1
|
Hsiao LC, Lee CH, Mazmanian K, Yoshida M, Ito G, Murata T, Utsunomiya-Tate N, Haino T, Tate SI, Hsu STD. Impacts of D-aspartate on the Aggregation Kinetics and Structural Polymorphism of Amyloid β Peptide 1-42. J Mol Biol 2025; 437:169092. [PMID: 40090459 DOI: 10.1016/j.jmb.2025.169092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Isomerization of L-Aspartate (L-Asp) into D-aspartate (D-Asp) occurs naturally in proteins at a rate that is much faster than that of other amino acid types. Accumulation of D-Asp is age-dependent, which could alter protein structures and, therefore, functions. Site-specific introduction of D-Asp can accelerate aggregation kinetics of a variety of proteins associated with misfolding diseases. Here, we showed by thioflavin T fluorescence that the isomerization of L-Asp at different positions of amyloid β peptide 1-42 (Aβ42) generates opposing effects on its aggregation kinetics. We further determined the atomic structures of Aβ42 amyloid fibrils harboring a single D-Asp at position 23 and two D-Asp at positions 7 and 23 by cryo-electron microscopy helical reconstruction - cross-validated by cryo-electron tomography and atomic force microscopy - to reveal how D-Asp7 contributes to the formation of a unique triple stranded amyloid fibril structure stabilized by two threads of well-ordered water molecules. These findings provide crucial insights into how the conversion from L- to D-Asp influences the aggregation propensity and amyloid polymorphism of Aβ42.
Collapse
Affiliation(s)
- Li-Ching Hsiao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Karine Mazmanian
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Masaya Yoshida
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Japan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Takuya Murata
- Department of Biomolecular Chemistry, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Naoko Utsunomiya-Tate
- Department of Biomolecular Chemistry, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Japan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shih-Ichi Tate
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
2
|
Dondi C, Garcia-Ruiz J, Hasan E, Rey S, Noble JE, Hoose A, Briones A, Kepiro IE, Faruqui N, Aggarwal P, Ghai P, Shaw M, Fry AT, Maxwell A, Hoogenboom BW, Lorenz CD, Ryadnov MG. A self-assembled protein β-helix as a self-contained biofunctional motif. Nat Commun 2025; 16:4535. [PMID: 40374664 DOI: 10.1038/s41467-025-59873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2025] [Indexed: 05/17/2025] Open
Abstract
Nature constructs matter by employing protein folding motifs, many of which have been synthetically reconstituted to exploit function. A less understood motif whose structure-function relationships remain unexploited is formed by parallel β-strands arranged in a helical repetitive pattern, termed a β-helix. Herein we reconstitute a protein β-helix by design and endow it with biological function. Unlike β-helical proteins, which are contiguous covalent structures, this β-helix self-assembles from an elementary sequence of 18 amino acids. Using a combination of experimental and computational methods, we demonstrate that the resulting assemblies are discrete cylindrical structures exhibiting conserved dimensions at the nanoscale. We provide evidence for the structures to form a carpet-like three-dimensional scaffold promoting and inhibiting the growth of human and bacterial cells, respectively, while being able to mediate intracellular gene delivery. The study introduces a self-assembled β-helix as a self-contained bio- and multi-functional motif for exploring and exploiting mechanistic biology.
Collapse
Affiliation(s)
- Camilla Dondi
- National Physical Laboratory, Teddington, UK
- London Centre for Nanotechnology, University College London, London, UK
| | - Javier Garcia-Ruiz
- National Physical Laboratory, Teddington, UK
- Department of Physics, King's College London, London, UK
| | - Erol Hasan
- National Physical Laboratory, Teddington, UK
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Alex Hoose
- National Physical Laboratory, Teddington, UK
| | | | | | | | | | - Poonam Ghai
- National Physical Laboratory, Teddington, UK
| | - Michael Shaw
- National Physical Laboratory, Teddington, UK
- Department of Computer Science, University College London, London, UK
| | | | | | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, UK
- Department of Physics & Astronomy, University College London, London, UK
| | | | - Maxim G Ryadnov
- National Physical Laboratory, Teddington, UK.
- Department of Physics, King's College London, London, UK.
| |
Collapse
|
3
|
Kell DB, Pretorius E, Zhao H. A Direct Relationship Between 'Blood Stasis' and Fibrinaloid Microclots in Chronic, Inflammatory, and Vascular Diseases, and Some Traditional Natural Products Approaches to Treatment. Pharmaceuticals (Basel) 2025; 18:712. [PMID: 40430532 PMCID: PMC12114700 DOI: 10.3390/ph18050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
'Blood stasis' (syndrome) (BSS) is a fundamental concept in Traditional Chinese Medicine (TCM), where it is known as Xue Yu (). Similar concepts exist in Traditional Korean Medicine ('Eohyul') and in Japanese Kampo medicine (Oketsu). Blood stasis is considered to underpin a large variety of inflammatory diseases, though an exact equivalent in Western systems medicine is yet to be described. Some time ago we discovered that blood can clot into an anomalous amyloid form, creating what we have referred to as fibrinaloid microclots. These microclots occur in a great many chronic, inflammatory diseases are comparatively resistant to fibrinolysis, and thus have the ability to block microcapillaries and hence lower oxygen transfer to tissues, with multiple pathological consequences. We here develop the idea that it is precisely the fibrinaloid microclots that relate to, and are largely mechanistically responsible for, the traditional concept of blood stasis (a term also used by Virchow). First, the diseases known to be associated with microclots are all associated with blood stasis. Secondly, by blocking red blood cell transport, fibrinaloid microclots provide a simple mechanistic explanation for the physical slowing down ('stasis') of blood flow. Thirdly, Chinese herbal medicine formulae proposed to treat these diseases, especially Xue Fu Zhu Yu and its derivatives, are known mechanistically to be anticoagulatory and anti-inflammatory, consistent with the idea that they are actually helping to lower the levels of fibrinaloid microclots, plausibly in part by blocking catalysis of the polymerization of fibrinogen into an amyloid form. We rehearse some of the known actions of the constituent herbs of Xue Fu Zhu Yu and specific bioactive molecules that they contain. Consequently, such herbal formulations (and some of their components), which are comparatively little known to Western science and medicine, would seem to offer the opportunity to provide novel, safe, and useful treatments for chronic inflammatory diseases that display fibrinaloid microclots, including Myalgic Encephalopathy/Chronic Fatigue Syndrome, long COVID, and even ischemic stroke.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 200, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 200, 2800 Kongens Lyngby, Denmark
| | - Huihui Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100026, China;
