1
|
Xu Y, Huang R, Shi W, Zhou R, Xie X, Wang M, Wang Y, Gu P, Ni N, Bi X. ROS-Responsive Hydrogel Delivering METRNL Enhances Bone Regeneration via Dual Stem Cell Homing and Vasculogenesis Activation. Adv Healthc Mater 2025:e2500060. [PMID: 40391612 DOI: 10.1002/adhm.202500060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/30/2025] [Indexed: 05/22/2025]
Abstract
Critical-sized bone defects arising from bone-related diseases pose a clinical challenge, exceeding the body's natural healing capacity. Evidence has shown that a disordered microenvironment characterized by reactive oxygen species (ROS) overproduction, vascular damage, and osteoblast deficiency severely hinders bone repair. Therefore, the reconstruction of microenvironmental homeostasis post-injury is of utmost importance. Herein, a ROS-responsive scavenging GelMA loaded with METRNL (RRG-MRL) is developed, serving as a "bone microenvironment-modulating system" for targeted delivery of METRNL, which stimulates bone marrow mesenchymal stem cells (BMSCs) homing and angiogenic sprouting. Upon exposure to elevated levels of ROS within the defect region, ROS-cleavable NHS-TK-NHS linkers are disrupted, triggering responsive degradation and METRNL release. This treatment significantly reduced ROS levels and alleviated inflammation, along with increasing the levels of anti-apoptotic factors. Meanwhile, released METRNL induced endothelial cell angiogenesis by activating the c-Kit/PI3K/Akt pathway and increased secretion of SDF-1α (CXCL12) to promote BMSCs recruitment. Rat models of cranial bone defects treated with RRG-MRL demonstrated reduced ROS signal intensity in situ, increased endogenous BMSCs count, and enhanced neovascularization, resulting in accelerated bone regeneration. The proposed platform offers a multistage therapeutic approach facilitating rapid reconstruction of microenvironment homeostasis to promote bone regeneration, indicating significant clinical potential.
Collapse
Affiliation(s)
- Yue Xu
- State Key Laboratory of Eye Health, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Rui Huang
- State Key Laboratory of Eye Health, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Wodong Shi
- State Key Laboratory of Eye Health, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Rong Zhou
- State Key Laboratory of Eye Health, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Xinling Xie
- State Key Laboratory of Eye Health, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Miao Wang
- State Key Laboratory of Eye Health, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yang Wang
- State Key Laboratory of Eye Health, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Ping Gu
- State Key Laboratory of Eye Health, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Ni Ni
- State Key Laboratory of Eye Health, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Xiaoping Bi
- State Key Laboratory of Eye Health, Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| |
Collapse
|
2
|
Zhou Y, Wang G, Liu L, Song L, Hu L, Liu L, Xu L, Wang T, Liu L, Wang Y, Zhang T, Guo B. Cellular crosstalk mediated by Meteorin-like regulating hepatic stellate cell activation during hepatic fibrosis. Cell Death Dis 2025; 16:405. [PMID: 40393967 DOI: 10.1038/s41419-025-07734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/26/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Liver fibrosis is characterized by an excessive accumulation of extracellular matrix (ECM), primarily produced by activated hepatic stellate cells (HSCs). The activation of HSCs is influenced by paracrine signaling interactions among various liver cell types, but molecular mechanisms remain to be elucidated. Secretory Meteorin-like (Metrnl) can effectively ameliorate fulminant hepatitis. However, little is known about its role in liver fibrosis. In our study, we found that hepatic Metrnl mRNA transcripts and protein expression were significantly downregulated in patients and mouse models of hepatic fibrosis. Hepatocyte-specific and global knockout of Metrnl exacerbated CCl4-induced liver fibrosis. In contrast, the administration recombinant Metrnl or AAV-Metrnl overexpression markedly ameliorated CCl4-induced liver fibrosis in mice, suggesting a protective role for Metrnl. Mechanistically, hepatocyte-derived Metrnl not only influences the activation of HSCs through paracrine signaling but also modulates the release of the fibrogenic cytokine PDGFB via the transcription factor EGR1, thereby regulating PDGFB/PDGFRβ signaling to affect HSC activation. Furthermore, Metrnl absence in hepatocytes and HSCs leads to the downregulation of the E3 ubiquitin ligase HECW2, inhibiting K48-linked ubiquitination of FN and preventing its proteasomal degradation, thus promoting FN secretion from HSCs. These effects contribute to ECM deposition and the activation of HSCs, ultimately exacerbating liver fibrosis. Collectively, our study reveals Metrnl as a novel regulator of liver fibrosis that mediates communication between hepatocytes and HSCs, indicating its potential as a therapeutic target for liver fibrosis. The identification of Metrnl as a critical player in the pathogenesis of hepatic fibrosis underscores the importance of understanding cellular crosstalk in the progression of liver disease.
Collapse
Affiliation(s)
- Yuxia Zhou
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guifang Wang
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Pathology, People's Hospital of Qianxinan Prefecture, Xingyi, Guizhou, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Key Laboratory for Digestive System Diseases, Guiyang, Guizhou, China
| | - Laying Hu
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lu Liu
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Tuanlao Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China
| | - Lirong Liu
- Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Tian Zhang
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Bing Guo
- Department of Pathophysiology, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
3
|
Alizadeh H, Parsaeifar A, Mohammadi Mirzaei R. Meteorin-like protein (Metrnl): a key exerkine in exercise-mediated cardiovascular health. Arch Physiol Biochem 2025:1-15. [PMID: 40289582 DOI: 10.1080/13813455.2025.2497272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/11/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025]
Abstract
CONTEXT Cardiovascular diseases (CVDs) remain a leading global cause of mortality, necessitating non‑pharmacological interventions such as exercise. Meteorin‑like protein (Metrnl), an exercise‑induced myokine and adipokine, has emerged as a critical mediator of exercise‑mediated cardiovascular benefits, though its specific mechanisms and clinical implications remain underexplored. OBJECTIVE This review synthesizes current evidence on Metrnl's role as a key exerkine in cardiovascular health, focusing on its exercise‑induced regulatory mechanisms, tissue‑specific effects, and therapeutic potential for CVD management. METHODS A comprehensive analysis of preclinical and clinical studies was conducted, encompassing molecular, metabolic, and anti‑inflammatory pathways linked to Metrnl. Literature from PubMed, Scopus, and Web of Science was systematically reviewed to evaluate Metrnl's role in exercise‑mediated cardiovascular adaptations. RESULTS Exercise‑induced Metrnl enhances endothelial function, vascular remodeling, and metabolic regulation via AMPK, PPARγ, and KIT receptor signaling. It promotes glucose/lipid metabolism, angiogenesis, and anti‑inflammatory responses, reducing atherosclerotic risks and improving cardiac repair post‑infarction. Clinically, Metrnl levels correlate with CVD severity, acting as a biomarker for risk stratification. Acute exercise elevates Metrnl, while chronic training effects vary by modality and population. Paradoxically, elevated plasma Metrnl in acute cardiac events predicts adverse outcomes, whereas reduced levels in chronic conditions (e.g., diabetes, heart failure) reflect metabolic dysregulation. DISCUSSION Metrnl bridges exercise benefits to cardiovascular health through inter‑organ crosstalk, yet discrepancies exist in its chronic exercise‑mediated regulation. Its dual role as a protective mediator and stress‑responsive biomarker underscores context‑dependent interpretations. Unresolved questions include receptor specificity, tissue autonomy, and therapeutic delivery strategies. CONCLUSION Metrnl is a pivotal exerkine with promising diagnostic and therapeutic potential for CVDs. Translating its exercise‑mediated benefits into clinical applications requires further human trials to validate mechanisms and optimize interventions. Harnessing Metrnl could revolutionize strategies for CVD prevention and rehabilitation, leveraging exercise's molecular advantages.
Collapse
Affiliation(s)
- Hamid Alizadeh
- Exercise Physiology, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Ahmad Parsaeifar
- Exercise Physiology, University of Mazandaran, Babolsar, Mazandaran, Iran
| | | |
Collapse
|
4
|
Chen P, Jia F, Wang M, Yang S. Analysis of the mechanism of skeletal muscle atrophy from the pathway of decreased protein synthesis. Front Physiol 2025; 16:1533394. [PMID: 40352150 PMCID: PMC12061715 DOI: 10.3389/fphys.2025.1533394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/18/2025] [Indexed: 05/14/2025] Open
Abstract
Skeletal muscle atrophy is associated with denervation, cancer, diabetes, aging, immobilization, and inflammation, which can significantly impair mobility. It is primarily attributable to increased protein catabolism alongside reduced protein synthesis, although the precise mechanisms underlying this process are not yet fully known. Unlike in the pathway driving increased catabolism, fewer studies have explored the mechanism underpinning muscle atrophy under reduced protein synthesis. Therefore, this study aimed to focus on summarizing relevant studies on the reduction of protein synthesis leading to skeletal muscle atrophy, as driven by alterations in pathways such as the insulin-like growth factor-1-phosphatidylinositol 3-kinase-protein kinase B-rapamycin signaling pathway, glycogen synthase kinase-3, glucocorticoids, 5'-adenosine monophosphate-activated protein kinase, branched-chain amino acid sensors, myostatin, long-term proinflammatory factors, oxidative stress and mitochondrial dysfunction, calciumion concentration, activating transcription factor 4, and glycyl-tRNA synthetase alterations. Consolidating these data will provide a foundation and theoretical basis for further investigation into the mechanisms of muscle atrophy from the perspective of reduced protein synthesis pathways.
