1
|
Li H, Sui X, Ayala P, Marquis E, Rabl H, Ertl A, Bilotto P, Shang Y, Li J, Xu L, Righi MC, Eder D, Gachot C. Advanced Solid Lubrication with COK-47: Mechanistic Insights on the Role of Water and Performance Evaluation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415268. [PMID: 39806938 PMCID: PMC12061247 DOI: 10.1002/advs.202415268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Metal-organic framework (MOF) nanoparticles have attracted widespread attention as lubrication additives due to their tunable structures and surface effects. However, their solid lubrication properties have been rarely explored. This work introduces the positive role of moisture in solid lubrication in the case of a newly described Ti-based MOF (COK-47) powder. COK-47 achieves an 8.5-fold friction reduction compared to AISI 304 steel-on-steel sliding under room air. In addition, COK-47 maintains a similarly low coefficient of friction (0.1-0.2) on various counterbodies, including Al2O3, ZrO2, SiC, and Si3N4. Notably, compared to other widely studied MOFs (ZIF-8, ZIF-67) and 2D materials powder (MXene, TMD, rGO), COK-47 exhibits the lowest friction (≈0.1) under the same experimental settings. Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscope, and transmission electron microscopy indicate that the tribofilm is an amorphous film obtained by hydrolysis of COK-47 in the air with moisture. Density functional theory further confirms that water catalyzes the decomposition of COK-47, a crucial step in forming the tribofilm. This study demonstrates the idea of utilizing MOF and water-assisted lubrication mechanisms. It provides new insights into MOF applications in tribology and highlights interdisciplinary contributions of mechanical engineering and chemistry.
Collapse
Affiliation(s)
- Hanglin Li
- Institute for Engineering Design and Product DevelopmentResearch Unit Tribology E307‐05TU WienVienna1060Austria
- Laboratory for Advanced Lubricating MaterialsShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Xudong Sui
- Institute for Engineering Design and Product DevelopmentResearch Unit Tribology E307‐05TU WienVienna1060Austria
| | - Pablo Ayala
- Institute of Materials ChemistryTU WienVienna1060Austria
| | - Edoardo Marquis
- Department of Physics and Astronomy “Augusto Righi”Alma Mater Studiorum‐University of BolognaBologna40127Italy
| | - Hannah Rabl
- Institute of Materials ChemistryTU WienVienna1060Austria
| | - Adrian Ertl
- Institute of Materials ChemistryTU WienVienna1060Austria
| | - Pierluigi Bilotto
- Institute for Engineering Design and Product DevelopmentResearch Unit Tribology E307‐05TU WienVienna1060Austria
| | - Yazhuo Shang
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Jiusheng Li
- Laboratory for Advanced Lubricating MaterialsShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Lu Xu
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Maria Clelia Righi
- Department of Physics and Astronomy “Augusto Righi”Alma Mater Studiorum‐University of BolognaBologna40127Italy
| | - Dominik Eder
- Institute of Materials ChemistryTU WienVienna1060Austria
| | - Carsten Gachot
- Institute for Engineering Design and Product DevelopmentResearch Unit Tribology E307‐05TU WienVienna1060Austria
| |
Collapse
|
2
|
Díaz-Ramírez ML, Park SH, Rivera-Almazo M, Medel E, Peralta RA, Ibarra IA, Vargas R, Garza J, Jeong NC. Gas-flow activation of MOFs: unlocking efficient catalysis through dynamic bonding. Chem Sci 2025; 16:2581-2588. [PMID: 39759938 PMCID: PMC11694567 DOI: 10.1039/d4sc07011a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Metal-organic frameworks (MOFs), characterized by dynamic metal-ligand coordination bonding, have pivotal roles in catalysis, gas storage, and separation processes, owing to their open metal sites (OMSs). These sites, however, are frequently occupied by Lewis-base solvent molecules, necessitating activation to expose the OMSs for practical applications. Traditional thermal activation methods involve harsh conditions, risking structural integrity. This study presents a novel 'gas-flow activation' technique using inert gases like nitrogen and argon to eliminate these coordinating solvent molecules at low temperatures, thereby maintaining the structural integrity of MOFs. We specifically explored this method with HKUST-1, demonstrating that gas-flow activation at mild temperatures is not only feasible but also superior in efficiency compared to the conventional thermal methods. This approach highlights the potential for safer, more efficient activation processes in MOF applications, making it a valuable addition to the repertoire of MOF activation techniques. This activation function of inert gas flow allows HKUST-1 as a catalyst for the hydrogenation of acetophenone even at room temperature. In addition, it is demonstrated that this 'gas-flow activation' is broadly applicable in other MOFs such as MOF-14 and UTSA-76. Furthermore, the findings reveal that dynamic coordination bonding, the repeating transient dissociation-association of solvent molecules at OMSs, are key mechanisms in facilitating this activation, pointing towards new directions for designing activation strategies that prevent structural damage.
