1
|
Shi Z, Han S. Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins. Heliyon 2025; 11:e41629. [PMID: 39866414 PMCID: PMC11761934 DOI: 10.1016/j.heliyon.2025.e41629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Statins are widely used for treating lipid disorders and cardiovascular diseases. However, the therapeutic efficiency and adverse effects of statins vary among different patients, which numerous clinical and epidemiological studies have attributed to genetic polymorphisms in statin-metabolizing enzymes and transport proteins. The metabolic processes of statins are relatively complex, involving spontaneous or enzyme-catalyzed interconversion between more toxic lactone metabolites and active acid forms in the liver and bloodstream, influenced by multiple factors, including the expression levels of many metabolic enzymes and transporters. Addressing the variable statin therapeutic outcomes is a pressing clinical challenge. Transcription factors and epigenetic modifications regulate the metabolic enzymes and transporters involved in statin metabolism and disposition and, therefore, hold promise as 'personalized' targets for achieving optimized statin therapy. In this review, we explore the potential for customizing therapy by targeting the metabolism of statin medications. The biochemical bases of adverse reactions to statin drugs and their correlation with polymorphisms in metabolic enzymes and transporters are summarized. Next, we mainly focus on the regulatory roles of transcription factors and epigenetic modifications in regulating the gene expression of statin biochemical machinery. The recommendations for future therapies are finally proposed by targeting the central regulatory factors of statin metabolism.
Collapse
Affiliation(s)
- Zhuangqi Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
2
|
Cheng W, Yin C, Yu S, Chen X, Hong N, Jin W. scMMO-atlas: a single cell multimodal omics atlas and portal for exploring fine cell heterogeneity and cell dynamics. Nucleic Acids Res 2025; 53:D1186-D1194. [PMID: 39315707 PMCID: PMC11701702 DOI: 10.1093/nar/gkae821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Single-cell multimodal sequencing parallelly captures multiple modalities of the same cell, providing unparalleled insights into cell heterogeneity and cell dynamics. For example, joint profiling of chromatin accessibility and transcriptome from the same single cell (scATAC + RNA) identified new cell subsets within the well-defined clusters. However, lack of single-cell multimodal omics (scMMO) database has led to data fragmentation, seriously hindering access, utilization and mining of scMMO data. Here, we constructed a scMMO atlas by collecting and integrating various scMMO data, then constructed scMMO database and portal called scMMO-atlas (https://www.biosino.org/scMMO-atlas/). scMMO-atlas includes scATAC + RNA (ISSAAS-seq, SNARE-seq, paired-seq, sci-CAR, scCARE-seq, 10X Multiome and so on), scRNA + protein, scATAC + protein and scTri-modal omics data, with 3 168 824 cells from 27 cell tissues/organs. scMMO-atlas offered an interactive portal for visualization and featured analysis for each modality and the integrated data. Integrated analysis of scATAC + RNA data of mouse cerebral cortex in scMMO-atlas identified more cell subsets compared with unimodal omics data. Among these new cell subsets, there is an early astrocyte subset highly expressed Grm3, called Astro-Grm3. Furthermore, we identified Ex-L6-Tle4-Nrf1, a progenitor of Ex-L6-Tle4, indicating the statistical power provided by the big data in scMMO-atlas. In summary, scMMO-atlas offers cell atlas, database and portal to facilitate data utilization and biological insight.