Collapse
Affiliation(s)
| | | | | | - Shengbo Yang
- Department of Anatomy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Khodir SA, Shaban AM, Sweed E, El-Aziz NMA, Mostafa BA, Latif AAA, El-Kalshy MM, Elgizawy EI. METRNL mitigates oxidative stress and inflammatory drawbacks in ovalbumin/lipopolysaccharide-induced allergic airway diseases via the IKK/IκB/NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04070-6. [PMID: 40244452 DOI: 10.1007/s00210-025-04070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
This study aimed to examine the potential impacts of METRNL as an antioxidant and anti-inflammatory through IκB kinase/inhibitor of nuclear factor-kappa B/nuclear factor-kappa-light-chain signaling pathway on many biomarkers and lung structure in rats with bronchial asthma induced by ovalbumin/lipopolysaccharide (OVA/LPS). Forty rats were randomly divided into four equal groups: control group, vehicle group, diseased (OVA/LPS) group OVA 2.5 ml/kg intratracheal installation/LPS 1.5 mg/kg intraperitoneally, and treated (OVA/LPS + METRNL) group, METRNL at a dose of 2 mg/rat/day IV. After 4 weeks, plasma and lung tissues were analyzed to assess oxidative stress inflammatory markers. Additionally, a histological assessment was conducted on lung tissues. Bronchial asthma was confirmed when increased levels of total serum IgE, total cell count, neutrophils, eosinophils, macrophages, and lymphocyte counts in the BAL fluid were observed. Moreover, OVA/LPS resulted in a reduction in levels of superoxide dismutase (SOD) while raising levels of malondialdehyde (MDA). Furthermore, it elevated concentrations of plasma inflammatory mediators, including tumor necrosis factor-alpha (TNF-alpha), interleukin 17 (IL-17), and transforming growth factor beta (TGF-β). The protective effects of METRNL were analyzed. The observed impacts are believed to result from the drug's anti-inflammatory and antioxidant properties and its action on the IKK/IκB/NF-κB signaling pathway. This investigation indicates that METRNL treatment positively improved rats' biochemical and histological aspects of OVA/LPS-induced airway allergic inflammation.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Medical Physiology Department, Menoufia National University, Menoufia, Egypt
| | - Anwaar M Shaban
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia, Egypt
- Clinical Pharmacology Department, Menoufia National University, Menoufia, Egypt
| | | | - Basma Abdelnaby Mostafa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia, Egypt
- Medical Biochemistry and Molecular Biology Department, Menoufia National University, Menoufia, Egypt
| | - Asmaa A Abdel Latif
- Public Health and Community Medicine Department, Faculty of Medicine, Industrial Medicine and Occupational Health Specialty, Menoufia University, Menoufia, Egypt
| | - Mai M El-Kalshy
- Department of Chest Diseases, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman I Elgizawy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
- Medical Physiology Department, Menoufia National University, Menoufia, Egypt.
| |
Collapse
|
6
|
Xu TY, Zhao JX, Chen MY, Miao ZW, Li ZY, Chang YQ, Wang YS, Miao CY. Exploring METRNL as a novel biomarker in sepsis: diagnostic potential and secretion mechanism. J Intensive Care 2025; 13:19. [PMID: 40205457 PMCID: PMC11983927 DOI: 10.1186/s40560-025-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition with a high mortality rate in intensive care unit (ICU). However, rapid and accurate diagnostic criteria are still lacking. This pilot study explored the role of METRNL as a novel biomarker for sepsis by focusing on its diagnostic potential and rapid secretion mechanism. METHODS METRNL levels were measured in cell and animal models of sepsis. Serum samples from 107 sepsis patients and 95 non-septic controls in ICU were collected. Diagnostic performance of METRNL, Procalcitonin (PCT) and C-reactive protein (CRP) were assessed using ROC analysis. Endothelial cell-specific Metrnl gene knockout mice (EC-Metrnl-/- mice) were used to identify the source of METRNL secretion. Chemical inhibitors and RNA interference were used to explore the secretion pathways. RESULTS In lipopolysaccharide (LPS)-induced cell and mouse models of sepsis, METRNL levels significantly increased in a dose- and time-dependent manner. Similarly, in the cecal ligation and puncture mouse models, serum METRNL levels were elevated over time and correlated with sepsis severity. In animals, serum METRNL increased within 1 h post-modeling, preceding PCT and CRP. Clinically, sepsis patients had significantly higher serum METRNL levels. ROC analysis showed area under the curves [95% confidence intervals] of 0.943 [0.91-0.975] for METRNL, 0.955 [0.929-0.981] for PCT and 0.873 [0.825-0.921] for CRP. At the optimal cutoff value, METRNL (91.6%) exhibited relatively greater diagnostic specificity than PCT (88.4%) and CRP (69.5%). EC-Metrnl-/- reduced majority of serum Metrnl levels in sepsis mouse models. Inhibition of the endoplasmic reticulum-Golgi (ER-Golgi) pathway through chemical inhibitors or RNA interference significantly reduced METRNL levels in the supernatant of sepsis cell models compared to control groups. Similar results were obtained with Toll-like receptor 4 (TLR4) and ERK inhibitors. CONCLUSIONS This pilot study demonstrates that METRNL is a novel potential biomarker for sepsis with diagnostic capability comparable to that of PCT. Serum METRNL rapidly increased during the early phase of sepsis. Mechanistically, it mainly originates from the endothelium during sepsis, and TLR4-ERK signaling mediates the rapid secretion of METRNL via the classical ER-Golgi pathway in response to LPS stimulation.
Collapse
Affiliation(s)
- Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China.
- Department of Anesthetic Pharmacology, School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Jing-Xin Zhao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Ming-Yao Chen
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
- Department of Anesthetic Pharmacology, School of Anesthesiology, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Zhi-Yong Li
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yong-Qing Chang
- Department of Critical Care Medicine, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yu-Sheng Wang
- Department of Critical Care Medicine, Naval Medical Center of PLA, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China.
| |
Collapse
|
7
|
Li ZY, Luo HY, Xu F, Xu Y, Ma CH, Zhang SL, Xu S, Ma YY, Li N, Miao CY. Metrnl protects intestinal barrier function by regulating tight junctions via the IKKβ/IκBα/NFκB/MLCK/MLC signaling pathway. Cell Death Discov 2025; 11:155. [PMID: 40199887 PMCID: PMC11979045 DOI: 10.1038/s41420-025-02457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Meteorin-like (Metrnl), also known as Subfatin, IL-41, or Cometin, is a secreted protein predominantly expressed in the intestinal epithelium. The intestinal barrier, primarily consisting of epithelial cells connected by tight junctions, is essential for maintaining gut homeostasis by preventing harmful substances from entering the body. Despite Metrnl's high expression in the intestine, its role in barrier function remains unclear. In this study, we investigated Metrnl's role in intestinal barrier function using both loss-of-function (using global and intestinal epithelium-specific knockout mice) and gain-of-function (using intestinal epithelium-specific overexpression mice) approaches. Our findings showed that Metrnl deficiency disrupted tight junctions between enterocytes and exacerbated endotoxin-induced barrier dysfunction. Mechanistically, Metrnl deficiency triggered activation of the IKKβ/IκBα/NFκB signaling pathway, leading to increased MLCK expression and MLC phosphorylation. The NFκB inhibitor PDTC reversed this effect both in vivo and in vitro. Macrophages played an essential role in Metrnl's intestinal barrier protective effects during endotoxemia, but were not necessary in burn-induced barrier injury, suggesting potential differences in mechanism between these conditions. Notably, recombinant Metrnl protein administration protected against barrier dysfunction, and genetic overexpression of Metrnl in enterocytes preserved barrier function and alleviated DSS-induced colitis. These findings establish Metrnl as a key regulator of intestinal barrier integrity through the IKKβ/IκBα/NFκB/MLCK/MLC pathway, highlighting its potential therapeutic value in treating barrier dysfunction disorders. Intestinal barrier dysfunction triggers, such as endotoxin and severe burns, may induce the release of Metrnl from vascular endothelium. This leads to an increase in circulating Metrnl. Both circulating Metrnl and local Metrnl inhibit inflammation and the IKKβ/IκBα/NFκB/MLCK/MLC signaling pathway in enterocytes, thereby protecting tight junctions from disruption caused by endotoxin or burns.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
- Department of Pathology, Faculty of Medical Imaging, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| | - Heng-Yu Luo
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Fei Xu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Yao Xu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Chun-Hui Ma
- Department of Pathology, Faculty of Medical Imaging, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- Department of Immunology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Yuan-Yuan Ma
- Senior Department of Hematology, The Fifth Medical Center of People's Liberation Army(PLA), General Hospital, Beijing, 100010, China
| | - Nan Li
- Department of Immunology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Karami E, Bazgir B, Shirvani H, Mohammadi MT, Khaledi M. Unraveling the bidirectional relationship between muscle inflammation and satellite cells activity: influencing factors and insights. J Muscle Res Cell Motil 2025; 46:35-51. [PMID: 39508952 DOI: 10.1007/s10974-024-09683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Inflammation stands as a vital and innate function of the immune system, essential for maintaining physiological homeostasis. Its role in skeletal muscle regeneration is pivotal, with the activation of satellite cells (SCs) driving the repair and generation of new myofibers. However, the relationship between inflammation and SCs is intricate, influenced by various factors. Muscle injury and repair prompt significant infiltration of immune cells, particularly macrophages, into the muscle tissue. The interplay of cytokines and chemokines from diverse cell types, including immune cells, fibroadipogenic progenitors, and SCs, further shapes the inflammation-SCs dynamic. While some studies suggest heightened inflammation associates with reduced SC activity and increased fibro- or adipogenesis, others indicate an inflammatory stimulus benefits SC function. Yet, the existing literature struggles to delineate clearly between the stimulatory and inhibitory effects of inflammation on SCs and muscle regeneration. This paper comprehensively reviews studies exploring the impact of pharmacological agents, dietary interventions, genetic factors, and exercise regimes on the interplay between inflammation and SC activity.
