmental, medical, chemical, packaging and many other industries, there is still a need to tailor their production methods. This study reports the production of a hybrid nanostructure based on iron nanoparticles (INPs) produced in/on montmorillonite (MMT) nanoclays as an oxygen scavenger and barrier additive in polymeric packaging materials of oxygen-sensitive products. INPs and MMT were demonstrated to have effective mutual interactions in which the MMT host played a chemophysical trapping role for iron particles, causing smaller particles around 10 nm with 6.2 g/m2 higher specific surface area by limiting particle growth and agglomeration. In return, the embedding of primary iron cations in/on clays and growth of these particles during the reduction reaction pushed the clay layers out and helped further clay intercalation-exfoliation. Effective study of solvent and primary cation (Fe2+/Fe3+) types showed different preferences in interacting with natural and alkylammonium-modified MMT, resulting in the different site selection. Fe2+ cations preferred to migrate to the interlayer space, whereas Fe3+ cations tended to bond to the clay surface. The obtained results in this study suggest tailoring the ultimate oxygen scavenging capacity, shelf life, and migration properties of a hybrid nanoparticle according to the application requirements.
Collapse
Affiliation(s)
- Khadijeh Khederlou
- Institute
for Nanoscience and Nanotechnology, Sharif
University of Technology, Tehran 13537-13331, Iran
| | - Reza Bagheri
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 13537-13331, Iran
| | - Akbar Shojaei
- Department
of Chemical and Petroleum Engineering, Sharif
University of Technology, Tehran 13537-13331, Iran
| | - Nathalie Gontard
- UMR
“Ingénierie des Agropolymères et Technologies
Emergentes”, INRA, Univ. Montpellier,
Montpellier SupAgro, CIRAD, Montpellier 34060, France
| | - Yousef Tamsilian
- Department
of Chemical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz 61357-83151, Iran
| |
Collapse
|
19
|
Adjei S, Elkatatny S, Ayranci K, Sarmah P. Evaluation of Qusaiba Kaolinitic Shale as a Supplementary Cementitious Material in Lightweight Oil-Well Cement Formulation. ACS OMEGA 2022; 7:15090-15097. [PMID: 35572760 PMCID: PMC9089695 DOI: 10.1021/acsomega.2c00931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Metakaolin is a supplementary cementitious material produced through the calcination of kaolinitic rocks. The scarcity of high-grade and commercial quantities of kaolinitic-based rocks makes metakaolin expensive. The objective of this study is to evaluate the feasibility of the kaolinitic shale obtained from the mud-rich Qusaiba Member of Saudi Arabia as a source of metakaolin. The rock was dried, ground, and passed through a 75 μm sieve to obtain a fine powder. The powder was calcined at 1202, 1292, 1382, 1472, and 1562 °F for 1 h. The optimum calcination temperature required to convert the material into metakaolin was found to be 1562 °F using X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetry analysis techniques. The analytical techniques indicated that the kaolinitic shale is of high grade and less ordered, which would make it an excellent source of a highly reactive metakaolin. Cement systems designed at 12.5 ppg (1.50 g/cm3) with the metakaolin produced from the Qusaiba kaolinitic shale as 30% cement replacement exhibits mechanical properties that would be ideal for downhole oil-wellbore applications.
Collapse
Affiliation(s)
- Stephen Adjei
- Department
of Petroleum Engineering, College of Petroleum & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Salaheldin Elkatatny
- Department
of Petroleum Engineering, College of Petroleum & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Korhan Ayranci
- Department
of Geosciences, King Fahd University of
Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | | |
Collapse
|
20
|
Adjei S, Elkatatny S, Ayranci K. Effect of Elevated Temperature on the Microstructure of Metakaolin-Based Geopolymer. ACS OMEGA 2022; 7:10268-10276. [PMID: 35382306 PMCID: PMC8973065 DOI: 10.1021/acsomega.1c06878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Currently, geopolymer is being considered as a future oil-well cement. For wellbore applications, geopolymers are initially tested at specific temperature conditions. However, an oil-wellbore may experience a sudden increase in temperature which may adversely affect geopolymer systems designed for low to moderate temperature conditions. In this work, the effect of elevated temperatures on the microstructure of the geopolymer was simulated. Metakaolin-based geopolymer systems cured at 163 °F for 48 h were subjected to a temperature ramp of 194 °F and 248 °F for 24 h. X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetry analysis techniques were used to study the microstructural changes. The analytical techniques show the formation of new crystalline phases when the geopolymer cured at 163 °F was suddenly exposed to higher temperatures. These crystalline phases, for instance, gobbinsite and anorthite, observed in the microstructure have the potential to cause thermal stress, weaken the system, and ultimately affect the geopolymer's ability to effectively isolate the formation and support the casing.