Collapse
Affiliation(s)
- Wenwen Cheng
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changhui Yin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiya Yu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Ni Hong
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenfei Jin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Jian H, Li R, Huang X, Li J, Li Y, Ma J, Zhu M, Dong X, Yang H, Zou X. Branched-chain amino acids alleviate NAFLD via inhibiting de novo lipogenesis and activating fatty acid β-oxidation in laying hens. Redox Biol 2024; 77:103385. [PMID: 39426289 PMCID: PMC11536022 DOI: 10.1016/j.redox.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The adverse metabolic impacts of branched-chain amino acids (BCAA) have been elucidated are mediated by isoleucine and valine. Dietary restriction of isoleucine promotes metabolic health and increases lifespan. However, a high protein diet enriched in BCAA is presently the most useful therapeutic strategy for nonalcoholic fatty liver disease (NAFLD), yet, its underlying mechanism remains largely unknown. Fatty liver hemorrhagic syndrome (FLHS), a specialized laying hen NAFLD model, can spontaneously develop fatty liver and hepatic steatosis under a high-energy and high-protein dietary background that the pathogenesis of FLHS is similar to human NAFLD. The mechanism underlying dietary BCAA control of NAFLD development in laying hens remains unclear. Herein, we demonstrate that dietary supplementation with 67 % High BCAA has unique mitigative impacts on NAFLD in laying hens. A High BCAA diet alleviates NAFLD, by inhibiting the tryptophan-ILA-AHR axis and MAPK9-mediated de novo lipogenesis (DNL), promoting ketogenesis and energy metabolism, and activating PPAR-RXR and pexophagy to promote fatty acid β-oxidation. Furthermore, we uncover that High BCAA strongly activates ubiquitin-proteasome autophagy via downregulating UFMylation to trigger MAPK9-mediated DNL, fatty acid elongation and lipid droplet formation-related proteins ubiquitination degradation, activating PPAR-RXR and pexophagy mediated fatty acid β-oxidation and lipolysis. Together, our data highlight moderating intake of high BCAA by inhibiting the AHR/MAPK9 are promising new strategies in NAFLD and FLHS treatment.
Collapse
Affiliation(s)
- Huafeng Jian
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Ru Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Xuan Huang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Jiankui Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Yan Li
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | | | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xinyang Dong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China
| | - Hua Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xiaoting Zou
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Hou W, Huo KG, Guo X, Xu M, Yang Y, Shi Z, Xu W, Tu J, Gao T, Ma Z, Han S. KLF15-Cyp3a11 Axis Regulates Rifampicin-Induced Liver Injury. Drug Metab Dispos 2024; 52:606-613. [PMID: 38670799 DOI: 10.1124/dmd.123.001617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Rifampicin (RFP) has demonstrated potent antibacterial effects in the treatment of pulmonary tuberculosis. However, the serious adverse effects on the liver intensively limit the clinical usage of the drug. Deacetylation greatly reduces the toxicity of RFP but also retains its curative activity. Here, we found that Krüppel-like factor 15 (KLF15) repressed the expression of the major RFP detoxification enzyme Cyp3a11 in mice via both direct and indirect mechanisms. Knockout of hepatocyte KLF15 induced the expression of Cyp3a11 and robustly attenuated the hepatotoxicity of RFP in mice. In contrast, overexpression of hepatic KLF15 exacerbated RFP-induced liver injury as well as mortality. More importantly, the suppression of hepatic KLF15 expression strikingly restored liver functions in mice even after being pretreated with overdosed RFP. Therefore, this study identified the KLF15-Cyp3a11 axis as a novel regulatory pathway that may play an essential role in the detoxification of RFP and associated liver injury. SIGNIFICANCE STATEMENT: Rifampicin has demonstrated antibacterial effects in the treatment of pulmonary tuberculosis. However, the serious adverse effects on the liver limit the clinical usage of the drug. Permanent depletion and transient inhibition of hepatic KLF15 expression significantly induced the expression of Cyp3a11 and robustly attenuated mouse hepatotoxicity induced by RFP. Overall, our studies show the KLF15-Cyp3a11 axis was identified as a novel regulatory pathway that may play an essential role in the detoxification of RFP and associated liver injury.