Collapse
Affiliation(s)
- Esmail Karami
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Bazgir
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mansoor Khaledi
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
9
|
Li J, Ge Z, Li C, Ran H, Zhang Y, Xiang Y. METRNL exerts cytoprotective effects on EPCs via regulation of the E2F1-TXNIP axis in obese limb ischemia. Cell Signal 2025; 126:111528. [PMID: 39603439 DOI: 10.1016/j.cellsig.2024.111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Obesity increases cardiovascular disease risk by impairing angiogenesis, primarily through dysfunction of endothelial progenitor cells (EPCs). METRNL, a recently identified secreted protein, exhibits diverse biological activities. However, its impact on EPC function and its role in obesity-related microvascular dysfunction remain unclear. This study aims to investigate the effects of METRNL on EPC function and its potential therapeutic mechanisms for promoting angiogenesis. METHOD In vitro, human EPCs derived from peripheral and umbilical cord blood were treated with recombinant METRNL protein (rMETRNL) and exposed to palmitic acid (PA). EPC proliferation, migration, and tube formation were assessed. Apoptosis and pyroptosis levels were evaluated using Western blotting, flow cytometry, scanning electron microscopy (SEM), immunofluorescence (IF), and enzyme-linked immunosorbent assay (ELISA). RNA sequencing, ChIP, and dual-luciferase assays were performed to investigate the regulatory mechanisms. In vivo, an obese mouse model with hind limb ischemia received local injections of METRNL-overexpressing EPCs in the ischemic muscle. Blood flow recovery was monitored using laser Doppler flowmetry and CD31 immunofluorescence. RESULTS Replenishment of METNRL alleviated PA-induced apoptosis and pyroptosis of EPCs, while simultaneously enhancing their proliferation, migration, and tube formation. Mechanistically, RNA sequencing revealed that rMETRNL restoration downregulated E2F1 expression, and the protective effects of METRNL were partially reversed by E2F1 overexpression. Further, E2F1 was found to bind the TXNIP promoter region, promoting TXNIP transcription. Elevated TXNIP levels counteracted the beneficial effects of rMETRNL on EPC function in the presence of PA. In vivo, the transplantation of METRNL-overexpressing EPCs into the ischemic hind limbs of obese mice promoted angiogenesis, as evidenced by improved blood flow recovery and increased CD31 immunofluorescence in the ischemic tissues. CONCLUSION Our research emphasizes the potential of METRNL in reducing EPC cellular pyroptosis and promoting angiogenesis by inhibiting the E2F1-TXNIP signaling pathway. METRNL shows promise in treating obesity-related cardiovascular diseases through angiogenic therapy.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200000, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200000, China
| | - Chengsi Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200000, China
| | - Hui Ran
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200000, China
| | - Yachen Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200000, China.
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai 200000, China.
| |
Collapse
|
10
|
Huang D, Liu X, Gao X, Choi CK, Giglio G, Farah L, Leung T, Wong KC, Kan LL, Chong JW, Meng Q, Liao J, Cheung PF, Wong C. Meteorin-like protein/METRNL/Interleukin-41 ameliorates atopic dermatitis-like inflammation. Allergy 2025; 80:474-488. [PMID: 38727640 PMCID: PMC11804313 DOI: 10.1111/all.16150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 02/08/2025]
Abstract
BACKGROUND Meteorin-like protein (METRNL)/Interleukin-41 (IL-41) is a novel immune-secreted cytokine/myokine involved in several inflammatory diseases. However, how METRNL exerts its regulatory properties on skin inflammation remains elusive. This study aims to elucidate the functionality and regulatory mechanism of METRNL in atopic dermatitis (AD). METHODS METRNL levels were determined in skin and serum samples from patients with AD and subsequently verified in the vitamin D3 analogue MC903-induced AD-like mice model. The cellular target of METRNL activity was identified by multiplex immunostaining, single-cell RNA-seq and RNA-seq. RESULTS METRNL was significantly upregulated in lesions and serum of patients with dermatitis compared to healthy controls (p <.05). Following repeated MC903 exposure, AD model mice displayed elevated levels of METRNL in both ears and serum. Administration of recombinant murine METRNL protein (rmMETRNL) ameliorated allergic skin inflammation and hallmarks of AD in mice, whereas blocking of METRNL signaling led to the opposite. METRNL enhanced β-Catenin activation, limited the expression of Th2-related molecules that attract the accumulation of Arginase-1 (Arg1)hi macrophages, dendritic cells, and activated mast cells. CONCLUSIONS METRNL can bind to KIT receptor and subsequently alleviate the allergic inflammation of AD by inhibiting the expansion of immune cells, and downregulating inflammatory gene expression by regulating the level of active WNT pathway molecule β-Catenin.
Collapse
Affiliation(s)
- Danqi Huang
- Department of Chemical PathologyThe Chinese University of Hong KongHong KongChina
| | - Xiuting Liu
- Department of Dermatology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xun Gao
- Department of Chemical PathologyThe Chinese University of Hong KongHong KongChina
- Center of Clinical Laboratory Medicine, Zhongda HospitalSoutheast UniversityNanjingChina
| | - Chun Kit Choi
- Department of Chemical PathologyThe Chinese University of Hong KongHong KongChina
| | - Giovanni Giglio
- Bridge Institute of Experimental Tumor Therapy, West German Cancer CenterUniversity Hospital EssenEssenGermany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZHeidelbergGermany
| | - Luay Farah
- Bridge Institute of Experimental Tumor Therapy, West German Cancer CenterUniversity Hospital EssenEssenGermany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZHeidelbergGermany
| | - Ting‐Fan Leung
- Department of PaediatricsThe Chinese University of Hong KongHong KongChina
| | - Katie Ching‐Yau Wong
- Department of Chemical PathologyThe Chinese University of Hong KongHong KongChina
| | - Lea Ling‐Yu Kan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal PlantsThe Chinese University of Hong KongHong KongChina
| | | | - Qing‐Jun Meng
- Welcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Centre for Biological Timing, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Jinyue Liao
- Department of Chemical PathologyThe Chinese University of Hong KongHong KongChina
| | - Phyllis Fung‐Yi Cheung
- Bridge Institute of Experimental Tumor Therapy, West German Cancer CenterUniversity Hospital EssenEssenGermany
- Division of Solid Tumor Translational OncologyGerman Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZHeidelbergGermany
- Spatiotemporal tumor heterogeneity, German Cancer Consortium (DKTK)A Partnership Between German Cancer Research Center (DKFZ) and University HospitalEssenGermany
| | - Chun‐Kwok Wong
- Department of Chemical PathologyThe Chinese University of Hong KongHong KongChina
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal PlantsThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
11
|
Wang J, Jia D, Zhang Z, Wang D. Exerkines and Sarcopenia: Unveiling the Mechanism Behind Exercise-Induced Mitochondrial Homeostasis. Metabolites 2025; 15:59. [PMID: 39852400 PMCID: PMC11767263 DOI: 10.3390/metabo15010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Sarcopenia, characterized by the progressive loss of muscle mass and strength, is linked to physical disability, metabolic dysfunction, and an increased risk of mortality. Exercise therapy is currently acknowledged as a viable approach for addressing sarcopenia. Nevertheless, the molecular mechanisms behind exercise training or physical activity remain poorly understood. The disruption of mitochondrial homeostasis is implicated in the pathogenesis of sarcopenia. Exercise training effectively delays the onset of sarcopenia by significantly maintaining mitochondrial homeostasis, including promoting mitophagy, improving mitochondrial biogenesis, balancing mitochondrial dynamics, and maintaining mitochondrial redox. Exerkines (e.g., adipokines, myokines, hepatokines, and osteokines), signaling molecules released in response to exercise training, may potentially contribute to skeletal muscle metabolism through ameliorating mitochondrial homeostasis, reducing inflammation, and regulating protein synthesis as a defense against sarcopenia. Methods: In this review, we provide a detailed summary of exercise-induced exerkines and confer their benefit, with particular focus on their impact on mitochondrial homeostasis in the context of sarcopenia. Results: Exercise induces substantial adaptations in skeletal muscle, including increased muscle mass, improved muscle regeneration and hypertrophy, elevated hormone release, and enhanced mitochondrial function. An expanding body of research highlights that exerkines have the potential to regulate processes such as mitophagy, mitochondrial biogenesis, dynamics, autophagy, and redox balance. These mechanisms contribute to the maintenance of mitochondrial homeostasis, thereby supporting skeletal muscle metabolism and mitochondrial health. Conclusions: Through a comprehensive investigation of the molecular mechanisms within mitochondria, the context reveals new insights into the potential of exerkines as key exercise-protective sensors for combating sarcopenia.
Collapse
Affiliation(s)
- Jiayin Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (D.J.)
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (D.J.)
| | - Zhiwang Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (D.J.)
| | - Dan Wang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
12
|
Xu M, Liu X, Lu L, Li Z. Metrnl and Cardiomyopathies: From Molecular Mechanisms to Therapeutic Insights. J Cell Mol Med 2025; 29:e70371. [PMID: 39853716 PMCID: PMC11756984 DOI: 10.1111/jcmm.70371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Cardiomyopathies, a diverse group of diseases affecting the heart muscle, continue to pose significant clinical challenges due to their complex aetiologies and limited treatment options targeting underlying genetic and molecular dysregulations. Emerging evidence indicates that Metrnl, a myokine, adipokine and cardiokine, plays a significant role in the pathogenesis of various cardiomyopathies. Therefore, the objective of this review is to examine the role and mechanism of Metrnl in various cardiomyopathies, with the expectation of providing new insights for the treatment of these diseases.