Collapse
Affiliation(s)
- Stephen Adjei
- Department
of Petroleum Engineering, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Department
of Petroleum Engineering, Faculty of Civil and Geo-Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, 00000 Ghana
| | - Salaheldin Elkatatny
- Department
of Petroleum Engineering, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Center
for Integrative Petroleum Research, King
Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Korhan Ayranci
- Department
of Geosciences, King Fahd University of
Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
21
|
Zhang S, Zhong L, Xu Z, Hu J, Tang A, Zuo X. Mineral-modulated Co catalyst with enhanced adsorption and dissociation of BH 4- for hydrogenation of p-nitrophenol to p-aminophenol. CHEMOSPHERE 2022; 291:132871. [PMID: 34774906 DOI: 10.1016/j.chemosphere.2021.132871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Slow adsorption and dissociation kinetics of NaBH4 onto the catalyst surface limit the hydrogenation reduction of hazardous p-nitrophenol to worthy p-aminophenol. Herein, we design a mineral-modulated catalyst to facilitate the rate-limiting step. Carbon-coated etched attapulgite (EAtp@C) is obtained by HF treatment. Co/EAtp@C is fabricated via anchoring cobalt nanoparticles (CoNPs) on the carrier EAtp@C. Compared to pure Co, the anchored CoNPs are more electronegative and stable, which provides abundant and stable active sites and accelerates the BH4- adsorption and dissociation. Therefore, Co/EAtp@C leads to nearly 100% reduction of p-nitrophenol to p-aminophenol within 8 min and its apparent rate constant Kapp (0.69 min-1) is 4 times higher than that of pure Co. Thermodynamic calculations show a lower activation energy (37.92 kJ mol-1) of Co/EAtp@C catalyst than that of pure Co. Co/EAtp@C also shows magnetic separability and good stability by remaining 98.6% of catalytic conversion rate after six cycles. Significantly, we detect the active species Co-H, and reveal the electron transfer mechanism between catalysts, BH4-, and p-nitrophenol by electrochemical method. These results offer a fundamental insight into the catalytic mechanism of p-nitrophenol hydrogenation for rational design of efficient catalysts.
Collapse
Affiliation(s)
- Shilin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Laifu Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Zonglin Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jinqing Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Aidong Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China; Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China.
| | - Xiaochao Zuo
- Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
22
|
Liu Y, Zhang C, Shi A, Zuo S, Yao C, Ni C, Li X. Full solar spectrum driven CO2 conversion over S-Scheme natural mineral nanocomposite enhanced by LSPR effect. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Yeh CH, Hsu WY, Hsu CC, Valinton JAA, Yang CI, Chiu CC, Chen CH. Cobalt Iron Oxides Prepared by Acidic Redox-Assisted Precipitation: Characterization, Applications, and New Opportunities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52181-52192. [PMID: 34423968 DOI: 10.1021/acsami.1c11217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The microscopic homogeneity of mixed metals in a single-phase oxide is a critical issue in improving material performance. Aqueous alkaline precipitation is the most common approach but it has the limits of microscopic inhomogeneity because of intrinsically different precipitation rates between metal cations. Herein, we demonstrate a new preparation of uniformly structural substituted cobalt iron oxides via acidic redox-assisted precipitation (ARP) upon the interaction of CoII and K2FeO4. This low-pH synthesis features the redox process between Co and Fe, presumably through the formation of inner-sphere complexes such as [(H2O)5CoII-O-FeVIO3]. With the nucleation starting from such complexes, one obtains a product with predominantly mixed-metal Co-O-Fe moieties, which improves the electrical conductivity of the product. This work further analyzes how the properties of the product species evolve during the hydrothermal synthesis step in the ARP process. We see that the Co/Fe ratio slowly increases from about 1:1 to a final value of 2:1, but does not reach the expected redox stoichiometry of 3:1. At the same time, the magnetization also increases, reaching a value of 16.9 emu g-1 for the final superparamagnetic product, which is three times higher than the value of monometallic Co3O4 and Fe2O3. The cobalt iron oxide samples obtained from ARP also possess superior oxygen evolution activity (307 mV overpotential at 10 mA cm-2 μg-1) compared to a mixture of Co3O4 and Fe2O3 (422 mV) or pure cobalt oxide (350 mV), highlighting the structure-induced enhancement of the catalytic activity. The difficult synthesis of evenly blended trinary/quaternary metals in a single-oxide phase may become possible in the future via ARP.