- Institute of Ethnic Medicine and Pharmacy, Beijing University of Chinese Medicine, Beijing 100026, China
| |
Collapse
|
4
|
Liang Y, Zhu X, Liu H, Yang L, Liu M, Yue Y, He B, Wang J. Investigation of the Differences in Amyloid-Like Fibrils Derived from Wheat Gluten with Varying Structures under Typical Food Processing Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9271-9285. [PMID: 40180613 DOI: 10.1021/acs.jafc.4c12444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
This study investigates the differences in physicochemical properties, structural characteristics, and fibril morphology among three wheat gluten with distinct secondary structure contents (A protein: high α-helices, low β-sheets, low random coils; C protein: low α-helices, high β-sheets, high random coils; B protein: intermediate structure) when amyloid-like fibrils (AFs) are formed under boiling and steaming conditions. Congo red absorption, polarized light microscopy, and X-ray diffraction confirmed the formation of AFs in proteins A, B, and C under boiling and steaming conditions. Thioflavin T fluorescence revealed that C-protein-derived fibrils (CPF) exhibited the highest intensity, indicating the strongest fibril-forming ability. SE-HPLC analysis showed a gradual increase in molecular weight and AFs contents with prolonged heating. Increased heating time led to larger particle sizes, higher β-sheet content, and involvement of aromatic amino acids in β-sheet formation via π-π stacking, promoting fibril growth. These changes were more pronounced under steaming conditions. AFM revealed that under steaming, the C protein formed longer and taller fibril structures than under boiling. This work establishes a theoretical foundation for understanding the growth mechanism of AFs formed by gluten proteins with different structures during food processing.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiuling Zhu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Liu Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuanyuan Yue
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
5
|
Tian Y, Torres-Flores AP, Shang Q, Zhang H, Khursheed A, Tahirbegi B, Pallier PN, Viles JH. The p3 peptides (Aβ 17-40/42) rapidly form amyloid fibrils that cross-seed with full-length Aβ. Nat Commun 2025; 16:2040. [PMID: 40016209 PMCID: PMC11868391 DOI: 10.1038/s41467-025-57341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
The p3 peptides, Aβ17-40/42, are a common alternative cleavage product of the amyloid precursor protein, and are found in diffuse amyloid deposits of Alzheimer's and Down Syndrome brains. The p3 peptides have been mis-named 'non-amyloidogenic'. Here we show p340/42 peptides rapidly form amyloid fibrils, with kinetics dominated by secondary nucleation. Importantly, cross-seeding experiments, with full-length Aβ induces a strong nucleation between p3 and Aβ peptides. The cross-seeding interaction is highly specific, and occurs only when the C-terminal residues are matched. We have imaged membrane interactions with p3, and monitored Ca2+ influx and cell viability with p3 peptide. Together this data suggests the N-terminal residues influence, but are not essential for, membrane disruption. Single particle analysis of TEM images indicates p3 peptides can form ring-like annular oligomers. Patch-clamp electrophysiology, shows p342 oligomers are capable of forming large ion-channels across cellular membranes. A role for p3 peptides in disease pathology should be considered as p3 peptides are cytotoxic and cross-seed Aβ fibril formation in vitro.
Collapse
Affiliation(s)
- Yao Tian
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Andrea P Torres-Flores
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Qi Shang
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Hui Zhang
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Anum Khursheed
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Bogachan Tahirbegi
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Patrick N Pallier
- The Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Queen Mary University of London, London, E1 2AT, UK
| | - John H Viles
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
6
|
Aubrey LD, Radford SE. How is the Amyloid Fold Built? Polymorphism and the Microscopic Mechanisms of Fibril Assembly. J Mol Biol 2025:169008. [PMID: 39954780 DOI: 10.1016/j.jmb.2025.169008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
For a given protein sequence, many, up to sometimes hundreds of different amyloid fibril folds, can be formed in vitro. Yet, fibrils extracted from, or found in, human tissue, usually at the end of a long disease process, are often structurally homogeneous. Through monitoring of amyloid assembly reactions in vitro, the scientific community has gained a detailed understanding of the kinetic mechanisms of fibril assembly and the rates at which the different processes involved occur. However, how this kinetic information relates to the structural changes as a protein transforms from its initial, native structure to the canonical cross-β structure of amyloid remain obscure. While cryoEM has yielded a plethora of high-resolution information that portray a vast variety of fibril structures, there remains little knowledge of how and why each particular structure resulted. Recent work has demonstrated that fibril structures can change over an assembly time course, despite the different fibril types having similar thermodynamic stability. This points to kinetic control of the fibrils formed, with structures that initiate or elongate faster becoming the dominant products of assembly. Annotating kinetic assembly mechanisms alongside structural analysis of the fibrils formed is required to truly understand the molecular mechanisms of amyloid formation. However, this is a complicated task. In this review, we discuss how embracing this challenge could open new frontiers in amyloid research and new opportunities for therapy.
Collapse
Affiliation(s)
- Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
7
|
Xue WF. Trace_y: Software algorithms for structural analysis of individual helical filaments by three-dimensional contact point reconstruction atomic force microscopy. Structure 2025; 33:363-371.e2. [PMID: 39642871 DOI: 10.1016/j.str.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Atomic force microscopy (AFM) is a powerful and increasingly accessible technology that has a wide range of bio-imaging applications. AFM is capable of producing detailed three-dimensional topographical images with high signal-to-noise ratio, which enables the structural features of individual molecules to be studied without the need for ensemble averaging. Here, a software tool Trace_y, designed to reconstruct the three-dimensional surface envelopes of individual helical filament structures from topographical AFM images, is presented. Workflow using Trace_y is demonstrated on the structural analysis of individual helical amyloid protein fibrils where the assembly mechanism of heterogeneous, complex and diverse fibril populations due to structural polymorphism is not understood. The algorithms presented here allow structural information encoded in topographical AFM height images to be extracted and understood as three-dimensional (3D) contact point clouds. This approach will facilitate the use of AFM in structural biology to understand molecular structures and behaviors at individual molecule level.