Collapse
Affiliation(s)
- Miaomiao Xu
- School of Physical Education and HealthGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiaoguang Liu
- College of Sports and HealthGuangzhou Sport UniversityGuangzhouGuangdongChina
| | - Liming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Zhaowei Li
- School of Physical Education and HealthGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| |
Collapse
|
13
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
14
|
Yin K, Zhang C, Deng Z, Wei X, Xiang T, Yang C, Chen C, Chen Y, Luo F. FAPs orchestrate homeostasis of muscle physiology and pathophysiology. FASEB J 2024; 38:e70234. [PMID: 39676717 PMCID: PMC11647758 DOI: 10.1096/fj.202400381r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
As a common clinical manifestation, muscle weakness is prevalent in people with mobility disorders. Further studies of muscle weakness have found that patients with muscle weakness present with persistent muscle inflammation, loss of muscle fibers, fat infiltration, and interstitial fibrosis. Therefore, we propose the concept of muscle microenvironment homeostasis, which explains the abnormal pathological changes in muscles through the imbalance of muscle microenvironment homeostasis. And we identified an interstitial progenitor cell FAP during the transition from normal muscle microenvironment homeostasis to muscle microenvironment imbalance caused by muscle damage diseases. As a kind of pluripotent stem cell, FAPs do not participate in myogenic differentiation, but can differentiate into fibroblasts, adipocytes, osteoblasts, and chondrocytes. As a kind of mesenchymal progenitor cell, it is involved in the generation of extracellular matrix, regulate muscle regeneration, and maintain neuromuscular junction. However, the muscle microenvironment is disrupted by the causative factors, and the abnormal activities of FAPs eventually contribute to the complex pathological changes in muscles. Targeting the mechanisms of these muscle pathological changes, we have identified appropriate signaling targets for FAPs to improve and even treat muscle damage diseases. In this review, we propose the construction of muscle microenvironmental homeostasis and find the key cells that cause pathological changes in muscle after homeostasis is broken. By studying the mechanism of abnormal differentiation and apoptosis of FAPs, we found a strategy to inhibit the abnormal pathological changes in muscle damage diseases and improve muscle regeneration.
Collapse
Affiliation(s)
- Kai Yin
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Chengmin Zhang
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Zihan Deng
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Xiaoyu Wei
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Tingwen Xiang
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Chuan Yang
- Department of Biomedical Materials ScienceThird Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Can Chen
- Department for Combat Casualty Care TrainingTraining Base for Army Health Care, Army Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Yueqi Chen
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Fei Luo
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| |
Collapse
|
15
|
Wang ZY, Li YM, Yan JJ, Wang Q, Zhao C, Lu X, Shen ZK, Xu JS, Gao W. Low serum Metrnl levels are associated with increased risk of sarcopenia in the older adults. Eur Geriatr Med 2024; 15:1849-1857. [PMID: 39361190 PMCID: PMC11632026 DOI: 10.1007/s41999-024-01074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 12/11/2024]
Abstract
PURPOSE Sarcopenia is a geriatric syndrome characterized by progressive loss of muscle mass and function. Meteorin-like (Metrnl) is a secretory protein that has protective effects on skeletal muscle injury. However, the association of Metrnl level with sarcopenia remains unclear. METHODS A total of 772 community-dwelling older adults (median age = 76 years), comprising 409 males and 363 females, from both urban and rural areas were enrolled. Serum Metrnl was measured by enzyme-linked immunosorbent assay. Appendicular skeletal muscle mass index (ASMI), grip strength, and gait speed were measured for the assessment of sarcopenia. RESULTS We found that serum Metrnl levels were lower in patients with sarcopenia [median (IQR) = 180.1 (151.3-220.3) pg/mL] than older adults without sarcopenia [211.9 (163.2-270.0) pg/mL, P < 0.001]. Receiver-operating characteristic curve analysis showed that the optimal cut-off value of serum Metrnl level that predicted sarcopenia was 197.2 pg/mL with a sensitivity of 59.2% and a specificity of 63.8% (AUC = 0.63, 95% CI = 0.59-0.67, P < 0.001). Multivariate logistic regression analyses showed that lower serum Metrnl level (< 197.2 pg/mL) was significantly associated with increased risk of sarcopenia (adjusted OR = 2.358, 2.36, 95% CI = 1.528-3.685, P < 0.001). Moreover, serum Metrnl concentration was positively correlated with the components of sarcopenia including ASMI (r = 0.135, P < 0.001), grip strength (r = 0.102, P = 0.005), and gait speed (r = 0.106, P = 0.003). CONCLUSIONS Taken together, our findings demonstrate that low serum Metrnl level is correlated with increased risk of sarcopenia in the older adults.
Collapse
Affiliation(s)
- Zhi-Yue Wang
- Department of Geriatrics, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Yi-Min Li
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jian-Jun Yan
- Department of Cardiology, The People's Hospital of Rugao, Rugao, China
| | - Quan Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng-Kai Shen
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Jin-Shui Xu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
16
|
Kusano T, Sotani Y, Takeda R, Hatano A, Kawata K, Kano R, Matsumoto M, Kano Y, Hoshino D. Time-series transcriptomics reveals distinctive mRNA expression dynamics associated with gene ontology specificity and protein expression in skeletal muscle after electrical stimulation-induced resistance exercise. FASEB J 2024; 38:e70153. [PMID: 39545720 PMCID: PMC11698011 DOI: 10.1096/fj.202401420rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Resistance exercise upregulates and downregulates the expression of a wide range of genes in skeletal muscle. However, detailed analysis of mRNA dynamics such as response rates and temporal patterns of the transcriptome after resistance exercise has not been performed. We aimed to clarify the dynamics of time-series transcriptomics after resistance exercise. We used electrical stimulation-induced muscle contraction as a resistance exercise model (5 sets × 10 times of 3 s of 100-Hz electrical stimulation) on the tibialis anterior muscle of rats and measured the transcriptome in the muscle before and at 0, 1, 3, 6, and 12 h after muscle contractions by RNA sequencing. We also examined the relationship between the parameters of mRNA dynamics and the increase in protein expression at 12 h after muscle contractions. We found that the function of the upregulated genes differed after muscle contractions depending on their response rate. Genes related to muscle differentiation and response to mechanical stimulus were enriched in the sustainedly upregulated genes. Furthermore, there was a positive correlation between the magnitude of upregulated mRNA expression and the corresponding protein expression level at 12 h after muscle contractions. Although it has been theoretically suggested, this study experimentally demonstrated that the magnitude of the mRNA response after electrical stimulation-induced resistance exercise contributes to skeletal muscle adaptation via increases in protein expression. These findings suggest that mRNA expression dynamics such as response rate, a sustained upregulated expression pattern, and the magnitude of the response contribute to mechanisms underlying adaptation to resistance exercise.
Collapse
Affiliation(s)
- Tatsuya Kusano
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| | - Yuta Sotani
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| | - Reo Takeda
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaIbarakiJapan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
| | - Kentaro Kawata
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaIbarakiJapan
| | - Ryotaro Kano
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataNiigataJapan
| | - Yutaka Kano
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| | - Daisuke Hoshino
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofuTokyoJapan
| |
Collapse
|
17
|
Wang L, Wang M, Tang X, Zhang M, Zhang K, Gao B. Mechanistic Studies of Cyclooxygenase-2 (COX-2) in Skeletal Muscle Cells During Rotator Cuff Injury: An In Vitro Study. Physiol Res 2024; 73:769-778. [PMID: 39545791 PMCID: PMC11629944 DOI: 10.33549/physiolres.935282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/15/2024] [Indexed: 12/13/2024] Open
Abstract
The mechanism of rotator cuff injury remains to be elucidated. And COX-2 plays a dual role in skeletal muscle injury and regeneration, would be associated with the development of rotator cuff injury. Therefore, we chose human skeletal muscle cells (HSKMC) as an in vitro muscle tissue model and transfected lentivirus with overexpressed COX-2 to simulate the in vitro environment of rotator cuff injury. To investigate the specific molecular biological mechanism of COX-2, transcriptome sequencing (RNA-Seq) was used to analyze the differentially expressed mRNAs in HSKMC overexpressing COX-2. Enrichment analysis was performed to analyze these differentially expressed genes and real-time quantitative PCR (RT-qPCR) was used to examine the mRNA levels of genes induced by overexpression. Subsequently, the role of COX-2 in cell proliferation was confirmed by cell counting kit-8 (CCK-8), and focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) phosphorylation induced by COX-2 was utilized by western blotting (WB). The results showed that total of 30,759 differentially expressed genes were obtained, and the expression of CYP4F3 and GPR87 was significantly increased. COX-2 could bind CYP4F3 and GPR87 and co-localize with them in the cytoplasm. Finally, COX-2 promoted the proliferation of human skeletal muscle cells by activating the FAK and STAT3 pathways.
Collapse
Affiliation(s)
- L Wang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Jiangbei District, Ningbo, Zhejiang Province, China.
| | | | | | | | | | | |
Collapse
|
18
|
Miao ZW, Chen J, Chen CX, Zheng SL, Zhao HY, Miao CY. Metrnl as a secreted protein: Discovery and cardiovascular research. Pharmacol Ther 2024; 263:108730. [PMID: 39401532 DOI: 10.1016/j.pharmthera.2024.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Secreted proteins have gained more and more attentions, since they can become therapeutic targets, drugs and biomarkers for prevention, diagnosis and treatment of disease and aging. In 2014, Metrnl (also named Meteorin-like, Cometin, Subfatin, Interleukin-39, Interleukin-41, Meteorin-β, and Metrn-β/Metrnβ), as a novel secreted protein released from a certain tissue, was reported by us and others. During the past decade, the number of articles on Metrnl has continued to increase. Different sources of Metrnl have been described with different functions, including Metrnl as an adipokine for insulin sensitization, a cardiokine against cardiac hypertrophy and dysfunction, an endothelium-derived factor against endothelial dysfunction and atherosclerosis, etc. Especially, we show that endothelial Metrnl is a major source for circulating Metrnl levels. Meanwhile, lots of clinical studies have investigated the relationship between blood Metrnl levels and metabolic, inflammatory and cardiovascular diseases. Metrnl appears a protective factor and a promising therapeutic target and/or drug against these diseases, given the relatively consistent conclusion from the preclinical studies. In addition to graphically demonstrating the role of Metrnl in various organs and diseases, this review will mainly describe the discovery of Metrnl, summarize the role of Metrnl in cardiovascular system that is a recently major progress in Metrnl research, and highlight several perspectives for future basic and translational research. Also, we suggest using one name Metrnl instead of other multiple names for the same protein.