Collapse
Affiliation(s)
- Wanqing Hou
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Ku-Geng Huo
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Xiaohua Guo
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Mengtong Xu
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Yongting Yang
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Zhuangqi Shi
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Weixiong Xu
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Jinqi Tu
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Tangxin Gao
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Zhenghai Ma
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| |
Collapse
|
5
|
Wang Y, Guo D, Winkler R, Lei X, Wang X, Messina J, Luo J, Lu H. Development of novel liver-targeting glucocorticoid prodrugs. MEDICINE IN DRUG DISCOVERY 2024; 21:100172. [PMID: 38390434 PMCID: PMC10883687 DOI: 10.1016/j.medidd.2023.100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Background Glucocorticoids (GCs) are widely used in the treatment of inflammatory liver diseases and sepsis, but GC's various side effects on extrahepatic tissues limit their clinical benefits. Liver-targeting GC therapy may have multiple advantages over systemic GC therapy. The purpose of this study was to develop novel liver-targeting GC prodrugs as improved treatment for inflammatory liver diseases and sepsis. Methods A hydrophilic linker or an ultra-hydrophilic zwitterionic linker carboxylic betaine (CB) was used to bridge cholic acid (CA) and dexamethasone (DEX) to generate transporter-dependent liver-targeting GC prodrugs CA-DEX and the highly hydrophilic CA-CB-DEX. The efficacy of liver-targeting DEX prodrugs and DEX were determined in primary human hepatocytes (PHH), macrophages, human whole blood, and/or mice with sepsis induced by cecal ligation and puncture. Results CA-DEX was moderately water soluble, whereas CA-CB-DEX was highly water soluble. CA-CB-DEX and CA-DEX displayed highly transporter-dependent activities in reporter assays. Data mining found marked dysregulation of many GR-target genes important for lipid catabolism, cytoprotection, and inflammation in patients with severe alcoholic hepatitis. These key GR-target genes were similarly and rapidly (within 6 h) induced or down-regulated by CA-CB-DEX and DEX in PHH. CA-CB-DEX had much weaker inhibitory effects than DEX on endotoxin-induced cytokines in mouse macrophages and human whole blood. In contrast, CA-CB-DEX exerted more potent anti-inflammatory effects than DEX in livers of septic mice. Conclusions CA-CB-DEX demonstrated good hepatocyte-selectivity in vitro and better anti-inflammatory effects in vivo. Further test of CA-CB-DEX as a novel liver-targeting GC prodrug for inflammatory liver diseases and sepsis is warranted.
Collapse
Affiliation(s)
- Yazheng Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaohong Lei
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaojing Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer Messina
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
6
|
Han X, Wu W, Wang S. Krüppel-like factor 15 counteracts endoplasmic reticulum stress and suppresses lung fibroblast proliferation and extracellular matrix accumulation. Tissue Cell 2023; 84:102183. [PMID: 37531874 DOI: 10.1016/j.tice.2023.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
The incidence of pulmonary fibrosis is on the rise, and existing treatments have limited efficacy in improving patient survival. The purpose of this study was to reveal the potential of Krüppel-like factor (KLF)15 activation in alleviating pulmonary fibrosis. Transforming growth factor beta (TGF-β) was utilized to induce lung fibroblasts to establish an in vitro model of pulmonary fibrosis. The impacts of TGF-β and KLF15 level on cell proliferation, migration, extracellular matrix (ECM) accumulation, and endoplasmic reticulum stress (ERS) were assessed. Additionally, tunicamycin, an ERS agonist, was used to investigate the role of ERS in KLF15 regulation. The results showed that KLF15 was dropped in response to TGF-β treatment. However, KLF15 overexpression reduced cell proliferation, migration, ECM accumulation, and ERS, alleviating the effects of TGF-β stimulation. Subsequent treatment with tunicamycin diminished the effects of KLF15 overexpression, demonstrating that ERS mediated the modulation of KLF15. KLF15 acts against ERS and suppresses excessive proliferation and ECM accumulation in lung fibroblast. These findings suggest that activating KLF15 is a promising strategy for alleviating pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiang Han
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| | - Weiqin Wu
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Shuming Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| |
Collapse
|
7
|
Yang X, Dong S, Fan Y, Xia Y, Yang F, Chen Z, Chen D, Zhang M, Liang D, Zeng C. Krüppel-like Factor 15 Suppresses Ferroptosis by Activating an NRF2/GPX4 Signal to Protect against Folic Acid-Induced Acute Kidney Injury. Int J Mol Sci 2023; 24:14530. [PMID: 37833977 PMCID: PMC10572468 DOI: 10.3390/ijms241914530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/16/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Acute kidney injury (AKI) is a common and serious disease with high morbidity and mortality, and its pathophysiological mechanisms are not fully understood. Increasing evidence suggests an important role of ferroptosis in AKI. Krüppel-like factor 15 (KLF15) is a transcription factor involved in several metabolic diseases, but its role in AKI and ferroptosis remains unclear. In this study, we explored the potential role of KLF15 using a folic acid-induced AKI model. Our study showed that KLF15 expression was reduced in kidney tissues of AKI mice, and KLF15 knockout exacerbated folic acid-induced ferroptosis and kidney injury. In vitro studies revealed that the ferroptosis inducer erastin significantly suppressed KLF15 expression in human tubular epithelial cells. Notably, the overexpression of KLF15 attenuated ferroptosis, as evidenced by a decrease in the lipid peroxidation marker of malondialdehyde and the upregulation of glutathione peroxidase 4 (GPX4), while KLF15 knockdown with shRNA exerted the opposite effect. Mechanistically, KLF15 stabilized the protein of nuclear factor erythroid 2-related factor 2 (NRF2) and subsequently increased the GPX4 level. Collectively, KLF15 plays an important role in the modulation of ferroptosis in AKI and may be a potential therapeutic target for treating AKI.