Collapse
Affiliation(s)
- Mariana L Díaz-Ramírez
- Department of Physics & Chemistry, DGIST Daegu 42988 Korea
- Center for Basic Science, DGIST Daegu 42988 Korea
| | - Sun Ho Park
- Department of Physics & Chemistry, DGIST Daegu 42988 Korea
| | - Marcos Rivera-Almazo
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Iztapalapa CP 09340 CDMX Mexico
| | - Erika Medel
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Iztapalapa CP 09340 CDMX Mexico
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Iztapalapa CP 09340 CDMX Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán 04510 Ciudad de México Mexico
| | - Rubicelia Vargas
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Iztapalapa CP 09340 CDMX Mexico
| | - Jorge Garza
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Iztapalapa CP 09340 CDMX Mexico
| | - Nak Cheon Jeong
- Department of Physics & Chemistry, DGIST Daegu 42988 Korea
- Center for Basic Science, DGIST Daegu 42988 Korea
| |
Collapse
|
3
|
Kang MS, Heo I, Park SH, Bae J, Kim S, Kim G, Kim BH, Jeong NC, Yoo WC. Time-efficient atmospheric water harvesting using Fluorophenyl oligomer incorporated MOFs. Nat Commun 2024; 15:9793. [PMID: 39532870 PMCID: PMC11557930 DOI: 10.1038/s41467-024-53853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Adsorption-based atmospheric water harvesting (AWH) has the potential to address water scarcity in arid regions. However, developing adsorbents that effectively capture water at a low relative humidity (RH < 30%) and release it with minimal energy consumption remains a challenge. Herein, we report a fluorophenyl oligomer (FO)-incorporated metal-organic framework (MOF), HKUST-1 (FO@HK), which exhibits fast adsorption kinetics at low RH levels and facile desorption by sunlight. The incorporated fluorophenyl undergoes vapor-phase polymerization at the metal center to generate fluorophenyl oligomers that enhance the hydrolytic stability of FO@HK while preserving its characteristic water sorption behavior. The FO@HK exhibited vapor sorption rates of 8.04 and 11.76 L kg-1MOF h-1 at 20 and 30% RH, respectively, which are better than the state-of-the-art AWH sorbents. Outdoor tests using a solar-driven large-scale AWH device demonstrate that the sorbent can harvest 264.8 mL of water at a rate of 2.62 L kg-1MOF per day. This study provides a ubiquitous strategy for transforming water-sensitive MOFs into AWH sorbents.
Collapse
Affiliation(s)
- Min Seok Kang
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Incheol Heo
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Sun Ho Park
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jinhee Bae
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sangyeop Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Gyuchan Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Byung-Hyun Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Nak Cheon Jeong
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
- Center for Basic Science, DGIST, Daegu, 42988, Republic of Korea.
| | - Won Cheol Yoo
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea.