Collapse
Affiliation(s)
- Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Jin Chen
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China; Department of Endocrinology and Metabolism, Changhai Hospital, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Can-Xin Chen
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Si-Li Zheng
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Huan-Yu Zhao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, China.
| |
Collapse
|
19
|
Das S, Preethi B, Kushwaha S, Shrivastava R. Therapeutic strategies to modulate gut microbial health: Approaches for sarcopenia management. Histol Histopathol 2024; 39:1395-1425. [PMID: 38497338 DOI: 10.14670/hh-18-730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sarcopenia is a progressive and generalized loss of skeletal muscle and functions associated with ageing with currently no definitive treatment. Alterations in gut microbial composition have emerged as a significant contributor to the pathophysiology of multiple diseases. Recently, its association with muscle health has pointed to its potential role in mediating sarcopenia. The current review focuses on the association of gut microbiota and mediators of muscle health, connecting the dots between the influence of gut microbiota and their metabolites on biomarkers of sarcopenia. It further delineates the mechanism by which the gut microbiota affects muscle health with progressing age, aiding the formulation of a multi-modal treatment plan involving nutritional supplements and pharmacological interventions along with lifestyle changes compiled in the review. Nutritional supplements containing proteins, vitamin D, omega-3 fatty acids, creatine, curcumin, kefir, and ursolic acid positively impact the gut microbiome. Dietary fibres foster a conducive environment for the growth of beneficial microbes such as Bifidobacterium, Faecalibacterium, Ruminococcus, and Lactobacillus. Probiotics and prebiotics act by protecting against reactive oxygen species (ROS) and inflammatory cytokines. They also increase the production of gut microbiota metabolites like short-chain fatty acids (SCFAs), which aid in improving muscle health. Foods rich in polyphenols are anti-inflammatory and have an antioxidant effect, contributing to a healthier gut. Pharmacological interventions like faecal microbiota transplantation (FMT), non-steroidal anti-inflammatory drugs (NSAIDs), ghrelin mimetics, angiotensin-converting enzyme inhibitors (ACEIs), and butyrate precursors lead to the production of anti-inflammatory fatty acids and regulate appetite, gut motility, and microbial impact on gut health. Further research is warranted to deepen our understanding of the interaction between gut microbiota and muscle health for developing therapeutic strategies for ameliorating sarcopenic muscle loss.
Collapse
Affiliation(s)
- Shreya Das
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - B Preethi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, India.
| | - Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India.
| |
Collapse
|
20
|
Wang Y, Yuan J, Liu H, Chen J, Zou J, Zeng X, Du L, Sun X, Xia Z, Geng Q, Cai Y, Liu J. Elevated meteorin-like protein from high-intensity interval training improves heart function via AMPK/HDAC4 pathway. Genes Dis 2024; 11:101100. [PMID: 39281832 PMCID: PMC11400619 DOI: 10.1016/j.gendis.2023.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 09/18/2024] Open
Abstract
High-intensity interval training (HIIT) has been found to be more effective in relieving heart failure (HF) symptoms, than moderate-intensity continuous aerobic training (MICT). Additionally, higher meteorin-like protein (Metrnl) levels are seen after HIIT versus MICT. We investigated whether Metrnl contributed to post-HF cardiac functional improvements, and the signaling pathways involved. 50 HF patients underwent MICT, and another 50, HIIT, which was followed by cardiac function and serum Metrnl measurements. Metrnl was also measured in both blood and skeletal muscle samples of mice with transverse aortic constriction-induced HF after undergoing HIIT. Afterward, shRNA-containing adenovectors were injected into mice, yielding five groups: control, HF, HF + HIIT + scrambled shRNA, HF + HIIT + shMetrnl, and HF + Metrnl (HF + exogenous Metrnl). Mass spectrometry identified specific signaling pathways associated with increased Metrnl, which was confirmed with biochemical analyses. Glucose metabolism and mitochondrial functioning were evaluated in cardiomyocytes from the five groups. Both HF patients and mice had higher circulating Metrnl levels post-HIIT. Metrnl activated AMPK in cardiomyocytes, subsequently increasing histone deacetylase 4 (HDAC4) phosphorylation, leading to its cytosolic sequestration and inactivation via binding with chaperone protein 14-3-3. HDAC4 inactivation removed its repression on glucose transporter type 4, which, along with increased mitochondrial complex I-V expression, yielded improved aerobic glucose respiration and alleviation of mitochondrial dysfunction. All these changes ultimately result in improved post-HF cardiac functioning. HIIT increased skeletal muscle Metrnl production, which then operated on HF hearts to alleviate their functional defects, via increasing aerobic glucose metabolism through AMPK-HDAC4 signaling.
Collapse
Affiliation(s)
- Yongshun Wang
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Huadong Liu
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Jie Chen
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Jieru Zou
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Xiaoyi Zeng
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Lei Du
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Xin Sun
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Qingshan Geng
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jingjin Liu
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| |
Collapse
|
21
|
Hernandez-Torres F, Matias-Valiente L, Alzas-Gomez V, Aranega AE. Macrophages in the Context of Muscle Regeneration and Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:10393. [PMID: 39408722 PMCID: PMC11477283 DOI: 10.3390/ijms251910393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages are essential to muscle regeneration, as they regulate inflammation, carry out phagocytosis, and facilitate tissue repair. These cells exhibit phenotypic switching from pro-inflammatory (M1) to anti-inflammatory (M2) states during muscle repair, influencing myoblast proliferation, differentiation, and myofiber formation. In Duchenne Muscular Dystrophy (DMD), asynchronous muscle injuries disrupt the normal temporal stages of regeneration, leading to fibrosis and failed regeneration. Altered macrophage activity is associated with DMD progression and physiopathology. Gaining insight into the intricate relationship between macrophages and muscle cells is crucial for creating effective therapies aimed at treating this muscle disorder. This review explores the dynamic functions of macrophages in muscle regeneration and their implications in DMD.
Collapse
Affiliation(s)
- Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
| | - Lidia Matias-Valiente
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Virginia Alzas-Gomez
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Amelia Eva Aranega
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| |
Collapse
|
22
|
Byun WS, Lee J, Baek JH. Beyond the bulk: overview and novel insights into the dynamics of muscle satellite cells during muscle regeneration. Inflamm Regen 2024; 44:39. [PMID: 39327631 PMCID: PMC11426090 DOI: 10.1186/s41232-024-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Skeletal muscle possesses remarkable regenerative capabilities, fully recovering within a month following severe acute damage. Central to this process are muscle satellite cells (MuSCs), a resident population of somatic stem cells capable of self-renewal and differentiation. Despite the highly predictable course of muscle regeneration, evaluating this process has been challenging due to the heterogeneous nature of myogenic precursors and the limited insight provided by traditional markers with overlapping expression patterns. Notably, recent advancements in single-cell technologies, such as single-cell (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), have revolutionized muscle research. These approaches allow for comprehensive profiling of individual cells, unveiling dynamic heterogeneity among myogenic precursors and their contributions to regeneration. Through single-cell transcriptome analyses, researchers gain valuable insights into cellular diversity and functional dynamics of MuSCs post-injury. This review aims to consolidate classical and new insights into the heterogeneity of myogenic precursors, including the latest discoveries from novel single-cell technologies.
Collapse
Affiliation(s)
- Woo Seok Byun
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jinu Lee
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
23
|
Shi R, He M, Peng Y, Xia X. Homotherapy for heteropathy: Interleukin-41 and its biological functions. Immunology 2024; 173:1-13. [PMID: 38594835 DOI: 10.1111/imm.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
Interleukin-41 (IL-41) is a newly discovered cytokine, named Cometin, Subfatin, meteorin-like transcription (Metrnl), and so forth. It is widely expressed in animals and can exert its biological roles through autocrine and paracrine forms. It has functions such as anti-inflammatory, improving body metabolism, regulating immunity, regulating fat metabolism and participates in the process of autoimmune disease or inflammatory injury. It plays an important role in psoriasis, diabetes, Crohn's disease (CD), osteoarthritis, Kawasaki disease (KD), Graves' disease, autoimmune hepatitis, infertility, obesity, sepsis, cardiovascular diseases and respiratory diseases. This paper reviews the biological functions of IL-41, the relationship between IL-41 and diseases, the effects of IL-41 in the cytokine network and the possible signalling pathways. In order to explore the same target or the same drug for the treatment of different diseases from the perspective of homotherapy for heteropathy, cytokine strategies based on IL-41 have been put forward for the precise treatment of immune diseases and inflammatory diseases. It is worth noting that IL-41 related preparations for lung protection and smoking cessation are interesting research fields.
Collapse
Affiliation(s)
- Runfeng Shi
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Meixin He
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Yongzheng Peng
- Department of Transfusion Medicine and Laboratory Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xu Xia
- Southern Medical University Library, Guangzhou, China
| |
Collapse
|
24
|
Li R, Cao Y, Wu W, Liu H, Xu S. Inhibitor of FTO, Rhein, Restrains the Differentiation of Myoblasts and Delays Skeletal Muscle Regeneration. Animals (Basel) 2024; 14:2434. [PMID: 39199967 PMCID: PMC11350746 DOI: 10.3390/ani14162434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
N6-methyladenosine (m6A) is a crucial RNA modification affecting skeletal muscle development. Rhein, an anti-inflammatory extract, inhibits FTO, a key demethylase in m6A metabolism. Our study showed that during muscle fiber formation, FTO and ALKBH5 expression increased while m6A levels decreased. After muscle injury, FTO and ALKBH5 expression initially rose but later fell, while m6A levels initially dropped and then recovered. Inhibition of FTO by Rhein reduced MyHC and MyoG expression, indicating myoblast differentiation suppression. In a mouse model, Rhein decreased MyHC expression and muscle fiber cross-sectional area, delaying muscle regeneration. Rhein's ability to increase RNA m6A modification delays skeletal muscle remodeling post-injury, suggesting a new medicinal application for this plant extract.
Collapse
Affiliation(s)
- Rongyang Li
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210095, China;
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (W.W.); (H.L.)
| | - Yan Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (W.W.); (H.L.)
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (W.W.); (H.L.)