Collapse
Affiliation(s)
- Wei-Feng Xue
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK.
| |
Collapse
|
8
|
Habibnia M, Catalina-Hernandez E, Lopez-Martin M, Masnou-Sanchez D, Peralvarez-Marin A. Decoding the molecular and structural determinants of the neurokinin A and Aβ 1-42 peptide cross-interaction in the amyloid cascade pathway. iScience 2024; 27:111187. [PMID: 39559760 PMCID: PMC11570453 DOI: 10.1016/j.isci.2024.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Tachykinins are short neuropeptides, such as substance P and neurokinin B, that have been shown to interact with Alzheimer's β-amyloid (Aβ) peptide. Neurokinin A (NKA) is a secreted tachykinin neuropeptide that binds to neurokinin receptors and with an emerging role in the brain-gut axis. NKA shares the brain niche with Aβ; thus, we investigate whether and how NKA and Aβ peptide interact. We have used a combination of computational and experimental biophysics to assess the interaction of both peptides in vitro. Using Phe-to-Trp substitution, we have shown that Phe in the FXGLM signature in NKA is important for such interaction and for the modulation of the Aβ peptide amyloid cascade. Besides, cellular experiments have shown that the NKA-Aβ interaction decreases the Aβ peptide toxicity. Altogether, our work raises the intriguing possibility that NKA balance and the NKA-Aβ peptide interplay are relevant in the aggregation process in Alzheimer's disease.
Collapse
Affiliation(s)
- Mohsen Habibnia
- Unit of Biophysics, Department of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Eric Catalina-Hernandez
- Unit of Biophysics, Department of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Mario Lopez-Martin
- Unit of Biophysics, Department of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - David Masnou-Sanchez
- Unit of Biophysics, Department of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Alex Peralvarez-Marin
- Unit of Biophysics, Department of Biochemistry and Molecular Biology, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| |
Collapse
|
9
|
Kell DB, Pretorius E. Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots. Int J Mol Sci 2024; 25:10809. [PMID: 39409138 PMCID: PMC11476703 DOI: 10.3390/ijms251910809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
In classical amyloidoses, amyloid fibres form through the nucleation and accretion of protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to form mature amyloid fibres. Similar phenomena can occur in blood from individuals with circulating inflammatory molecules (and also some originating from viruses and bacteria). Such pathological clotting can result in an anomalous amyloid form termed fibrinaloid microclots. Previous proteomic analyses of these microclots have shown the presence of non-fibrin(ogen) proteins, suggesting a more complex mechanism than simple entrapment. We thus provide evidence against such a simple entrapment model, noting that clot pores are too large and centrifugation would have removed weakly bound proteins. Instead, we explore whether co-aggregation into amyloid fibres may involve axial (multiple proteins within the same fibril), lateral (single-protein fibrils contributing to a fibre), or both types of integration. Our analysis of proteomic data from fibrinaloid microclots in different diseases shows no significant quantitative overlap with the normal plasma proteome and no correlation between plasma protein abundance and their presence in fibrinaloid microclots. Notably, abundant plasma proteins like α-2-macroglobulin, fibronectin, and transthyretin are absent from microclots, while less abundant proteins such as adiponectin, periostin, and von Willebrand factor are well represented. Using bioinformatic tools, including AmyloGram and AnuPP, we found that proteins entrapped in fibrinaloid microclots exhibit high amyloidogenic tendencies, suggesting their integration as cross-β elements into amyloid structures. This integration likely contributes to the microclots' resistance to proteolysis. Our findings underscore the role of cross-seeding in fibrinaloid microclot formation and highlight the need for further investigation into their structural properties and implications in thrombotic and amyloid diseases. These insights provide a foundation for developing novel diagnostic and therapeutic strategies targeting amyloidogenic cross-seeding in blood clotting disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
10
|
Chitty C, Kuliga K, Xue WF. Atomic force microscopy 3D structural reconstruction of individual particles in the study of amyloid protein assemblies. Biochem Soc Trans 2024; 52:761-771. [PMID: 38600027 DOI: 10.1042/bst20230857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Recent developments in atomic force microscopy (AFM) image analysis have made three-dimensional (3D) structural reconstruction of individual particles observed on 2D AFM height images a reality. Here, we review the emerging contact point reconstruction AFM (CPR-AFM) methodology and its application in 3D reconstruction of individual helical amyloid filaments in the context of the challenges presented by the structural analysis of highly polymorphous and heterogeneous amyloid protein structures. How individual particle-level structural analysis can contribute to resolving the amyloid polymorph structure-function relationships, the environmental triggers leading to protein misfolding and aggregation into amyloid species, the influences by the conditions or minor fluctuations in the initial monomeric protein structure on the speed of amyloid fibril formation, and the extent of the different types of amyloid species that can be formed, are discussed. Future perspectives in the capabilities of AFM-based 3D structural reconstruction methodology exploiting synergies with other recent AFM technology advances are also discussed to highlight the potential of AFM as an emergent general, accessible and multimodal structural biology tool for the analysis of individual biomolecules.