Collapse
Affiliation(s)
- Xue Yang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210044, China
| | - Shihui Dong
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210044, China
| | - Yun Fan
- Jinling Clinical Medical College, Nanjing Medical University, Nanjing 210008, China
| | - Yuanyuan Xia
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210044, China
| | - Fan Yang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210044, China
| | - Zhaohong Chen
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210044, China
| | - Dacheng Chen
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210044, China
| | - Mingchao Zhang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210044, China
| | - Dandan Liang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210044, China
| | - Caihong Zeng
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210044, China
| |
Collapse
|
8
|
Chen H, Li LL, Du Y. Krüppel-like factor 15 in liver diseases: Insights into metabolic reprogramming. Front Pharmacol 2023; 14:1115226. [PMID: 36937859 PMCID: PMC10017497 DOI: 10.3389/fphar.2023.1115226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Liver diseases, characterized by metabolic disorder, have become a global public health problem with high morbidity and mortality. Krüppel-like factor 15 (KLF15) is a zinc-finger transcription factor mainly enriched in liver. Increasing evidence suggests that hepatic KLF15 is activated rapidly during fasting, and contributes to the regulation of gluconeogenesis, lipid, amino acid catabolism, bile acids, endobiotic and xenobiotic metabolism. This review summarizes the latest advances of KLF15 in metabolic reprogramming, and explore the function of KLF15 in acute liver injury, hepatitis B virus, and autoimmune hepatitis. which aims to evaluate the potential of KLF15 as a therapeutic target and prognostic biomarker for liver diseases.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Lan-Lan Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Yan Du
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Yan Du,
| |
Collapse
|
9
|
Kanyomse Q, Le X, Tang J, Dai F, Mobet Y, Chen C, Cheng Z, Deng C, Ning Y, Yu R, Zeng X, Xiang T. KLF15 suppresses tumor growth and metastasis in Triple-Negative Breast Cancer by downregulating CCL2 and CCL7. Sci Rep 2022; 12:19026. [PMID: 36347994 PMCID: PMC9643362 DOI: 10.1038/s41598-022-23750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Kruppel like factor 15 (KLF15), a transcriptional factor belonging to the Kruppel-like factor (KLF) family of genes, has recently been reported as a tumor suppressor gene in breast cancer. However, the specific mechanisms by which KLF15 inhibits BrCa have not been elucidated. Here we investigated the role and mechanism of KLF15 in triple-negative breast cancer (TNBC). KLF15 expression and methylation were detected by RT-qPCR, RT-PCR and methylation-specific PCR in breast cancer cell lines and tissues. The effects of KLF15 on TNBC cell functions were examined via various cellular function assays. The specific anti-tumor mechanisms of KLF15 were further investigated by RNA sequence, RT-qPCR, Western blotting, luciferase assay, ChIP, and bioinformatics analysis. As the results showed that KLF15 is significantly downregulated in breast cancer cell lines and tissues, which promoter methylation of KLF15 partially contributes to. Exogenous expression of KLF15 induced apoptosis and G2/M phase cell cycle arrest, suppressed cell proliferation, metastasis and in vivo tumorigenesis of TNBC cells. Mechanism studies revealed that KLF15 targeted and downregulated C-C motif chemokine ligand 2 (CCL2) and CCL7. Moreover, transcriptome and metabolome analysis revealed that KLF15 is involved in key anti-tumor regulatory and metabolic pathways in TNBC. In conclusion, KLF15 suppresses cell growth and metastasis in TNBC by downregulating CCL2 and CCL7. KLF15 may be a prognostic biomarker in TNBC.