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (W.W.); (H.L.)
| | - Shiyong Xu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210095, China;
| |
Collapse
|
25
|
Jackson CM, Pant A, Dinalankara W, Choi J, Jain A, Nitta R, Yazigi E, Saleh L, Zhao L, Nirschl TR, Kochel CM, Hwa-Lin Bergsneider B, Routkevitch D, Patel K, Cho KB, Tzeng S, Neshat SY, Kim YH, Smith BJ, Ramello MC, Sotillo E, Wang X, Green JJ, Bettegowda C, Li G, Brem H, Mackall CL, Pardoll DM, Drake CG, Marchionni L, Lim M. The cytokine Meteorin-like inhibits anti-tumor CD8 + T cell responses by disrupting mitochondrial function. Immunity 2024; 57:1864-1877.e9. [PMID: 39111315 PMCID: PMC11324406 DOI: 10.1016/j.immuni.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/08/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Tumor-infiltrating lymphocyte (TIL) hypofunction contributes to the progression of advanced cancers and is a frequent target of immunotherapy. Emerging evidence indicates that metabolic insufficiency drives T cell hypofunction during tonic stimulation, but the signals that initiate metabolic reprogramming in this context are largely unknown. Here, we found that Meteorin-like (METRNL), a metabolically active cytokine secreted by immune cells in the tumor microenvironment (TME), induced bioenergetic failure of CD8+ T cells. METRNL was secreted by CD8+ T cells during repeated stimulation and acted via both autocrine and paracrine signaling. Mechanistically, METRNL increased E2F-peroxisome proliferator-activated receptor delta (PPARδ) activity, causing mitochondrial depolarization and decreased oxidative phosphorylation, which triggered a compensatory bioenergetic shift to glycolysis. Metrnl ablation or downregulation improved the metabolic fitness of CD8+ T cells and enhanced tumor control in several tumor models, demonstrating the translational potential of targeting the METRNL-E2F-PPARδ pathway to support bioenergetic fitness of CD8+ TILs.
Collapse
Affiliation(s)
- Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ayush Pant
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wikum Dinalankara
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Choi
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Aanchal Jain
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan Nitta
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Eli Yazigi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Saleh
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas R Nirschl
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina M Kochel
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Denis Routkevitch
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kisha Patel
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kwang Bog Cho
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Stephany Tzeng
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Y Neshat
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Young-Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Barbara J Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Cecilia Ramello
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Elena Sotillo
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Jordan J Green
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Crystal L Mackall
- Center for Cell Therapy, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Drake
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luigi Marchionni
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
26
|
Sharma AR, Chatterjee S, Lee YH, Lee SS. Targeting Crosstalk of Signaling Pathways among Muscles-Bone-Adipose Tissue: A Promising Therapeutic Approach for Sarcopenia. Aging Dis 2024; 15:1619-1645. [PMID: 37815907 PMCID: PMC11272187 DOI: 10.14336/ad.2023.00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/03/2023] [Indexed: 10/12/2023] Open
Abstract
The aging process is associated with the development of a wide range of degenerative disorders in mammals. These diseases are characterized by a progressive decline in function at multiple levels, including the molecular, cellular, tissue, and organismal. Furthermore, it is responsible for various healthcare costs in developing and developed countries. Sarcopenia is the deterioration in the quality and functionality of muscles, which is extremely concerning as it manages many functions in the human body. This article reviews the molecular crosstalk involved in sarcopenia and the specific roles of many mediator molecules in establishing cross-talk between muscles, bone, and fatty tissues, eventually leading to sarcopenia. Besides, the involvement of various etiological factors, such as neurology, endocrinology, lifestyle, etc., makes it exceedingly difficult for clinicians to develop a coherent hypothesis that may lead to the well-organized management system required to battle this debilitating disease. The several hallmarks contributing to the progression of the disease is a vital question that needs to be addressed to ensure an efficient treatment for sarcopenia patients. Also, the intricate molecular mechanism involved in developing this disease requires more studies. The direct relationship of cellular senescence with aging is one of the pivotal issues contributing to disease pathophysiology. Some patented treatment strategies have been discussed, including drugs undergoing clinical trials and emerging options like miRNA and protein-enclosed extracellular vesicles. A clear understanding of the secretome, including the signaling pathways involved between muscles, bone, and fatty tissues, is extremely beneficial for developing novel therapeutics for curing sarcopenia.
Collapse
Affiliation(s)
| | | | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
27
|
Shangguan J, Liu G, Xiao L, Zhang W, Zhu X, Li L. Meteorin‑like/meteorin‑β protects against cardiac dysfunction after myocardial infarction in mice by inhibiting autophagy. Exp Ther Med 2024; 28:293. [PMID: 38827476 PMCID: PMC11140287 DOI: 10.3892/etm.2024.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/06/2023] [Indexed: 06/04/2024] Open
Abstract
Meteorin-β (Metrnβ) is a protein that is secreted by skeletal muscle and adipose tissue, and participates in cardiovascular diseases. However, its role in myocardial infarction (MI) has not been fully elucidated to date. The aim of the present study was to investigate the role and underlying mechanism of Metrnβ in MI. In the present study, mice were subjected to left coronary ligation to induce a MI model before being injected with adeno-associated virus 9 (AAV9)-Metrnβ to overexpress Metrnβ. Mice were subjected to echocardiography and pressure-volume measurements 2 weeks after ligation. Cardiac injury was measured from the levels of cardiac troponin T and pro-inflammatory factors, which were detected using ELISA kits. Cardiac remodelling was determined from the cross-sectional areas detected using H&E and wheat germ agglutinin staining as well as from the transcriptional levels of hypertrophic and fibrosis markers detected using reverse transcription-quantitative PCR. Cardiac function was detected using echocardiography and pressure-volume measurements. In addition, H9c2 cardiomyocytes were transfected with Ad-Metrnβ to overexpress Metrnβ, before being exposed to hypoxia to induce ischaemic injury. Apoptosis was determined using TUNEL staining and caspase 3 activity. Cell inflammation was detected using ELISA assays for pro-inflammatory factors. Autophagy was detected using LC3 staining and assessing the protein level of LC3II using western blotting. H9c2 cells were also treated with rapamycin to induce autophagy. It was revealed that Metrnβ expression was reduced in both mouse serum and heart tissue 2 weeks post-MI. Metrnβ overexpression using AAV9-Metrnβ delivery reduced the mortality rate, decreased the infarction size and reduced the extent of myocardial injury 2 weeks post-MI. Furthermore, Metrnβ overexpression inhibited cardiac hypertrophy, fibrosis and inflammation post-MI. In ischaemic H9c2 cells, Metrnβ overexpression using adenovirus also reduced cell injury, cell death and inflammatory response. Metrnβ overexpression suppressed MI-induced autophagy in vitro. Following autophagy activation using rapamycin in vitro, the protective effects induced by Metrnβ were reversed. Taken together, these results indicated that Metrnβ could protect against cardiac dysfunction post-MI in mice by inhibiting autophagy.
Collapse
Affiliation(s)
- Jiahong Shangguan
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Gangqiong Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenjing Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaodan Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
28
|
Han J, Rindone AN, Elisseeff JH. Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311646. [PMID: 38416061 PMCID: PMC11239302 DOI: 10.1002/adma.202311646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Musculoskeletal diseases and injuries are among the leading causes of pain and morbidity worldwide. Broad efforts have focused on developing pro-regenerative biomaterials to treat musculoskeletal conditions; however, these approaches have yet to make a significant clinical impact. Recent studies have demonstrated that the immune system is central in orchestrating tissue repair and that targeting pro-regenerative immune responses can improve biomaterial therapeutic outcomes. However, aging is a critical factor negatively affecting musculoskeletal tissue repair and immune function. Hence, understanding how age affects the response to biomaterials is essential for improving musculoskeletal biomaterial therapies. This review focuses on the intersection of the immune system and aging in response to biomaterials for musculoskeletal tissue repair. The article introduces the general impacts of aging on tissue physiology, the immune system, and the response to biomaterials. Then, it explains how the adaptive immune system guides the response to injury and biomaterial implants in cartilage, muscle, and bone and discusses how aging impacts these processes in each tissue type. The review concludes by highlighting future directions for the development and translation of personalized immunomodulatory biomaterials for musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Alexandra N. Rindone
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine; Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| |
Collapse
|
29
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
30
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
31
|
Sun Z, Yan M, Wang J, Zhang H, Ji X, Xiao Y, Wang T, Yu T. Single-cell RNA sequencing reveals different chondrocyte states in femoral cartilage between osteoarthritis and healthy individuals. Front Immunol 2024; 15:1407679. [PMID: 38868774 PMCID: PMC11167083 DOI: 10.3389/fimmu.2024.1407679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Background Cartilage injury is the main pathological manifestation of osteoarthritis (OA). Healthy chondrocyte is a prerequisite for cartilage regeneration and repair. Differences between healthy and OA chondrocyte types and the role these types play in cartilage regeneration and OA progression are unclear. Method This study conducted single-cell RNA sequencing (scRNA-seq) on the cartilage from normal distal femur of the knee (NC group) and OA femur (OA group) cartilage, the chondrocyte atlas was constructed, and the differences of cell subtypes between the two groups were compared. Pseudo-time and RNA velocity analysis were both performed to verify the possible differentiation sequence of cell subtypes. GO and KEGG pathway enrichment analysis were used to explore the potential functional characteristics of each cell subtype, and to predict the functional changes during cell differentiation. Differences in transcriptional regulation in subtypes were explored by single-cell regulatory network inference and clustering (SCENIC). The distribution of each cell subtype in cartilage tissue was identified by immunohistochemical staining (IHC). Result A total of 75,104 cells were included, they were divided into 19 clusters and annotated as 11 chondrocyte subtypes, including two new chondrocyte subtypes: METRNL+ and PRG4+ subtype. METRNL+ is in an early stage during chondrocyte differentiation, and RegC-B is in an intermediate state before chondrocyte dedifferentiation. With cell differentiation, cell subtypes shift from genetic expression to extracellular matrix adhesion and collagen remodeling, and signal pathways shift from HIF-1 to Hippo. The 11 subtypes were finally classified as intrinsic chondrocytes, effector chondrocytes, abnormally differentiated chondrocytes and dedifferentiated chondrocytes. IHC was used to verify the presence and distribution of each chondrocyte subtype. Conclusion This study screened two new chondrocyte subtypes, and a novel classification of each subtype was proposed. METRNL+ subtype is in an early stage during chondrocyte differentiation, and its transcriptomic characteristics and specific pathways provide a foundation for cartilage regeneration. EC-B, PRG4+ RegC-B, and FC are typical subtypes in the OA group, and the HippO-Taz pathway enriched by these cell subtypes may play a role in cartilage repair and OA progression. RegC-B is in the intermediate state before chondrocyte dedifferentiation, and its transcriptomic characteristics may provide a theoretical basis for intervening chondrocyte dedifferentiation.