Collapse
Affiliation(s)
- Claudia Chitty
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| | - Kinga Kuliga
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| | - Wei-Feng Xue
- Division of Natural Sciences, School of Biosciences, University of Kent, CT2 7NJ Canterbury, U.K
| |
Collapse
|
11
|
Park J, Jeong H, Noh N, Park JS, Ji S, Kang S, Huh Y, Hyun J, Yuk JM. Single-Molecule Graphene Liquid Cell Electron Microscopy for Instability of Intermediate Amyloid Fibrils. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309936. [PMID: 38016113 DOI: 10.1002/adma.202309936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Single-molecule techniques are powerful microscopy methods that provide new insights into biological processes. Liquid-phase transmission electron microscopy (LP-TEM) is an ideal single-molecule technique for overcoming the poor spatiotemporal resolution of optical approaches. However, single-molecule LP-TEM is limited by several challenges such as electron-beam-induced molecular damage, difficulty in identifying biomolecular species, and a lack of analytical approaches for conformational dynamics. Herein, a single-molecule graphene liquid-cell TEM (GLC-TEM) technique that enables the investigation of real-time structural perturbations of intact amyloid fibrils is presented. It is demonstrated that graphene membranes significantly extend the observation period of native amyloid beta proteins without causing oxidative damage owing to electron beams, which is necessary for imaging. Stochastic and time-resolved investigations of single fibrils reveal that structural perturbations in the early fibrillar stage are responsible for the formation of various amyloid polymorphs. The advantage of observing structural behavior in real time with unprecedented resolution will potentially make GLC-TEM a complementary approach to other single-molecule techniques.
Collapse
Affiliation(s)
- Jungjae Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeongseop Jeong
- Electron Microscopy Research Center, Korea Basic Science Institute (KBSI), Chungcheongbuk-do, Cheongju-si, 28119, Republic of Korea
| | - Namgyu Noh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji Su Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sanghyeon Ji
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sung Kang
- Analysis and Assessment Research Center, Research Institute of Industrial Science and Technology (RIST), 67 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Yoon Huh
- Analysis and Assessment Research Center, Research Institute of Industrial Science and Technology (RIST), 67 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Jaekyung Hyun
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
12
|
Firdaus S, Boye S, Janke A, Friedel P, Janaszewska A, Appelhans D, Müller M, Klajnert-Maculewicz B, Voit B, Lederer A. Advancing Antiamyloidogenic Activity by Fine-Tuning Macromolecular Topology. Biomacromolecules 2023; 24:5797-5806. [PMID: 37939018 DOI: 10.1021/acs.biomac.3c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Amyloid β peptide can aggregate into thin β-sheet fibrils or plaques deposited on the extracellular matrix, which is the hallmark of Alzheimer's disease. Multifunctional macromolecular structures play an important role in inhibiting the aggregate formation of amyloidogenic materials and thus are promising candidates with antiamyloidogenic characteristics for the development of next-generation therapeutics. In this study, we evaluate how small differences in the dendritic topology of these structures influence their antiamyloidogenic activity by the comparison of "perfectly dendritic" and "pseudodendritic" macromolecules, both decorated with mannose units. Their compactness, the position of surface units, and the size of glyco-architectures influence their antiamyloidogenic activity against Aβ 40, a major component of amyloid plaques. For the advanced analysis of the aggregation of the Aβ peptide, we introduce asymmetric flow field flow fractionation as a suitable method for the quantification of large and delicate structures. This alternative method focuses on the quantification of complex aggregates of Aβ 40 and glycodendrimer/glyco-pseudodendrimer over different time intervals of incubation, showing a good correlation to ThT assay and CD spectroscopy results. Kinetic studies of the second-generation glyco-pseudodendrimer revealed maximum inhibition of Aβ 40 aggregates, verified with atomic force microscopy. The second-generation glyco-pseudodendrimer shows the best antiamyloidogenic properties confirming that macromolecular conformation in combination with optimal functional group distribution is the key to its performance. These molecular properties were validated and confirmed by molecular dynamics simulation.
Collapse
Affiliation(s)
- Shamila Firdaus
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Peter Friedel
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Łódź, Poland
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Martin Müller
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Łódź, Poland
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Department Chemistry and Polymer Science, Stellenbosch University, 7602 Matieland, South Africa
| |
Collapse
|
13
|
Kaygisiz K, Rauch-Wirth L, Dutta A, Yu X, Nagata Y, Bereau T, Münch J, Synatschke CV, Weil T. Data-mining unveils structure-property-activity correlation of viral infectivity enhancing self-assembling peptides. Nat Commun 2023; 14:5121. [PMID: 37612273 PMCID: PMC10447463 DOI: 10.1038/s41467-023-40663-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
Gene therapy via retroviral vectors holds great promise for treating a variety of serious diseases. It requires the use of additives to boost infectivity. Amyloid-like peptide nanofibers (PNFs) were shown to efficiently enhance retroviral gene transfer. However, the underlying mode of action of these peptides remains largely unknown. Data-mining is an efficient method to systematically study structure-function relationship and unveil patterns in a database. This data-mining study elucidates the multi-scale structure-property-activity relationship of transduction enhancing peptides for retroviral gene transfer. In contrast to previous reports, we find that not the amyloid fibrils themselves, but rather µm-sized β-sheet rich aggregates enhance infectivity. Specifically, microscopic aggregation of β-sheet rich amyloid structures with a hydrophobic surface pattern and positive surface charge are identified as key material properties. We validate the reliability of the amphiphilic sequence pattern and the general applicability of the key properties by rationally creating new active sequences and identifying short amyloidal peptides from various pathogenic and functional origin. Data-mining-even for small datasets-enables the development of new efficient retroviral transduction enhancers and provides important insights into the diverse bioactivity of the functional material class of amyloids.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lena Rauch-Wirth
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Arghya Dutta
- Department Polymer Theory, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Xiaoqing Yu
- Department Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuki Nagata
- Department Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tristan Bereau
- Department Polymer Theory, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Christopher V Synatschke
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
14
|
Sarkar A, Namboodiri V, Kumbhakar M. Single-Molecule Orientation Imaging Reveals Two Distinct Binding Configurations on Amyloid Fibrils. J Phys Chem Lett 2023:4990-4996. [PMID: 37220418 DOI: 10.1021/acs.jpclett.3c00823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fluorescence readouts for an amyloid fibril sensor critically depend on its molecular interaction and local environment offered by the available structural motifs. Here we employ polarized points accumulation for imaging in nanoscale topography with intramolecular charge transfer probes transiently bound to amyloid fibrils to investigate the organization of fibril nanostructures and probe binding configurations. Besides the in-plane (θ ≈ 90°) mode for binding on the fibril surface parallel to the long fibril axis, we also observed a sizable population of over 60% out-of-plane (θ < 60°) dipoles for rotor probes experiencing a varying degree of orientational mobility. Highly confined dipoles exhibiting an out-of-plane configuration probably reflect tightly bound dipoles in the inner channel grooves, while the weakly bound ones on amyloid enjoy rotational flexibility. Our observation of an out-of-plane binding mode emphasizes the pivotal role played by the electron donor amino group toward fluorescence detection and hence the emergence of anchored probes alongside conventional groove binders.