Collapse
Affiliation(s)
- Chia-Hao Yeh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wan-Yun Hsu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chun-Cheng Hsu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | | | - Chen-I Yang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Cheng-Chau Chiu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
24
|
Etim UJ, Bai P, Gazit OM, Zhong Z. Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1919044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| | - Peng Bai
- College of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Oz M. Gazit
- Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
- Technion Israel Institute of Technology (IIT), Haifa, Israel
| |
Collapse
|
25
|
Wang J, Fu L, Yang H, Zuo X, Wu D. Energetics, Interlayer Molecular Structures, and Hydration Mechanisms of Dimethyl Sulfoxide (DMSO)-Kaolinite Nanoclay Guest-Host Interactions. J Phys Chem Lett 2021; 12:9973-9981. [PMID: 34617765 DOI: 10.1021/acs.jpclett.1c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) kaolinite nanoclay is an important natural mineral with promising application potential, especially tuned with organic intercalates. However, thus far, the organics-kaolinite guest-host interactions, the atomic scale structures of organic intercalates under confinement, and molecular level mechanisms of hydration are rarely systematically explored using both experimental and computational methodologies. We integrated density functional theory with dispersion scheme (DFT-D) with various experimental methods to investigate the intercalation of dimethyl sulfoxide (DMSO) in kaolinite with and without hydration. The kinetic, thermodynamic, and structural impacts of hydration were highlighted. In short, water molecules significantly promote intercalation of DMSO into kaolinite because of favorable intercalation energy, which is enabled by effective hydrogen bonding at the guest species (DMSO and water)-kaolinite interfaces.
Collapse
Affiliation(s)
- Jie Wang
- Hunan Key Lab of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Liangjie Fu
- Hunan Key Lab of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Hunan Key Lab of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaochao Zuo
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Di Wu
- Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99163, United States
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
- Materials Science and Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
26
|
Zhang J, Liu T, Fu L, Ye G. Synthesis of nanosized ultrathin MoS2 on montmorillonite nanosheets by CVD method. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Abstract
In this contribution, the three Mn-Zr catalysts with MnxZr1−xO2 hybrid phase were synthesized by two-step precipitation route (TP), conventional coprecipitation method (CP) and ball milling process (MP). The components, textural and redox properties of the Mn-Zr hybrid catalysts were studied via XRD, BET, XPS, HR-TEM, H2-TPR. Regarding the variation of synthesis routes, the TP and CP routes offer a more obvious advantage in the adjustment of the concentration of MnxZr1−xO2 solid solution compared to the MP process, which directly commands the content of Mn4+ and oxygen vacancy and lattice oxygen, and thereby leads to the enhanced mobility of reactive oxygen species and catalytic activity for toluene combustion. Moreover, the TP-Mn2Zr3 catalyst with the enriched exposure content of 51.4% for the defective (111) lattice plane of MnxZr1−xO2 exhibited higher catalytic activity and thermal stability for toluene oxidation than that of the CP-Mn2Zr3 sample with a value of 49.3%. This new observation will provide a new perspective on the design of bimetal catalysts with a higher VOCs combustion abatement.