Collapse
Affiliation(s)
- Quist Kanyomse
- grid.452206.70000 0004 1758 417XDepartment of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Xin Le
- grid.452206.70000 0004 1758 417XDepartment of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jun Tang
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Fengsheng Dai
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Youchaou Mobet
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Chang Chen
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Zhaobo Cheng
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Chaoqun Deng
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yijiao Ning
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Renjie Yu
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Xiaohua Zeng
- grid.190737.b0000 0001 0154 0904Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030 China
| | - Tingxiu Xiang
- grid.452206.70000 0004 1758 417XDepartment of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.190737.b0000 0001 0154 0904Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030 China
| |
Collapse
|
10
|
Narrative Review: Glucocorticoids in Alcoholic Hepatitis—Benefits, Side Effects, and Mechanisms. J Xenobiot 2022; 12:266-288. [PMID: 36278756 PMCID: PMC9589945 DOI: 10.3390/jox12040019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Alcoholic hepatitis is a major health and economic burden worldwide. Glucocorticoids (GCs) are the only first-line drugs recommended to treat severe alcoholic hepatitis (sAH), with limited short-term efficacy and significant side effects. In this review, I summarize the major benefits and side effects of GC therapy in sAH and the potential underlying mechanisms. The review of the literature and data mining clearly indicate that the hepatic signaling of glucocorticoid receptor (GR) is markedly impaired in sAH patients. The impaired GR signaling causes hepatic down-regulation of genes essential for gluconeogenesis, lipid catabolism, cytoprotection, and anti-inflammation in sAH patients. The efficacy of GCs in sAH may be compromised by GC resistance and/or GC’s extrahepatic side effects, particularly the side effects of intestinal epithelial GR on gut permeability and inflammation in AH. Prednisolone, a major GC used for sAH, activates both the GR and mineralocorticoid receptor (MR). When GC non-responsiveness occurs in sAH patients, the activation of MR by prednisolone might increase the risk of alcohol abuse, liver fibrosis, and acute kidney injury. To improve the GC therapy of sAH, the effort should be focused on developing the biomarker(s) for GC responsiveness, liver-targeting GR agonists, and strategies to overcome GC non-responsiveness and prevent alcohol relapse in sAH patients.
Collapse
|
11
|
Liu S, Liu M, Zhang ML, Wang CZ, Zhang YL, Zhang YJ, Du CY, Sheng SF, Wang W, Fan YT, Song JN, Huang JC, Feng YY, Qiao W, Huang JL, Li YH, Zhou L, Zhang J, Chang YS. Transcription factor Klf9 controls bile acid reabsorption and enterohepatic circulation in mice via promoting intestinal Asbt expression. Acta Pharmacol Sin 2022; 43:2362-2372. [PMID: 35105957 PMCID: PMC9433408 DOI: 10.1038/s41401-021-00850-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022]
Abstract
Bile acid (BA) homeostasis is regulated by the extensive cross-talk between liver and intestine. Many bile-acid-activated signaling pathways have become attractive therapeutic targets for the treatment of metabolic disorders. In this study we investigated the regulatory mechanisms of BA in the intestine. We showed that the BA levels in the gallbladder and faeces were significantly increased, whereas serum BA levels decreased in systemic Krüppel-like factor 9 (Klf9) deficiency (Klf9-/-) mice. These phenotypes were also observed in the intestine-specific Klf9-deleted (Klf9vil-/-) mice. In contrast, BA levels in the gallbladder and faeces were reduced, whereas BA levels in the serum were increased in intestinal Klf9 transgenic (Klf9Rosa26+/+) mice. By using a combination of biochemical, molecular and functional assays, we revealed that Klf9 promoted the expression of apical sodium-dependent bile acid transporter (Asbt) in the terminal ileum to enhance BA absorption in the intestine. Reabsorbed BA affected liver BA synthetic enzymes by regulating Fgf15 expression. This study has identified a previously neglected transcriptional pathway that regulates BA homeostasis.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Man Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Meng-Lin Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Cui-Zhe Wang
- Department of Basic Medicine, Shihezi University School of Medicine, Shihezi, 832000, China
| | - Yin-Liang Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Yu-Jie Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Chun-Yuan Du
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Su-Fang Sheng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Wei Wang
- Key Laboratory of Biotechnology of Hubei Province, Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Ya-Tong Fan
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Jia-Ni Song
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Jin-Can Huang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Yue-Yao Feng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Wei Qiao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Jin-Long Huang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Yu-Hui Li
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jun Zhang
- Department of Basic Medicine, Shihezi University School of Medicine, Shihezi, 832000, China.