Collapse
Affiliation(s)
- Zewen Sun
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mingyue Yan
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Junjie Wang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haoyun Zhang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xiaobin Ji
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yujing Xiao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tianrui Wang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tengbo Yu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
32
|
Sánchez-Ramírez D, Mendoza-Rodríguez MG, Alemán OR, Candanedo-González FA, Rodríguez-Sosa M, Montesinos-Montesinos JJ, Salcedo M, Brito-Toledo I, Vaca-Paniagua F, Terrazas LI. Impact of STAT-signaling pathway on cancer-associated fibroblasts in colorectal cancer and its role in immunosuppression. World J Gastrointest Oncol 2024; 16:1705-1724. [PMID: 38764833 PMCID: PMC11099434 DOI: 10.4251/wjgo.v16.i5.1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed and deadliest types of cancer worldwide. CRC displays a desmoplastic reaction (DR) that has been inversely associated with poor prognosis; less DR is associated with a better prognosis. This reaction generates excessive connective tissue, in which cancer-associated fibroblasts (CAFs) are critical cells that form a part of the tumor microenvironment. CAFs are directly involved in tumorigenesis through different mechanisms. However, their role in immunosuppression in CRC is not well understood, and the precise role of signal transducers and activators of transcription (STATs) in mediating CAF activity in CRC remains unclear. Among the myriad chemical and biological factors that affect CAFs, different cytokines mediate their function by activating STAT signaling pathways. Thus, the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors. Here, we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
Collapse
Affiliation(s)
- Damián Sánchez-Ramírez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Mónica G Mendoza-Rodríguez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Omar R Alemán
- Department of Biology, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando A Candanedo-González
- Department of Pathology, National Medical Center Century XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Mauricio Salcedo
- Unidad de Investigacion en Biomedicina y Oncologia Genomica, Instituto Mexciano del Seguro Social, Mexico City 07300, Mexico
| | - Ismael Brito-Toledo
- Servicio de Colon y Recto, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Luis I Terrazas
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| |
Collapse
|
33
|
Molitoris KH, Balu AR, Huang M, Baht GS. The impact of age and sex on the inflammatory response during bone fracture healing. JBMR Plus 2024; 8:ziae023. [PMID: 38560342 PMCID: PMC10978063 DOI: 10.1093/jbmrpl/ziae023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammation is thought to be dysregulated with age leading to impaired bone fracture healing. However, broad analyses of inflammatory processes during homeostatic bone aging and during repair are lacking. Here, we assessed changes in inflammatory cell and cytokine profiles in circulation and in bone tissue to identify age- and sex-dependent differences during homeostasis and repair. During homeostatic aging, male mice demonstrated accumulation of CD4+ helper T cells and CD8+ cytotoxic T cells within bone while both pro-inflammatory "M1" and anti-inflammatory "M2" macrophage numbers decreased. Female mice saw no age-associated changes in immune-cell population in homeostatic bone. Concentrations of IL-1β, IL-9, IFNγ, and CCL3/MIP-1α increased with age in both male and female mice, whereas concentrations of IL-2, TNFα, TNFR1, IL-4, and IL-10 increased only in female mice - thus we termed these "age-accumulated" cytokines. There were no notable changes in immune cell populations nor cytokines within circulation during aging. Sex-dependent analysis demonstrated slight changes in immune cell and cytokine levels within bone and circulation, which were lost upon fracture injury. Fracture in young male mice caused a sharp decrease in number of M1 macrophages; however, this was not seen in aged male mice nor in female mice of any age. Injury itself induced a decrease in the number of CD8+ T cells within the local tissue of aged male and of female mice but not of young mice. Cytokine analysis of fractured mice revealed that age-accumulated cytokines quickly dissipated after fracture injury, and did not re-accumulate in newly regenerated tissue. Conversely, CXCL1/KC-GRO, CXCL2/MIP-2, IL-6, and CCL2/MCP-1 acted as "fracture response" cytokines: increasing sharply after fracture, eventually returning to baseline. Collectively, we classify measured cytokines into three groups: (1) age-accumulated cytokines, (2) female-specific age-accumulated cytokines, and (3) fracture response cytokines. These inflammatory molecules represent potential points of intervention to improve fracture healing outcome.
Collapse
Affiliation(s)
- Kristin Happ Molitoris
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Department of Pathology, Duke University, Durham, NC 27701, United States
| | - Abhinav Reddy Balu
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Mingjian Huang
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Department of Pathology, Duke University, Durham, NC 27701, United States
| | - Gurpreet Singh Baht
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Department of Pathology, Duke University, Durham, NC 27701, United States
| |
Collapse
|
34
|
Caballero-Sánchez N, Alonso-Alonso S, Nagy L. Regenerative inflammation: When immune cells help to re-build tissues. FEBS J 2024; 291:1597-1614. [PMID: 36440547 PMCID: PMC10225019 DOI: 10.1111/febs.16693] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Inflammation is an essential immune response critical for responding to infection, injury and maintenance of tissue homeostasis. Upon injury, regenerative inflammation promotes tissue repair by a timed and coordinated infiltration of diverse cell types and the secretion of growth factors, cytokines and lipids mediators. Remarkably, throughout evolution as well as mammalian development, this type of physiological inflammation is highly associated with immunosuppression. For instance, regenerative inflammation is the consequence of an in situ macrophage polarization resulting in a transition from pro-inflammatory to anti-inflammatory/pro-regenerative response. Immune cells are the first responders upon injury, infiltrating the damaged tissue and initiating a pro-inflammatory response depleting cell debris and necrotic cells. After phagocytosis, macrophages undergo multiple coordinated metabolic and transcriptional changes allowing the transition and dictating the initiation of the regenerative phase. Differences between a highly efficient, complete ad integrum tissue repair, such as, acute skeletal muscle injury, and insufficient regenerative inflammation, as the one developing in Duchenne Muscular Dystrophy (DMD), highlight the importance of a coordinated response orchestrated by immune cells. During regenerative inflammation, these cells interact with others and alter the niche, affecting the character of inflammation itself and, therefore, the progression of tissue repair. Comparing acute muscle injury and chronic inflammation in DMD, we review how the same cells and molecules in different numbers, concentration and timing contribute to very different outcomes. Thus, it is important to understand and identify the distinct functions and secreted molecules of macrophages, and potentially other immune cells, during tissue repair, and the contributors to the macrophage switch leveraging this knowledge in treating diseases.
Collapse
Affiliation(s)
- Noemí Caballero-Sánchez
- Doctoral School of Molecular Cell and Immunobiology, Faculty of Medicine, University of Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
| | - Sergio Alonso-Alonso
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
- Departments Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| |
Collapse
|
35
|
Bareja A, Lee DE, Ho T, Waitt G, McKay LH, Hannou SA, Orenduff MC, McGreevy KM, Binder A, Ryan CP, Soderblom EJ, Belsky DW, Ferrucci L, Das JK, Banskota N, Kraus VB, Huebner JL, Kraus WE, Huffman KM, Baht GS, Horvath S, Parmer RJ, Miles LA, White JP. Liver-derived plasminogen mediates muscle stem cell expansion during caloric restriction through the plasminogen receptor Plg-R KT. Cell Rep 2024; 43:113881. [PMID: 38442019 PMCID: PMC11075744 DOI: 10.1016/j.celrep.2024.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/08/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
An intriguing effect of short-term caloric restriction (CR) is the expansion of certain stem cell populations, including muscle stem cells (satellite cells), which facilitate an accelerated regenerative program after injury. Here, we utilized the MetRSL274G (MetRS) transgenic mouse to identify liver-secreted plasminogen as a candidate for regulating satellite cell expansion during short-term CR. Knockdown of circulating plasminogen prevents satellite cell expansion during short-term CR. Furthermore, loss of the plasminogen receptor KT (Plg-RKT) is also sufficient to prevent CR-related satellite cell expansion, consistent with direct signaling of plasminogen through the plasminogen receptor Plg-RKT/ERK kinase to promote proliferation of satellite cells. Importantly, we are able to replicate many of these findings in human participants from the CALERIE trial. Our results demonstrate that CR enhances liver protein secretion of plasminogen, which signals directly to the muscle satellite cell through Plg-RKT to promote proliferation and subsequent muscle resilience during CR.
Collapse
Affiliation(s)
- Akshay Bareja
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - David E Lee
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Tricia Ho
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Greg Waitt
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Lauren H McKay
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of Chapel Hill, Chapel Hill, NC, USA
| | - Sarah A Hannou
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Melissa C Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Kristen M McGreevy
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Alexandra Binder
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA; Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Calen P Ryan
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Erik J Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Daniel W Belsky
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Luigi Ferrucci
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jayanta Kumar Das
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nirad Banskota
- Longitudinal Studies Section, Translation Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Virginia B Kraus
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - William E Kraus
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - Kim M Huffman
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - Gurpreet S Baht
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA; Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27701, USA
| | - Steve Horvath
- Computational Biology and Genomics Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Altos Labs, San Diego, CA, USA
| | - Robert J Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lindsey A Miles
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - James P White
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA; Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
| |
Collapse
|
36
|
Yin Y, He GJ, Hu S, Tse EHY, Cheung TH. Muscle stem cell niche dynamics during muscle homeostasis and regeneration. Curr Top Dev Biol 2024; 158:151-177. [PMID: 38670704 DOI: 10.1016/bs.ctdb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.