Collapse
|
28
|
Hess C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem Soc Rev 2021; 50:3519-3564. [PMID: 33501926 DOI: 10.1039/d0cs01059f] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gaining insight into the mode of operation of heterogeneous catalysts is of great scientific and economic interest. Raman spectroscopy has proven its potential as a powerful vibrational spectroscopic technique for a fundamental and molecular-level characterization of catalysts and catalytic reactions. Raman spectra provide important insight into reaction mechanisms by revealing specific information on the catalysts' (defect) structure in the bulk and at the surface, as well as the presence of adsorbates and reaction intermediates. Modern Raman instrumentation based on single-stage spectrometers allows high throughput and versatility in design of in situ/operando cells to study working catalysts. This review highlights major advances in the use of Raman spectroscopy for the characterization of heterogeneous catalysts made during the past decade, including the development of new methods and potential directions of research for applying Raman spectroscopy to working catalysts. The main focus will be on gas-solid catalytic reactions, but (photo)catalytic reactions in the liquid phase will be touched on if it appears appropriate. The discussion begins with the main instrumentation now available for applying vibrational Raman spectroscopy to catalysis research, including in situ/operando cells for studying gas-solid catalytic processes. The focus then moves to the different types of information available from Raman spectra in the bulk and on the surface of solid catalysts, including adsorbates and surface depositions, as well as the use of theoretical calculations to facilitate band assignments and to describe (resonance) Raman effects. This is followed by a presentation of major developments in enhancing the Raman signal of heterogeneous catalysts by use of UV resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and shell-isolated nanoparticle surface-enhanced Raman spectroscopy (SHINERS). The application of time-resolved Raman studies to structural and kinetic characterization is then discussed. Finally, recent developments in spatially resolved Raman analysis of catalysts and catalytic processes are presented, including the use of coherent anti-Stokes Raman spectroscopy (CARS) and tip-enhanced Raman spectroscopy (TERS). The review concludes with an outlook on potential future developments and applications of Raman spectroscopy in heterogeneous catalysis.
Collapse
Affiliation(s)
- Christian Hess
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
| |
Collapse
|
29
|
Zhen Y, Yang C, Shen H, Xue W, Gu C, Feng J, Zhang Y, Fu F, Liang Y. Photocatalytic performance and mechanism insights of a S-scheme g-C 3N 4/Bi 2MoO 6 heterostructure in phenol degradation and hydrogen evolution reactions under visible light. Phys Chem Chem Phys 2020; 22:26278-26288. [PMID: 33174550 DOI: 10.1039/d0cp02199g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photocatalysis with potentially low cost and sustainable utilization is a typically environmentally benign method for the degradation of organic pollutants, but the rational design and fabrication of photocatalysts with high catalytic performance is still an enormous challenge. The efficient segregation of photogenerated electron-hole pairs in photocatalysts is a key and essential factor to decide photocatalytic activity. Herein, a novel Step-scheme (S-scheme) heterojunction photocatalyst, a g-C3N4/Bi2MoO6 (g-CN/BMO) composite, was successfully fabricated using g-C3N4 nanosheet-wrapped Bi2MoO6 microspheres. By adjusting the amount of g-C3N4 in BMO, a series of g-CN/BMO composites was prepared while optimizing posttreatment temperature. The resulting g-CN/BMO indicated well the photocatalytic performance for the degradation of phenol and hydrogen evolution reactions, especially, 100 g of g-CN was integrated into 100 g of the pre-calcined BMO at 200 °C to produce 100% g-CN/BMO-200, showing the highest photocatalytic performance compared to single composite BMO, BMO-200, g-CN, and g-CN/BMO-200 with other mass ratios. Combining the results from the density functional theory calculations and the results of X-ray photoelectron spectroscopy, for S-scheme heterojunction-structured g-CN/BMO-200, the internal electric field-, band edge bending- and coulomb interaction-driven efficient segregation of photogenerated electrons and holes at the interface is elucidated to explain the photocatalytic mechanism, and the resulting holes on the VB of BMO and electrons on the CB of g-CN are responsible for the improvement of the photocatalytic performance. This study revealed that for the S-scheme g-CN/BMO composite the internal electric field, band edge bending and coulomb interaction at the interface between g-CN and BMO can not only promote the effective segregation of electrons and holes, but also retain stronger redox ability. Such an investigation provides a facile and simple strategy to fabricate novel S-scheme heterojunction-structured photocatalysts for solar energy conversion.