| | - Yong-Sheng Chang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
12
|
Jiang Z, Elsarrag SZ, Duan Q, LaGory EL, Wang Z, Alexanian M, McMahon S, Rulifson IC, Winchester S, Wang Y, Vaisse C, Brown JD, Quattrocelli M, Lin CY, Haldar SM. KLF15 cistromes reveal a hepatocyte pathway governing plasma corticosteroid transport and systemic inflammation. SCIENCE ADVANCES 2022; 8:eabj2917. [PMID: 35263131 PMCID: PMC8906731 DOI: 10.1126/sciadv.abj2917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 01/13/2022] [Indexed: 05/15/2023]
Abstract
Circulating corticosteroids orchestrate stress adaptation, including inhibition of inflammation. While pathways governing corticosteroid biosynthesis and intracellular signaling are well understood, less is known about mechanisms controlling plasma corticosteroid transport. Here, we show that hepatocyte KLF15 (Kruppel-like factor 15) controls plasma corticosteroid transport and inflammatory responses through direct transcriptional activation of Serpina6, which encodes corticosteroid-binding globulin (CBG). Klf15-deficient mice have profoundly low CBG, reduced plasma corticosteroid binding capacity, and heightened mortality during inflammatory stress. These defects are completely rescued by reconstituting CBG, supporting that KLF15 works primarily through CBG to control plasma corticosterone homeostasis. To understand transcriptional mechanisms, we generated the first KLF15 cistromes using newly engineered Klf153xFLAG mice. Unexpectedly, liver KLF15 is predominantly promoter enriched, including Serpina6, where it binds a palindromic GC-rich motif, opens chromatin, and transactivates genes with minimal associated direct gene repression. Overall, we provide critical mechanistic insight into KLF15 function and identify a hepatocyte-intrinsic transcriptional module that potently regulates systemic corticosteroid transport and inflammation.
Collapse
Affiliation(s)
- Zhen Jiang
- Amgen Research, South San Francisco, CA 94080, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Selma Z. Elsarrag
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program and Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Zhe Wang
- Amgen Research, South San Francisco, CA 94080, USA
| | | | - Sarah McMahon
- Gladstone Institutes, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, UCSF School of Medicine, San Francisco, CA 94143, USA
| | | | | | - Yi Wang
- UCSF Diabetes Center and Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Christian Vaisse
- UCSF Diabetes Center and Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jonathan D. Brown
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology Division, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Charles Y. Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Kronos Bio Inc., Cambridge, MA 02142, USA
| | - Saptarsi M. Haldar
- Amgen Research, South San Francisco, CA 94080, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Cardiology Division, Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Role of Mitochondrial Cytochrome P450 2E1 in Healthy and Diseased Liver. Cells 2022; 11:cells11020288. [PMID: 35053404 PMCID: PMC8774478 DOI: 10.3390/cells11020288] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) is pivotal in hepatotoxicity induced by alcohol abuse and different xenobiotics. In this setting, CYP2E1 generates reactive metabolites inducing oxidative stress, mitochondrial dysfunction and cell death. In addition, this enzyme appears to play a role in the progression of obesity-related fatty liver to nonalcoholic steatohepatitis. Indeed, increased CYP2E1 activity in nonalcoholic fatty liver disease (NAFLD) is deemed to induce reactive oxygen species overproduction, which in turn triggers oxidative stress, necroinflammation and fibrosis. In 1997, Avadhani’s group reported for the first time the presence of CYP2E1 in rat liver mitochondria, and subsequent investigations by other groups confirmed that mitochondrial CYP2E1 (mtCYP2E1) could be found in different experimental models. In this review, we first recall the main features of CYP2E1 including its role in the biotransformation of endogenous and exogenous molecules, the regulation of its expression and activity and its involvement in different liver diseases. Then, we present the current knowledge on the physiological role of mtCYP2E1, its contribution to xenobiotic biotransformation as well as the mechanism and regulation of CYP2E1 targeting to mitochondria. Finally, we discuss experimental investigations suggesting that mtCYP2E1 could have a role in alcohol-associated liver disease, xenobiotic-induced hepatotoxicity and NAFLD.