Collapse
Affiliation(s)
- Aranyak Sarkar
- Radiation & Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vinu Namboodiri
- Radiation & Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
| | - Manoj Kumbhakar
- Radiation & Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
15
|
Sun Y, Jack K, Ercolani T, Sangar D, Hosszu L, Collinge J, Bieschke J. Direct Observation of Competing Prion Protein Fibril Populations with Distinct Structures and Kinetics. ACS NANO 2023; 17:6575-6588. [PMID: 36802500 PMCID: PMC10100569 DOI: 10.1021/acsnano.2c12009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In prion diseases, fibrillar assemblies of misfolded prion protein (PrP) self-propagate by incorporating PrP monomers. These assemblies can evolve to adapt to changing environments and hosts, but the mechanism of prion evolution is poorly understood. We show that PrP fibrils exist as a population of competing conformers, which are selectively amplified under different conditions and can "mutate" during elongation. Prion replication therefore possesses the steps necessary for molecular evolution analogous to the quasispecies concept of genetic organisms. We monitored structure and growth of single PrP fibrils by total internal reflection and transient amyloid binding super-resolution microscopy and detected at least two main fibril populations, which emerged from seemingly homogeneous PrP seeds. All PrP fibrils elongated in a preferred direction by an intermittent "stop-and-go" mechanism, but each population possessed distinct elongation mechanisms that incorporated either unfolded or partially folded monomers. Elongation of RML and ME7 prion rods likewise exhibited distinct kinetic features. The discovery of polymorphic fibril populations growing in competition, which were previously hidden in ensemble measurements, suggests that prions and other amyloid replicating by prion-like mechanisms may represent quasispecies of structural isomorphs that can evolve to adapt to new hosts and conceivably could evade therapeutic intervention.
Collapse
Affiliation(s)
- Yuanzi Sun
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Kezia Jack
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Tiziana Ercolani
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Daljit Sangar
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Laszlo Hosszu
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - John Collinge
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| | - Jan Bieschke
- MRC
Prion Unit at UCL/UCL Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom
| |
Collapse
|
16
|
Sun X, Dyson HJ, Wright PE. Role of conformational dynamics in pathogenic protein aggregation. Curr Opin Chem Biol 2023; 73:102280. [PMID: 36878172 PMCID: PMC10033434 DOI: 10.1016/j.cbpa.2023.102280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
The accumulation of pathogenic protein oligomers and aggregates is associated with several devastating amyloid diseases. As protein aggregation is a multi-step nucleation-dependent process beginning with unfolding or misfolding of the native state, it is important to understand how innate protein dynamics influence aggregation propensity. Kinetic intermediates composed of heterogeneous ensembles of oligomers are frequently formed on the aggregation pathway. Characterization of the structure and dynamics of these intermediates is critical to the understanding of amyloid diseases since oligomers appear to be the main cytotoxic agents. In this review, we highlight recent biophysical studies of the roles of protein dynamics in driving pathogenic protein aggregation, yielding new mechanistic insights that can be leveraged for design of aggregation inhibitors.
Collapse
Affiliation(s)
- Xun Sun
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
17
|
Konstantoulea K, Guerreiro P, Ramakers M, Louros N, Aubrey LD, Houben B, Michiels E, De Vleeschouwer M, Lampi Y, Ribeiro LF, de Wit J, Xue W, Schymkowitz J, Rousseau F. Heterotypic Amyloid β interactions facilitate amyloid assembly and modify amyloid structure. EMBO J 2022; 41:e108591. [PMID: 34842295 PMCID: PMC8762568 DOI: 10.15252/embj.2021108591] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/19/2023] Open
Abstract
It is still unclear why pathological amyloid deposition initiates in specific brain regions or why some cells or tissues are more susceptible than others. Amyloid deposition is determined by the self-assembly of short protein segments called aggregation-prone regions (APRs) that favour cross-β structure. Here, we investigated whether Aβ amyloid assembly can be modified by heterotypic interactions between Aβ APRs and short homologous segments in otherwise unrelated human proteins. Mining existing proteomics data of Aβ plaques from AD patients revealed an enrichment in proteins that harbour such homologous sequences to the Aβ APRs, suggesting heterotypic amyloid interactions may occur in patients. We identified homologous APRs from such proteins and show that they can modify Aβ assembly kinetics, fibril morphology and deposition pattern in vitro. Moreover, we found three of these proteins upon transient expression in an Aβ reporter cell line promote Aβ amyloid aggregation. Strikingly, we did not find a bias towards heterotypic interactions in plaques from AD mouse models where Aβ self-aggregation is observed. Based on these data, we propose that heterotypic APR interactions may play a hitherto unrealized role in amyloid-deposition diseases.