- Department of Chemical and Molecular Engineering, Hanyang University, ERICA, Ansan, 15588, Republic of Korea.
| |
Collapse
|
4
|
Dunatov M, Zhao Z, Žilić D, Androš Dubraja L. A homochiral tartrate-bridged dinuclear chromium(III) complex anion with a resonance-assisted hydrogen bond for proton conduction. Dalton Trans 2024; 53:9315-9322. [PMID: 38747185 DOI: 10.1039/d4dt00783b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The synthesis of a homochiral building block based on L-tartrate-chromium(III) complex anions is reported. The dinuclear complex anion, which contains two bridging L-tartrate ligands and one aromatic N-donor ligand coordinated to chromium(III) ions, exhibits a boat conformation in which intramolecular resonance-assisted hydrogen bonding is present. The sodium L-tartrate-chromium(III) compound with the formula Na[Cr2(bpy)2(L-tart)2H]·9H2O (1) crystallizes from a methanol-water solution as a high water content material in the monoclinic space group P2. The as-synthesized compound is only stable at high relative humidity and undergoes structural transformations during drying, which are accompanied by water loss. However, these transformations are reversible and upon wetting, the material returns to its high water content structure. Based on a combination of experimental techniques (PXRD, in situ ATR-FTIR and EPR spectroscopy), the structure of the complex anions appears to be insensitive to the humidity variable processes (wetting and drying). Due to the presence of several hydrogen acceptor and donor groups in the L-tartrate-chromium(III) complex anion, we investigated the proton transport properties of a sodium L-tartrate-chromium(III) compound by impedance spectroscopy under dry and wet conditions at different temperatures. Since the relative humidity affects the structural transformations in this system, it also has a large influence on the proton conductivity, which varies by up to four orders of magnitude depending on the degree of hydration. These results confirm that the proton conductivity can be tuned in flexible structures in which non-covalent interactions determine the crystal packing.
Collapse
Affiliation(s)
- Marko Dunatov
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Zhibo Zhao
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Dijana Žilić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | | |
Collapse
|
5
|
Hong YL, Zuo SW, Du HY, Shi ZQ, Hu H, Li G. Four Lanthanide(III) Metal-Organic Frameworks Fabricated by Bithiophene Dicarboxylate for High Inherent Proton Conduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13745-13755. [PMID: 38446712 DOI: 10.1021/acsami.3c18999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Currently, it is still a challenge to directly achieve highly stable metal-organic frameworks (MOFs) with superior proton conductivity solely through the exquisite design of ligands and the attentive selection of metal nodes. Inspired by this, we are intrigued by a multifunctional dicarboxylate ligand including dithiophene groups, 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), and lanthanide ions with distinct coordination topologies. Successfully, four isostructural three-dimensional lanthanide(III)-based MOFs, [Ln2(DTD)3(DEF)4]·DEF·6H2O [LnIII = TbIII (Tb-MOF), EuIII (Eu-MOF), SmIII (Sm-MOF), and DyIII (Dy-MOF)], were solvothermally prepared, in which the effective proton transport will be provided by the coordinated or free solvent molecules, the crystalline water molecules, and the framework components, as well as a large number of highly electronegative S and O atoms. As expected, the four Ln-MOFs demonstrated the highest proton conductivities (σ) being 0.54 × 10-3, 3.75 × 10-3, 1.28 × 10-3, and 1.92 × 10-3 S·cm-1 for the four MOFs, respectively, at 100 °C/98% relative humidity (RH). Excitingly, Dy-MOF demonstrated an extraordinary ultrahigh σ of 1 × 10-3 S·cm-1 at 30 °C/98% RH. Additionally, the plausible proton transport mechanisms were emphasized.