Collapse
|
14
|
Takeuchi Y, Yahagi N, Aita Y, Mehrazad-Saber Z, Ho MH, Huyan Y, Murayama Y, Shikama A, Masuda Y, Izumida Y, Miyamoto T, Matsuzaka T, Kawakami Y, Shimano H. FoxO-KLF15 pathway switches the flow of macronutrients under the control of insulin. iScience 2021; 24:103446. [PMID: 34988390 PMCID: PMC8710527 DOI: 10.1016/j.isci.2021.103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/18/2021] [Accepted: 11/11/2021] [Indexed: 11/15/2022] Open
Abstract
KLF15 is a transcription factor that plays an important role in the activation of gluconeogenesis from amino acids as well as the suppression of lipogenesis from glucose. Here we identified the transcription start site of liver-specific KLF15 transcript and showed that FoxO1/3 transcriptionally regulates Klf15 gene expression by directly binding to the liver-specific Klf15 promoter. To achieve this, we performed a precise in vivo promoter analysis combined with the genome-wide transcription-factor-screening method "TFEL scan", using our original Transcription Factor Expression Library (TFEL), which covers nearly all the transcription factors in the mouse genome. Hepatic Klf15 expression is significantly increased via FoxOs by attenuating insulin signaling. Furthermore, FoxOs elevate the expression levels of amino acid catabolic enzymes and suppress SREBP-1c via KLF15, resulting in accelerated amino acid breakdown and suppressed lipogenesis during fasting. Thus, the FoxO-KLF15 pathway contributes to switching the macronutrient flow in the liver under the control of insulin.
Collapse
Affiliation(s)
- Yoshinori Takeuchi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Zahra Mehrazad-Saber
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Man Hei Ho
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yiren Huyan
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takafumi Miyamoto
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasushi Kawakami
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
15
|
Anzai K, Tsuruya K, Ida K, Kagawa T, Inagaki Y, Kamiya A. Kruppel-like factor 15 induces the development of mature hepatocyte-like cells from hepatoblasts. Sci Rep 2021; 11:18551. [PMID: 34535735 PMCID: PMC8448749 DOI: 10.1038/s41598-021-97937-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022] Open
Abstract
The liver is an important metabolic organ that controls homeostasis in the body. Moreover, it functions as a hematopoietic organ, while its metabolic function is low during development. Hepatocytes, which are parenchymal cells of the liver, acquire various metabolic functions by the maturation of hepatic progenitor cells during the fetal period; however, this molecular mechanism is still unclear. In this study, Kruppel-like factor 15 (KLF15) was identified as a new regulator of hepatic maturation through a comprehensive analysis of the expression of transcriptional regulators in mouse fetal and adult hepatocytes. KLF15 is a transcription factor whose expression in the liver increases from the embryonic stage throughout the developmental process. KLF15 induced the overexpression of liver function genes in mouse embryonic hepatocytes. Furthermore, we found that the expression of KLF15 could also induce the expression of liver function genes in hepatoblasts derived from human induced pluripotent stem cells (iPSCs). Moreover, KLF15 increased the promoter activity of tyrosine aminotransferase, a liver function gene. KLF15 also suppressed the proliferation of hepatoblasts. These results suggest that KLF15 induces hepatic maturation through the transcriptional activation of target genes and cell cycle control.