Collapse
Affiliation(s)
- Katerina Konstantoulea
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Patricia Guerreiro
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Meine Ramakers
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Nikolaos Louros
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | | | - Bert Houben
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Emiel Michiels
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Matthias De Vleeschouwer
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Yulia Lampi
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Luís F Ribeiro
- VIB Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurosciencesLeuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Joris de Wit
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Wei‐Feng Xue
- School of BiosciencesUniversity of KentCanterburyUK
| | - Joost Schymkowitz
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| | - Frederic Rousseau
- Switch LaboratoryVIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU LeuvenLeuvenBelgium
| |
Collapse
|
18
|
Andrade S, Loureiro JA, Pereira MC. Transferrin-Functionalized Liposomes for the Delivery of Gallic Acid: A Therapeutic Approach for Alzheimer's Disease. Pharmaceutics 2022; 14:2163. [PMID: 36297599 PMCID: PMC9609970 DOI: 10.3390/pharmaceutics14102163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Senile plaques composed of amyloid β (Aβ) fibrils are considered the leading cause of Alzheimer's disease (AD). Molecules with the ability to inhibit Aβ aggregation and/or promote Aβ clearance are thus a promising approach for AD therapy. Our group recently demonstrated that gallic acid (GA) has strong anti-amyloidogenic properties. In this study, stealth liposomes were prepared for the delivery of GA for AD therapy. The liposomes were functionalized with transferrin (Tf) to direct them to the brain, since Tf receptors are overexpressed in the endothelial cells of the blood-brain barrier. GA-loaded Tf-functionalized liposomes showed mean diameters of 130 nm, low polydispersity index values, and neutral zeta potential. Moreover, the produced nanocarriers promoted the sustained release of GA over 5 days and are physically stable for 1 month under storage conditions. Furthermore, GA-loaded Tf-functionalized liposomes showed a strong ability to interact with Aβ1-42 monomers, slowing down the Aβ monomer-to-oligomer and oligomer-to-fibril transitions and decreasing the number of fibrils formed by 56%. In addition, the NPs disaggregated approximately 30% of preformed Aβ fibrils. The presented results suggest that Tf-functionalized liposomes could be a viable platform for the brain delivery of GA for AD therapy. Studies with animal models of AD will be valuable for validating the therapeutic efficacy of this novel liposomal formulation.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C. Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
19
|
Buell AK. Stability matters, too - the thermodynamics of amyloid fibril formation. Chem Sci 2022; 13:10177-10192. [PMID: 36277637 PMCID: PMC9473512 DOI: 10.1039/d1sc06782f] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/30/2022] [Indexed: 12/26/2022] Open
Abstract
Amyloid fibrils are supramolecular homopolymers of proteins that play important roles in biological functions and disease. These objects have received an exponential increase in attention during the last few decades, due to their role in the aetiology of a range of severe disorders, most notably some of a neurodegenerative nature. While an overwhelming number of experimental studies exist that investigate how, and how fast, amyloid fibrils form and how their formation can be inhibited, a much more limited body of experimental work attempts to answer the question as to why these types of structures form (i.e. the thermodynamic driving force) and how stable they actually are. In this review, I attempt to give an overview of the types of experiments that have been performed to-date to answer these questions, and to summarise our current understanding of amyloid thermodynamics.
Collapse
Affiliation(s)
- Alexander K Buell
- Technical University of Denmark, Department of Biotechnology and Biomedicine Søltofts Plads, Building 227 2800 Kgs. Lyngby Denmark
| |
Collapse
|
20
|
Gilmore T, Gouma PI. Polymorphic Biological and Inorganic Functional Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5355. [PMID: 35955287 PMCID: PMC9369650 DOI: 10.3390/ma15155355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023]
Abstract
This perspective involves two types of functional nanomaterials, amyloid fibrils and metal oxide nanowires and nanogrids. Both the protein and the inorganic nanomaterials rely on their polymorphism to exhibit diverse properties that are important to sensing and catalysis. Several examples of novel functionalities are provided from biomarker sensing and filtration applications to smart scaffolds for energy and sustainability applications.
Collapse
Affiliation(s)
- Tessa Gilmore
- Department of Material Science and Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | | |
Collapse
|
21
|
Quiñones-Ruiz T, Rosario-Alomar MF, Shanmugasundaram M, Ali MM, Lednev IK. Spontaneous Refolding of Amyloid Fibrils from One Polymorph to Another Caused by Changes in Environmental Hydrophobicity. Biochemistry 2022; 61:1456-1464. [PMID: 35786852 DOI: 10.1021/acs.biochem.2c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we report a new phenomenon in which lysozyme fibrils formed in a solution of acetic acid spontaneously refold to a different polymorph through a disassembled intermediate upon the removal of acetic acid. The structural changes were revealed and characterized by deep-UV resonance Raman spectroscopy, nonresonance Raman spectroscopy, intrinsic tryptophan fluorescence spectroscopy, and atomic force microscopy. A PPII-like structure with highly solvent-exposed tryptophan residues predominates the intermediate aggregates before refolding to polymorph II fibrils. Furthermore, the disulfide (SS) bonds undergo significant rearrangements upon the removal of acetic acid from the lysozyme fibril environment. The main SS bond conformation changes from gauche-gauche-trans in polymorph I to gauche-gauche-gauche in polymorph II. Changing the hydrophobicity of the fibril environment was concluded to be the decisive factor causing the spontaneous refolding of lysozyme fibrils from one polymorph to another upon the removal of acetic acid. Potential biological implications of the discovered phenomenon are discussed.
Collapse
Affiliation(s)
- Tatiana Quiñones-Ruiz
- Department of Chemistry, University at Albany, SUNY, Albany, New York 12222, United States
| | | | | | - Muhammad M Ali
- Department of Chemistry, University at Albany, SUNY, Albany, New York 12222, United States
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, Albany, New York 12222, United States
| |
Collapse
|
22
|
Taylor AIP, Staniforth RA. General Principles Underpinning Amyloid Structure. Front Neurosci 2022; 16:878869. [PMID: 35720732 PMCID: PMC9201691 DOI: 10.3389/fnins.2022.878869] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Amyloid fibrils are a pathologically and functionally relevant state of protein folding, which is generally accessible to polypeptide chains and differs fundamentally from the globular state in terms of molecular symmetry, long-range conformational order, and supramolecular scale. Although amyloid structures are challenging to study, recent developments in techniques such as cryo-EM, solid-state NMR, and AFM have led to an explosion of information about the molecular and supramolecular organization of these assemblies. With these rapid advances, it is now possible to assess the prevalence and significance of proposed general structural features in the context of a diverse body of high-resolution models, and develop a unified view of the principles that control amyloid formation and give rise to their unique properties. Here, we show that, despite system-specific differences, there is a remarkable degree of commonality in both the structural motifs that amyloids adopt and the underlying principles responsible for them. We argue that the inherent geometric differences between amyloids and globular proteins shift the balance of stabilizing forces, predisposing amyloids to distinct molecular interaction motifs with a particular tendency for massive, lattice-like networks of mutually supporting interactions. This general property unites previously characterized structural features such as steric and polar zippers, and contributes to the long-range molecular order that gives amyloids many of their unique properties. The shared features of amyloid structures support the existence of shared structure-activity principles that explain their self-assembly, function, and pathogenesis, and instill hope in efforts to develop broad-spectrum modifiers of amyloid function and pathology.