Collapse
Affiliation(s)
- Yanzhong Zhen
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pt-Co3O4 Superstructures by One-Pot Reduction/Precipitation in Bicontinuous Microemulsion for Electrocatalytic Oxygen Evolution Reaction. Catalysts 2020. [DOI: 10.3390/catal10111311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bicontinuous microemulsions (BCME) were used to synthesize hierarchical superstructures (HSs) of Pt-Co3O4 by reduction/precipitation. BCMEs possess water and oil nanochannels, and therefore, both hydrophilic and lipophilic precursors can be used. Thus, PtAq-CoAq, PtAq-CoOi, PtOi-CoAq and PtOi-CoOi were prepared (where Aq and Oi stand for the precursor present in aqueous or oily phase, respectively). The characterization of the Pt-Co3O4-HS confirmed the formation of metallic Pt and Co3O4 whose composition and morphology are controlled by the initial pH and precursor combination, determining the presence of the reducing/precipitant species in the reaction media. The electrocatalytic activity of the Pt-Co3O4-HSs for oxygen evolution reaction (OER) was investigated using linear sweep voltammetry in 0.1 M KOH and compared with Pt-HS. The lowest onset overpotentials for Pt-Co3O4-Hs were achieved with PtOi-CoOi (1.46 V vs. RHE), while the lowest overpotential at a current density of 10 mA cm−2 (η10) was obtained for the PtAq-CoAq (381 mV). Tafel slopes were 102, 89, 157 and 92 mV dec−1, for PtAq-CoAq, PtAq-CoOi, PtOi-CoAq and PtOi-CoOi, respectively. The Pt-Co3O4-HSs showed a better performance than Pt-HS. Our work shows that the properties and performance of metal–metal oxide HSs obtained in BCMEs depend on the phases in which the precursors are present.
Collapse
|
31
|
Reversible aerobic oxidative dehydrogenation/hydrogenation of N-heterocycles over AlN supported redox cobalt catalysts. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Lu C, Yang H, Wang J, Tan Q, Fu L. Utilization of iron tailings to prepare high-surface area mesoporous silica materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139483. [PMID: 32473455 DOI: 10.1016/j.scitotenv.2020.139483] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Iron tailings are fine, stable and complex materials, which are mainly composed of minerals and metal oxides. Residual silicon in iron tailings can be used to prepare mesoporous silica materials applied to energy storage, environmental protection and other fields. This paper reported a novel synthesis strategy from iron tailings to high-surface area hexagonally ordered mesoporous silica materials in an innovative non-hydrothermal system at room temperature. A pretreatment process involving acid leaching and hydrothermal alkaline reaction was vital to the successful utilization of iron tailings. X-ray fluorescence (XRF) data suggested that about 95% of the silicon of iron tailings changed to the silicate as a silicon source. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), N2-adsorption-desorption isotherms, Fourier transform infrared (FTIR) spectroscopy, Thermogravimetry and differential scanning calorimetry (TG-DSC) and 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. The SAXRD patterns of mesoporous silica materials exhibited an intense (100) diffraction peak and two weak (110, 200) diffraction peaks, corresponding to characteristic of the ordered mesoporous lattice. TEM images further confirmed the hexagonally ordered porous structure of mesoporous silica materials. The WAXRD patterns and 29Si MAS NMR spectra of the samples indicated that mesoporous silica materials were composed of amorphous SiO2. The obtained mesoporous silica materials had a high surface area of 1915 m2/g and pore volume of 1.32 cm3/g. Furthermore, the evolution from iron tailings to mesoporous silica materials was elucidated and a proposed synthesis mechanism was discussed. Collectively, these results provided an insight into efficient recycling of iron tailings and the production of advanced functional materials from solid waste.