Collapse
Affiliation(s)
- Yu-Ling Hong
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Shuai-Wu Zuo
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hao-Yu Du
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Hailiang Hu
- Key Laboratory of Low-Dimensional Materials and Big Data, School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
6
|
Wang Y, Ban Y, Hu Z, Yang W. Energy-efficient extraction of linear alkanes from various isomers using structured metal-organic framework membrane. Nat Commun 2023; 14:6617. [PMID: 37857644 PMCID: PMC10587105 DOI: 10.1038/s41467-023-42397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Extraction of low concentration linear alkanes (C5-C7) from various isomers is critical for the petrochemical industry. At present, the separation of alkane isomers is mainly accomplished by distillation, which results in substantial energy expenditure. Metal-organic frameworks (MOFs) with well-tailored nanopores have been demonstrated to be capable of realizing molecule-level separation. In this study, oriented HKUST-1 membranes are formulated according to the morphology-biased principle and finally realized with a low dose synthesis method for terminating undesired crystal nucleation and growth. The fully exposed triangular sieving pore array of the membrane induces configuration entropic diffusion to split linear alkanes from mono-branched and di-branched isomers as well as their cyclical counterparts. Typically, the current separation technique consumes 91% less energy than vacuum distillation. Furthermore, our membranes can realize one-step extraction of normal-pentane, normal-hexane and normal-heptane from a ten-component alkane isomer solution that mimics light naphtha.
Collapse
Affiliation(s)
- Yuecheng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, P. R. China
| | - Yujie Ban
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, P. R. China.
| | - Ziyi Hu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, P. R. China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, P. R. China.
| |
Collapse
|
7
|
Bivián-Castro EY, Flores-Alamo M, Escudero R, Gómez-Vidal V, Segoviano-Garfias JJN, Castañeda-Contreras J, Saavedra-Arroyo QE. Synthesis and Characterization of a New Cu(II) Paddle-Wheel-like Complex with 4-Vinylbenzoate as an Inorganic Node for Metal-Organic Framework Material Design. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4866. [PMID: 37445180 DOI: 10.3390/ma16134866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
A new Cu(II) paddle-wheel-like complex with 4-vinylbenzoate was synthesized using acetonitrile as the solvent. The complex was characterized by X-ray crystal diffraction, FT-IR, diffuse reflectance spectroscopy, thermogravimetric, differential scanning calorimetric, magnetic susceptibility, and electronic paramagnetic resonance analyses. The X-ray crystal diffraction analysis indicated that each copper ion was bound at an equatorial position to four oxygen atoms from the carboxylate groups of the 4-vinylbenzoate ligand in a square-based pyramidal geometry. The distance between the copper ions was 2.640(9) Å. The acetonitrile molecules were coordinated at the axial position to the copper ions. Exposure of the Cu(II) complex to humid air promoted the gradual replacement of the coordinated acetonitrile by water molecules, but the complex structure integrity remained. The EPR spectra exhibited signals attributed to the presence of a mixture of the monomeric (S = ½) and dimeric (S = 1) copper species in a possible 3:1 ratio. The magnetic studies revealed a peak at 50-100 K, which could be associated with the oxygen absorption capacity of the Cu(II)-vba complex.
Collapse
Affiliation(s)
- Egla Yareth Bivián-Castro
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico
| | - Marcos Flores-Alamo
- Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico
| | - Roberto Escudero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico
| | - Virginia Gómez-Vidal
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, Coyoacán, Mexico City 04510, Mexico
| | - José J N Segoviano-Garfias
- División de Ciencias de la Vida, Carr. Irapuato-Silao Km. 12.5, Ex-Hacienda El Copal, Irapuato 36821, Guanajuato, Mexico
| | - Jesus Castañeda-Contreras
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico
| | | |
Collapse
|
8
|
Valentine ML, Yin G, Oppenheim JJ, Dincǎ M, Xiong W. Ultrafast Water H-Bond Rearrangement in a Metal-Organic Framework Probed by Femtosecond Time-Resolved Infrared Spectroscopy. J Am Chem Soc 2023; 145:11482-11487. [PMID: 37201196 DOI: 10.1021/jacs.3c01728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We investigated the water H-bond network and its dynamics in Ni2Cl2BTDD, a prototypical MOF for atmospheric water harvesting, using linear and ultrafast IR spectroscopy. Utilizing isotopic labeling and infrared spectroscopy, we found that water forms an extensive H-bonding network in Ni2Cl2BTDD. Further investigation with ultrafast spectroscopy revealed that water can reorient in a confined cone up to ∼50° within 1.3 ps. This large angle reorientation indicates H-bond rearrangement, similar to bulk water. Thus, although the water H-bond network is confined in Ni2Cl2BTDD, different from other confined systems, H-bond rearrangement is not hindered. The picosecond H-bond rearrangement in Ni2Cl2BTDD corroborates its reversibility with minimal hysteresis in water sorption.