Collapse
|
23
|
Sanami S, Purton TJ, Smith DP, Tuite MF, Xue WF. Comparative Analysis of the Relative Fragmentation Stabilities of Polymorphic Alpha-Synuclein Amyloid Fibrils. Biomolecules 2022; 12:630. [PMID: 35625557 PMCID: PMC9138312 DOI: 10.3390/biom12050630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
The division of amyloid fibril particles through fragmentation is implicated in the progression of human neurodegenerative disorders such as Parkinson's disease. Fragmentation of amyloid fibrils plays a crucial role in the propagation of the amyloid state encoded in their three-dimensional structures and may have an important role in the spreading of potentially pathological properties and phenotypes in amyloid-associated diseases. However, despite the mechanistic importance of fibril fragmentation, the relative stabilities of different types or different polymorphs of amyloid fibrils toward fragmentation remain to be quantified. We have previously developed an approach to compare the relative stabilities of different types of amyloid fibrils toward fragmentation. In this study, we show that controlled sonication, a widely used method of mechanical perturbation for amyloid seed generation, can be used as a form of mechanical perturbation for rapid comparative assessment of the relative fragmentation stabilities of different amyloid fibril structures. This approach is applied to assess the relative fragmentation stabilities of amyloid formed in vitro from wild type (WT) α-synuclein and two familial mutant variants of α-synuclein (A30P and A53T) that generate morphologically different fibril structures. Our results demonstrate that the fibril fragmentation stabilities of these different α-synuclein fibril polymorphs are all highly length dependent but distinct, with both A30P and A53T α-synuclein fibrils displaying increased resistance towards sonication-induced fibril fragmentation compared with WT α-synuclein fibrils. These conclusions show that fragmentation stabilities of different amyloid fibril polymorph structures can be diverse and suggest that the approach we report here will be useful in comparing the relative stabilities of amyloid fibril types or fibril polymorphs toward fragmentation under different biological conditions.
Collapse
Affiliation(s)
- Sarina Sanami
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Tracey J Purton
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK
| | - David P Smith
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Mick F Tuite
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Wei-Feng Xue
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
24
|
Lutter L, Al-Hilaly YK, Serpell CJ, Tuite MF, Wischik CM, Serpell LC, Xue WF. Structural Identification of Individual Helical Amyloid Filaments by Integration of Cryo-Electron Microscopy-Derived Maps in Comparative Morphometric Atomic Force Microscopy Image Analysis. J Mol Biol 2022; 434:167466. [PMID: 35077765 PMCID: PMC9005780 DOI: 10.1016/j.jmb.2022.167466] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022]
Abstract
The presence of amyloid fibrils is a hallmark of more than 50 human disorders, including neurodegenerative diseases and systemic amyloidoses. A key unresolved challenge in understanding the involvement of amyloid in disease is to explain the relationship between individual structural polymorphs of amyloid fibrils, in potentially mixed populations, and the specific pathologies with which they are associated. Although cryo-electron microscopy (cryo-EM) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy methods have been successfully employed in recent years to determine the structures of amyloid fibrils with high resolution detail, they rely on ensemble averaging of fibril structures in the entire sample or significant subpopulations. Here, we report a method for structural identification of individual fibril structures imaged by atomic force microscopy (AFM) by integration of high-resolution maps of amyloid fibrils determined by cryo-EM in comparative AFM image analysis. This approach was demonstrated using the hitherto structurally unresolved amyloid fibrils formed in vitro from a fragment of tau (297-391), termed 'dGAE'. Our approach established unequivocally that dGAE amyloid fibrils bear no structural relationship to heparin-induced tau fibrils formed in vitro. Furthermore, our comparative analysis resulted in the prediction that dGAE fibrils are structurally closely related to the paired helical filaments (PHFs) isolated from Alzheimer's disease (AD) brain tissue characterised by cryo-EM. These results show the utility of individual particle structural analysis using AFM, provide a workflow of how cryo-EM data can be incorporated into AFM image analysis and facilitate an integrated structural analysis of amyloid polymorphism.
Collapse
Affiliation(s)
- Liisa Lutter
- School of Biosciences, Division of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK. https://twitter.com/LiisaLutter
| | - Youssra K Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, BN1 9QG Falmer, Brighton, UK; Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Christopher J Serpell
- School of Physical Sciences, Division of Natural Sciences, University of Kent, CT2 7NH Canterbury, UK. https://twitter.com/@SerpellLab
| | - Mick F Tuite
- School of Biosciences, Division of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK
| | - Claude M Wischik
- Institute of Medical Sciences, University of Aberdeen, UK; TauRx Therapeutics Ltd., Aberdeen, UK
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, BN1 9QG Falmer, Brighton, UK. https://twitter.com/@Serpell1
| | - Wei-Feng Xue
- School of Biosciences, Division of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK.
| |
Collapse
|
25
|
Karamanos TK, Kalverda AP, Radford SE. Generating Ensembles of Dynamic Misfolding Proteins. Front Neurosci 2022; 16:881534. [PMID: 35431773 PMCID: PMC9008329 DOI: 10.3389/fnins.2022.881534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 01/09/2023] Open
Abstract
The early stages of protein misfolding and aggregation involve disordered and partially folded protein conformers that contain a high degree of dynamic disorder. These dynamic species may undergo large-scale intra-molecular motions of intrinsically disordered protein (IDP) precursors, or flexible, low affinity inter-molecular binding in oligomeric assemblies. In both cases, generating atomic level visualization of the interconverting species that captures the conformations explored and their physico-chemical properties remains hugely challenging. How specific sub-ensembles of conformers that are on-pathway to aggregation into amyloid can be identified from their aggregation-resilient counterparts within these large heterogenous pools of rapidly moving molecules represents an additional level of complexity. Here, we describe current experimental and computational approaches designed to capture the dynamic nature of the early stages of protein misfolding and aggregation, and discuss potential challenges in describing these species because of the ensemble averaging of experimental restraints that arise from motions on the millisecond timescale. We give a perspective of how machine learning methods can be used to extract aggregation-relevant sub-ensembles and provide two examples of such an approach in which specific interactions of defined species within the dynamic ensembles of α-synuclein (αSyn) and β2-microgloblulin (β2m) can be captured and investigated.