Collapse
Affiliation(s)
- Chang Lu
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan International Joint Lab of Mineral Materials, Central South University, Changsha 410083, China; Key Lab for Mineral Materials and Application of Hunan Province, Central South University, Changsha 410083, China.
| | - Jie Wang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qi Tan
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Zhengzhou 450006, China.
| | - Liangjie Fu
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan International Joint Lab of Mineral Materials, Central South University, Changsha 410083, China; Key Lab for Mineral Materials and Application of Hunan Province, Central South University, Changsha 410083, China
| |
Collapse
|
33
|
Li X, He C, Dai D, Zuo S, Yan X, Yao C, Ni C. Nano-mineral induced nonlinear optical LiNbO3 with abundant oxygen vacancies for photocatalytic nitrogen fixation: boosting effect of polarization. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01443-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Maarisetty D, Mahanta S, Sahoo AK, Mohapatra P, Baral SS. Steering the Charge Kinetics in Dual-Functional Photocatalysis by Surface Dipole Moments and Band Edge Modulation: A Defect Study in TiO 2-ZnS-rGO Composites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11679-11692. [PMID: 32067446 DOI: 10.1021/acsami.9b22418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing an efficient photocatalyst for concurrent hydrogen production and environmental remediation by using solar energy is a challenge. Defect engineering, although it offers a strategical promise to enhance the photocatalytic performance, has limitations that come from the ambiguity surrounding its role. In the current work, a comprehensive study on defects in promoting the charge transfer, band edge modulation, and surface reaction was carried out. The excess electrons springing from defects act like donor states and cause band bending at the junction interface. Characterization techniques such as X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, electron spin resonance, and photoluminescence were employed to investigate defect functionality, and its ultimate effect on photocatalytic performance was studied by simultaneous H2 production and methylene blue degradation. The role of graphene in optoelectronics and defect formation in the composite catalysts was explored. In addition, efforts have been made to unveil the reaction pathway for hydrogen evolution reaction and oxygen evolution reaction where excess defect density greatly hampered the quantum yield of the process. Results suggest that maintaining optimal defect concentration aborts the undesired thermodynamically favored back reactions. The conduction band and valence band values of the catalysts indicate that the photocatalytic mechanism was dominated by the electron pathway. Graphene acted as an effective electron sink when its concentration was around 2.5-3%. The superior activity of TiO2-ZnS-rGO was attributed to the narrow bandgap, rapid separation of photo-excited charge carriers, and favorable conduction band position for photocatalytic reactions. This work may assist in exploring the fundamental role of defects in driving the photocatalytic reactions and improve the selectivity in heterogeneous photocatalysis.
Collapse
Affiliation(s)
- Dileep Maarisetty
- Department of Chemical Engineering, BITS Pilani KK Birla Goa Campus, South Goa 403726, Goa, India
| | - Sasmita Mahanta
- Department of Chemistry C.V.Raman College of Engineering, Bhubaneswar 752054, India
| | - Akshaya Kumar Sahoo
- Department of Chemistry, Model Degree College, Nuapada, Khariar 766107, Odisha, India
| | - Priyabrat Mohapatra
- Department of Chemistry C.V.Raman College of Engineering, Bhubaneswar 752054, India
| | - Saroj Sundar Baral
- Department of Chemical Engineering, BITS Pilani KK Birla Goa Campus, South Goa 403726, Goa, India
| |
Collapse
|
35
|
Jiang D, Liu Z, Fu L, Yang H. Interfacial Chemical-Bond-Modulated Charge Transfer of Heterostructures for Improving Photocatalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9872-9880. [PMID: 31994377 DOI: 10.1021/acsami.9b17183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Interface engineering of heterostructured photocatalysts plays a very important role in the transfer and separation process of interfacial charge carriers, but how to regulate the transfer and separation of photogenerated charge carriers still is a huge challenge at the nanometric interface of heterostructures (HCs). Herein, we demonstrate that interfacial chemical bonds can effectively modulate photogenerated charge transfer in nanoclay-based HCs constructed by natural Kaolinite (Kaol) nanosheets and P25-TiO2. Experimental results and density functional theory (DFT) calculations confirm that stable Al-O-Ti bonds form at the interfaces by interactions of the Al-OH groups of Kaol and (101) surfaces of anatase TiO2. The Al-O-Ti bond strengthens the energy band bending of the space charge region near the interfacial bond and thus provides a fast transfer channel for interfacial photogenerated charge, resulting in the boosted charge transfer and separation ability of Kaol/P25 HCs. The findings reported here provide a deeper insight into modulating interfacial charge transfer by chemical bonds and shed new light on interface engineering of efficient heterostructured photocatalysts for environmental applications.