Collapse
Affiliation(s)
- Kazuya Anzai
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Kota Tsuruya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Kinuyo Ida
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
16
|
Boon R, Kumar M, Tricot T, Elia I, Ordovas L, Jacobs F, One J, De Smedt J, Eelen G, Bird M, Roelandt P, Doglioni G, Vriens K, Rossi M, Vazquez MA, Vanwelden T, Chesnais F, El Taghdouini A, Najimi M, Sokal E, Cassiman D, Snoeys J, Monshouwer M, Hu WS, Lange C, Carmeliet P, Fendt SM, Verfaillie CM. Amino acid levels determine metabolism and CYP450 function of hepatocytes and hepatoma cell lines. Nat Commun 2020; 11:1393. [PMID: 32170132 PMCID: PMC7069944 DOI: 10.1038/s41467-020-15058-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
Predicting drug-induced liver injury in a preclinical setting remains challenging, as cultured primary human hepatocytes (PHHs), pluripotent stem cell-derived hepatocyte-like cells (HLCs), and hepatoma cells exhibit poor drug biotransformation capacity. We here demonstrate that hepatic functionality depends more on cellular metabolism and extracellular nutrients than on developmental regulators. Specifically, we demonstrate that increasing extracellular amino acids beyond the nutritional need of HLCs and HepG2 cells induces glucose independence, mitochondrial function, and the acquisition of a transcriptional profile that is closer to PHHs. Moreover, we show that these high levels of amino acids are sufficient to drive HLC and HepG2 drug biotransformation and liver-toxin sensitivity to levels similar to those in PHHs. In conclusion, we provide data indicating that extracellular nutrient levels represent a major determinant of cellular maturity and can be utilized to guide stem cell differentiation to the hepatic lineage.
Collapse
Affiliation(s)
- Ruben Boon
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium.
| | - Manoj Kumar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Tine Tricot
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Ilaria Elia
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Laura Ordovas
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research, IIS Aragón University of Zaragoza, Aragon I + D Foundation (ARAID), Zaragoza, Spain
| | - Frank Jacobs
- Janssen Research and Development, Beerse, Belgium
| | - Jennifer One
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan De Smedt
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center of Cancer Biology, VIB, Leuven, Belgium
| | - Matthew Bird
- Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Philip Roelandt
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
- Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Translational Research in GastroIntestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim Vriens
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Marta Aguirre Vazquez
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Thomas Vanwelden
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - François Chesnais
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Adil El Taghdouini
- Laboratory of Pediatric Hepatology and Cell Therapy, Universit Catholique de Louvain & Cliniques Universitaires St Luc, Institut de Recherche Clinique et Expérimentale (IREC), Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Universit Catholique de Louvain & Cliniques Universitaires St Luc, Institut de Recherche Clinique et Expérimentale (IREC), Brussels, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Universit Catholique de Louvain & Cliniques Universitaires St Luc, Institut de Recherche Clinique et Expérimentale (IREC), Brussels, Belgium
| | - David Cassiman
- Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Jan Snoeys
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mario Monshouwer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Christian Lange
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center of Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center of Cancer Biology, VIB, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Svenson KL, Long LL, Ciciotte SL, Adams MD. A mutation in mouse Krüppel-like factor 15 alters the gut microbiome and response to obesogenic diet. PLoS One 2019; 14:e0222536. [PMID: 31553739 PMCID: PMC6760833 DOI: 10.1371/journal.pone.0222536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022] Open
Abstract
We identified a mouse strain, HLB444, carrying an N-ethyl-N-nitrosourea (ENU)-induced mutation in a highly conserved C2H2 zinc-finger DNA binding motif of the transcriptional regulator KLF15 that exhibits resistance to diet-induced obesity. Characterization of the HLB444 mutant model on high-fat and chow diets revealed a number of phenotypic differences compared to wild-type controls. When fed a high fat diet, HLB444 had lower body fat, resistance to hepatosteatosis, lower circulating glucose and improved insulin sensitivity compared to C57BL/6J controls. Gut microbial profiles in HLB444 generated from 16S rRNA sequencing of fecal samples differed from controls under both chow and high fat diets. HLB444 shares similar phenotypic traits with engineered full- and adipose-specific Klf15 knockout strains; however, some phenotypic differences between this mutant and the other models suggest that the Klf15 mutation in HLB444 is a hypomorphic variant. The HLB444 model will inform further annotation of transcriptional functions of KLF15, especially with respect to the role of the first zinc-finger domain.
Collapse
Affiliation(s)
- Karen L. Svenson
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Lauren L. Long
- The Jackson Laboratory, Farmington, Connecticut, United States of America
| | | | - Mark D. Adams
- The Jackson Laboratory, Farmington, Connecticut, United States of America
| |
Collapse
|