Collapse
Affiliation(s)
- Theodoros K. Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
26
|
Lattanzi V, André I, Gasser U, Dubackic M, Olsson U, Linse S. Amyloid β 42 fibril structure based on small-angle scattering. Proc Natl Acad Sci U S A 2021; 118:e2112783118. [PMID: 34815346 PMCID: PMC8640717 DOI: 10.1073/pnas.2112783118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 01/30/2023] Open
Abstract
Amyloid fibrils are associated with a number of neurodegenerative diseases, including fibrils of amyloid β42 peptide (Aβ42) in Alzheimer's disease. These fibrils are a source of toxicity to neuronal cells through surface-catalyzed generation of toxic oligomers. Detailed knowledge of the fibril structure may thus facilitate therapeutic development. We use small-angle scattering to provide information on the fibril cross-section dimension and shape for Aβ42 fibrils prepared in aqueous phosphate buffer at pH = 7.4 and pH 8.0 under quiescent conditions at 37 °C from pure recombinant Aβ42 peptide. Fitting the data using a continuum model reveals an elliptical cross-section and a peptide mass-per-unit length compatible with two filaments of two monomers, four monomers per plane. To provide a more detailed atomistic model, the data were fitted using as a starting state a high-resolution structure of the two-monomer arrangement in filaments from solid-state NMR (Protein Data Bank ID 5kk3). First, a twofold symmetric model including residues 11 to 42 of two monomers in the filament was optimized in terms of twist angle and local packing using Rosetta. A two-filament model was then built and optimized through fitting to the scattering data allowing the two N-termini in each filament to take different conformations, with the same conformation in each of the two filaments. This provides an atomistic model of the fibril with twofold rotation symmetry around the fibril axis. Intriguingly, no polydispersity as regards the number of filaments was observed in our system over separate samples, suggesting that the two-filament arrangement represents a free energy minimum for the Aβ42 fibril.
Collapse
Affiliation(s)
- Veronica Lattanzi
- Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden;
- Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Ingemar André
- Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | - Urs Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marija Dubackic
- Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
- Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Ulf Olsson
- Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
27
|
Lutter L, Aubrey LD, Xue WF. On the Structural Diversity and Individuality of Polymorphic Amyloid Protein Assemblies. J Mol Biol 2021; 433:167124. [PMID: 34224749 DOI: 10.1016/j.jmb.2021.167124] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/20/2021] [Accepted: 06/26/2021] [Indexed: 12/24/2022]
Abstract
The prediction of highly ordered three-dimensional structures of amyloid protein fibrils from the amino acid sequences of their monomeric self-assembly precursors constitutes a challenging and unresolved aspect of the classical protein folding problem. Because of the polymorphic nature of amyloid assembly whereby polypeptide chains of identical amino acid sequences under identical conditions are capable of self-assembly into a spectrum of different fibril structures, the prediction of amyloid structures from an amino acid sequence requires a detailed and holistic understanding of its assembly free energy landscape. The full extent of the structure space accessible to the cross-β molecular architecture of amyloid must also be resolved. Here, we review the current understanding of the diversity and the individuality of amyloid structures, and how the polymorphic landscape of amyloid links to biology and disease phenotypes. We present a comprehensive review of structural models of amyloid fibrils derived by cryo-EM, ssNMR and AFM to date, and discuss the challenges ahead for resolving the structural basis and the biological consequences of polymorphic amyloid assemblies.
Collapse
Affiliation(s)
- Liisa Lutter
- School of Biosciences, Division of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK
| | - Liam D Aubrey
- School of Biosciences, Division of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK
| | - Wei-Feng Xue
- School of Biosciences, Division of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK.
| |
Collapse
|
28
|
Ostermeier L, de Oliveira GAP, Dzwolak W, Silva JL, Winter R. Exploring the polymorphism, conformational dynamics and function of amyloidogenic peptides and proteins by temperature and pressure modulation. Biophys Chem 2020; 268:106506. [PMID: 33221697 DOI: 10.1016/j.bpc.2020.106506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 11/15/2022]
Abstract
Our understanding of amyloid structures and the mechanisms by which disease-associated peptides and proteins self-assemble into these fibrillar aggregates, has advanced considerably in recent years. It is also established that amyloid fibrils are generally polymorphic. The molecular structures of the aggregation intermediates and the causes of molecular and structural polymorphism are less understood, however. Such information is mandatory to explain the pathological diversity of amyloid diseases. What is also clear is that not only protein mutations, but also the physiological milieu, i.e. pH, cosolutes, crowding and surface interactions, have an impact on fibril formation. In this minireview, we focus on the effect of the less explored physical parameters temperature and pressure on the fibrillization propensity of proteins and how these variables can be used to reveal additional mechanistic information about intermediate states of fibril formation and molecular and structural polymorphism. Generally, amyloids are very stable and can resist harsh environmental conditions, such as extreme pH, high temperature and high pressure, and can hence serve as valuable functional amyloid. As an example, we discuss the effect of temperature and pressure on the catalytic activity of peptide amyloid fibrils that exhibit enzymatic activity.
Collapse
Affiliation(s)
- Lena Ostermeier
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur 1 Str., 02-093 Warsaw, Poland.
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany.
| |
Collapse
|