Collapse
Affiliation(s)
- Denghui Jiang
- Centre for Mineral Materials, School of Minerals Processing and Bioengineering , Central South University , Changsha 410083 , China
| | - Ziran Liu
- Department of Physics, Key Lab for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education) , Hunan Normal University , Changsha 410081 , China
| | - Liangjie Fu
- Centre for Mineral Materials, School of Minerals Processing and Bioengineering , Central South University , Changsha 410083 , China
- Hunan International Joint Lab of Mineral Materials , Central South University , Changsha 410083 , China
| | - Huaming Yang
- Centre for Mineral Materials, School of Minerals Processing and Bioengineering , Central South University , Changsha 410083 , China
- Hunan International Joint Lab of Mineral Materials , Central South University , Changsha 410083 , China
- Key Lab of Clay Mineral Functional Materials in China Building Materials Industry , Central South University , Changsha 410083 , China
| |
Collapse
|
36
|
Yang TQ, Peng B, Shan BQ, Zong YX, Jiang JG, Wu P, Zhang K. Origin of the Photoluminescence of Metal Nanoclusters: From Metal-Centered Emission to Ligand-Centered Emission. NANOMATERIALS 2020; 10:nano10020261. [PMID: 32033058 PMCID: PMC7075164 DOI: 10.3390/nano10020261] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
Abstract
Recently, metal nanoclusters (MNCs) emerged as a new class of luminescent materials and have attracted tremendous interest in the area of luminescence-related applications due to their excellent luminous properties (good photostability, large Stokes shift) and inherent good biocompatibility. However, the origin of photoluminescence (PL) of MNCs is still not fully understood, which has limited their practical application. In this mini-review, focusing on the origin of the photoemission emission of MNCs, we simply review the evolution of luminescent mechanism models of MNCs, from the pure metal-centered quantum confinement mechanics to ligand-centered p band intermediate state (PBIS) model via a transitional ligand-to-metal charge transfer (LMCT or LMMCT) mechanism as a compromise model.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Wu
- Correspondence: (P.W.); (K.Z.)
| | | |
Collapse
|
37
|
Machida S, Guégan R, Sugahara Y. Preparation and Comparative Stability of a Kaolinite-Tetrabutylphosphonium Bromide Intercalation Compound for Heat and Solvent Treatments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13553-13561. [PMID: 31538790 DOI: 10.1021/acs.langmuir.9b02375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A kaolinite-tetrabutylphosphonium bromide (TBPBr) intercalation compound (Kaol-TBPBr) was prepared from kaolinite providing inorganic aluminosilicate layers and TBPBr as intercalated salts between the layers through the use of an intermediate, a kaolinite-dimethylsulfoxide (DMSO) intercalation compound (Kaol-DMSO). The experimental data through complementary techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, solid-state 13C and 29Si nuclear magnetic resonance (NMR) spectroscopy with cross polarization and magic angle spinning, inductively coupled plasma emission spectrometry, and ion chromatography, indicate complete removal of DMSO and intercalation of TBPBr with an increase in the basal spacing from 1.12 nm (Kaol-DMSO) to 1.53 nm (Kaol-TBPBr). In contrast to a similar intercalation compound, a kaolinite-tetrabutylammonium bromide (TBABr) intercalation compound (Kaol-TBABr) with a basal spacing of 1.51 nm, Kaol-TBPBr displayed interesting features such as enhanced thermal stabilities as well as bold resistance against several solvents. Kaol-TBPBr withstood thermal decomposition of the organic species over 100 °C much better than Kaol-TBABr. When Kaol-TBPBr and Kaol-TBABr were refluxed in methanol, ethanol, acetone, or toluene for 1 day, Kaol-TBPBr preserved the expanded kaolinite layers, while the Kaol-TBABr structure completely collapsed due to the release of TBABr. Thus, with these particular and unique features of Kaol-TBPBr, organophosphonium salts appear to be promising guest species for intercalation chemistry of kaolinite.
Collapse
Affiliation(s)
| | | | - Yoshiyuki Sugahara
- Kagami Memorial Institute for Materials Science and Technology , Waseda University , 2-8-26 Nishiwaseda , Shinjuku-ku, Tokyo 169-0051 , Japan
| |
Collapse
|