Collapse
Affiliation(s)
- Mason L Valentine
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Guoxin Yin
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincǎ
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Ho CH, Valentine ML, Chen Z, Xie H, Farha O, Xiong W, Paesani F. Structure and thermodynamics of water adsorption in NU-1500-Cr. Commun Chem 2023; 6:70. [PMID: 37061604 PMCID: PMC10105746 DOI: 10.1038/s42004-023-00870-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a class of materials with diverse chemical and structural properties, and have been shown to effectively adsorb various types of guest molecules. The mechanism of water adsorption in NU-1500-Cr, a high-performance atmospheric water harvesting MOF, is investigated using a combination of molecular dynamics simulations and infrared spectroscopy. Calculations of thermodynamic and dynamical properties of water as a function of relative humidity allow for following the adsorption process from the initial hydration stage to complete filling of the MOF pores. Initial hydration begins at the water molecules that saturate the open Cr3+ sites of the framework, which is then followed by the formation of water chains that extend along the channels connecting the hexagonal pores of the framework. Water present in these channels gradually coalesces and fills the hexagonal pores sequentially after the channels are completely hydrated. The development of hydrogen-bond networks inside the MOF pores as a function of relative humidity is characterized at the molecular level using experimental and computational infrared spectroscopy. A detailed analysis of the OH-stretch vibrational band indicates that the low-frequency tail stems from strongly polarized hydrogen-bonded water molecules, suggesting the presence of some structural disorder in the experimental samples. Strategies for designing efficient water harvesting MOFs are also proposed based on the mechanism of water adsorption in NU-1500-Cr.
Collapse
Affiliation(s)
- Ching-Hwa Ho
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Mason L Valentine
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhijie Chen
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Haomiao Xie
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Omar Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
10
|
Dods MN, Weston SC, Long JR. Prospects for Simultaneously Capturing Carbon Dioxide and Harvesting Water from Air. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204277. [PMID: 35980944 DOI: 10.1002/adma.202204277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Mitigation of anthropogenic climate change is expected to require large-scale deployment of carbon dioxide removal strategies. Prominent among these strategies is direct air capture with sequestration (DACS), which encompasses the removal and long-term storage of atmospheric CO2 by purely engineered means. Because it does not require arable land or copious amounts of freshwater, DACS is already attractive in the context of sustainable development, but opportunities to improve its sustainability still exist. Leveraging differences in the chemistry of CO2 and water adsorption within porous solids, here, the prospect of simultaneously removing water alongside CO2 in direct air capture operations is investigated. In many cases, the co-adsorbed water can be desorbed separately from chemisorbed CO2 molecules, enabling efficient harvesting of water from air. Depending upon the material employed and process conditions, the desorbed water can be of sufficiently high purity for industrial, agricultural, or potable use and can thus improve regional water security. Additionally, the recovered water can offset a portion of the costs associated with DACS. In this Perspective, molecular- and process-level insights are combined to identify routes toward realizing this nascent yet enticing concept.
Collapse
Affiliation(s)
- Matthew N Dods
- Departments of Chemistry and Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Simon C Weston
- ExxonMobil Technology and Engineering Company, Annandale, NJ, 08801, USA
| | - Jeffrey R Long
- Departments of Chemistry and Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|