Collapse
Affiliation(s)
- Yishu Yin
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Gary J He
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Shenyuan Hu
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
37
|
Liu N, Dong J, Li L, Zhou D, Liu F. The Function and Mechanism of Anti-Inflammatory Factor Metrnl Prevents the Progression of Inflammatory-Mediated Pathological Bone Osteolytic Diseases. J Inflamm Res 2024; 17:1607-1619. [PMID: 38495340 PMCID: PMC10942011 DOI: 10.2147/jir.s455790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Metrnl, recently identified as an adipokine, is a secreted protein notably expressed in white adipose tissue, barrier tissues, and activated macrophages. This adipokine plays a pivotal role in counteracting obesity-induced insulin resistance. It enhances adipose tissue functionality by promoting adipocyte differentiation, activating metabolic pathways, and exerting anti-inflammatory effects. Extensive research has identified Metrnl as a key player in modulating inflammatory responses and as an integral regulator of muscle regeneration. These findings position Metrnl as a promising biomarker and potential therapeutic target in treating inflammation-associated pathologies. Despite this, the specific anti-inflammatory mechanisms of Metrnl in immune-mediated osteolysis and arthritis remain elusive, warranting further investigation. In this review, we will briefly elaborate on the role of Metrnl in anti-inflammation function in inflammation-related osteolysis, arthritis, and pathological bone resorption, which could facilitate Metrnl's clinical application as a novel therapeutic strategy to prevent bone loss. While the pathogenesis of elbow stiffness remains elusive, current literature suggests that Metrnl likely exerts a pivotal role in its development.
Collapse
Affiliation(s)
- Nan Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Jinlei Dong
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Lianxin Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dongsheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Fanxiao Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
38
|
Theret M, Chazaud B. Skeletal muscle niche, at the crossroad of cell/cell communications. Curr Top Dev Biol 2024; 158:203-220. [PMID: 38670706 DOI: 10.1016/bs.ctdb.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is composed of a variety of tissue and non-tissue resident cells that participate in homeostasis. In particular, the muscle stem cell niche is a dynamic system, requiring direct and indirect communications between cells, involving local and remote cues. Interactions within the niche must happen in a timely manner for the maintenance or recovery of the homeostatic niche. For instance, after an injury, pro-myogenic cues delivered too early will impact on muscle stem cell proliferation, delaying the repair process. Within the niche, myofibers, endothelial cells, perivascular cells (pericytes, smooth muscle cells), fibro-adipogenic progenitors, fibroblasts, and immune cells are in close proximity with each other. Each cell behavior, membrane profile, and secretome can interfere with muscle stem cell fate and skeletal muscle regeneration. On top of that, the muscle stem cell niche can also be modified by extra-muscle (remote) cues, as other tissues may act on muscle regeneration via the production of circulating factors or the delivery of cells. In this review, we highlight recent publications evidencing both local and remote effectors of the muscle stem cell niche.
Collapse
Affiliation(s)
- Marine Theret
- School of Biomedical Engineering and Department of Medical Genetics University of British Columbia, Vancouver, BC, Canada
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, Inserm U1315, CNRS UMR 5261, Lyon, France.
| |
Collapse
|
39
|
Shao M, Wang Q, Lv Q, Zhang Y, Gao G, Lu S. Advances in the research on myokine-driven regulation of bone metabolism. Heliyon 2024; 10:e22547. [PMID: 38226270 PMCID: PMC10788812 DOI: 10.1016/j.heliyon.2023.e22547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
The traditional view posits that bones and muscles interact primarily through mechanical coupling. However, recent studies have revealed that myokines, proteins secreted by skeletal muscle cells, play a crucial role in the regulation of bone metabolism. Myokines are widely involved in bone metabolism, influencing bone resorption and formation by interacting with factors related to bone cell secretion or influencing bone metabolic pathways. Here, we review the research progress on the myokine regulation of bone metabolism, discuss the mechanism of myokine regulation of bone metabolism, explore the pathophysiological relationship between sarcopenia and osteoporosis, and provide future perspectives on myokine research, with the aim of identify potential specific diagnostic markers and therapeutic entry points.
Collapse
Affiliation(s)
- MingHong Shao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiYang Wang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiuNan Lv
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - YuQiong Zhang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - GuoXi Gao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sheng Lu
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
40
|
Zhang S, Huang G, Li M, Mao Y, Li Y. Interleukin-41 as a biomarker of the anti-inflammatory response associated with hyperuricemia. Immunol Lett 2023; 264:25-30. [PMID: 37944821 DOI: 10.1016/j.imlet.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Interleukin (IL)-41 is a recently discovered secreted protein that is expressed in a variety of tissues, and it is associated with several immune and metabolic diseases. However, IL-41 has not been studied in hyperuricemia (HUA). METHODS Forty-four HUA patients and 44 healthy controls (HCs) were included in this study, and we collected theirgeneral and biochemical parameters, including white blood cell, neutrophil, lymphocyte, and platelet counts, mean platelet volume, platelet distribution width, serum creatinine, blood urea nitrogen, fasting blood glucose, total triglyceride, total cholesterol, high-density lipoprotein, low-density lipoprotein, total protein, albumin, alkaline phosphatase, gamma-glutamyltransferase, and hemoglobin concentration. The level of serum IL-41 was determined using an enzyme-linked immunosorbent assay. Multivariate logistic regression analysis was exploited to identify the independent risk factors associated with HUA, and the clinical diagnostic value of IL-41 was analyzed by applying the receiver operating characteristic (ROC) curve. We assessed the association between IL-41 and clinical parameters with Spearman's rank correlation. RESULTS Circulating IL-41 levels were significantly higher in HUA patients than in the HCs group (460.3 pg/mL vs. 261.3 pg/mL, respectively; P < 0.001). The area under the ROC curve (AUC) for IL-41 in HUA patients was 0.7443 (with a cut-off value of 311.055 pg/mL, a sensitivity of 68.18 %, and a specificity of 72.73 %), while the AUC for IL-41 combined with the platelet count was 0.8109. Correlation analysis revealed that the circulating IL-41 level was positively correlated with age in HCs and HUA patients. CONCLUSIONS We herein demonstrated that serum IL-41 was elevated in HUA patients and that it may constitute a novel biomarker of anti-inflammatory response related to HUA.
Collapse
Affiliation(s)
- Shujie Zhang
- Department of Endocrinology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Department of Immunology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Guoqing Huang
- Department of Endocrinology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Department of Immunology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Mingcai Li
- Department of Immunology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yushan Mao
- Department of Endocrinology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China.
| | - Yan Li
- Department of Endocrinology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Department of Immunology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
41
|
Rodríguez-Morales P, Franklin RA. Macrophage phenotypes and functions: resolving inflammation and restoring homeostasis. Trends Immunol 2023; 44:986-998. [PMID: 37940394 PMCID: PMC10841626 DOI: 10.1016/j.it.2023.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Inflammation must be tightly regulated to both defend against pathogens and restore tissue homeostasis. The resolution of inflammatory responses is a dynamic process orchestrated by cells of the immune system. Macrophages, tissue-resident innate immune cells, are key players in modulating inflammation. Here, we review recent work highlighting the importance of macrophages in tissue resolution and the return to homeostasis. We propose that enhancing macrophage pro-resolution functions represents a novel and widely applicable therapeutic strategy to dampen inflammation, promote repair, and restore tissue integrity and function.
Collapse
Affiliation(s)
| | - Ruth A Franklin
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
42
|
Kim HJ, Jung DW, Williams DR. Age Is Just a Number: Progress and Obstacles in the Discovery of New Candidate Drugs for Sarcopenia. Cells 2023; 12:2608. [PMID: 37998343 PMCID: PMC10670210 DOI: 10.3390/cells12222608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Sarcopenia is a disease characterized by the progressive loss of skeletal muscle mass and function that occurs with aging. The progression of sarcopenia is correlated with the onset of physical disability, the inability to live independently, and increased mortality. Due to global increases in lifespan and demographic aging in developed countries, sarcopenia has become a major socioeconomic burden. Clinical therapies for sarcopenia are based on physical therapy and nutritional support, although these may suffer from low adherence and variable outcomes. There are currently no clinically approved drugs for sarcopenia. Consequently, there is a large amount of pre-clinical research focusing on discovering new candidate drugs and novel targets. In this review, recent progress in this research will be discussed, along with the challenges that may preclude successful translational research in the clinic. The types of drugs examined include mitochondria-targeting compounds, anti-diabetes agents, small molecules that target non-coding RNAs, protein therapeutics, natural products, and repositioning candidates. In light of the large number of drugs and targets being reported, it can be envisioned that clinically approved pharmaceuticals to prevent the progression or even mitigate sarcopenia may be within reach.
Collapse
Affiliation(s)
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| |
Collapse
|
43
|
Yalçın T, Kaya S, Kuloğlu T, Yiğin A. N-Acetylcysteine May Regulate Altered Meteorin-Like Levels in Testicular Tissue due to Aluminum Exposure. Biol Trace Elem Res 2023; 201:5335-5345. [PMID: 37016183 DOI: 10.1007/s12011-023-03656-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Aluminum (AL) is a heavy metal known to have toxic effects on the reproductive system. It is known that N-acetylcysteine (NAC), which has an antioxidant effect, is a useful chelator for heavy metals. This study aimed to determine whether NAC may reduce AL-induced oxidative stress, inflammation, and germ cell apoptosis in testicular tissues and its effects on meteorin-like (METRNL) levels, which are known to play a role in energy metabolism. In this experimental study, 28 Sprague-Dawley male rats were randomly divided into 4 groups (n = 7): control, AL (30 mg/kg/day AL), AL + NAC (30 mg/kg/day AL + 150 mg/kg/day NAC), and NAC (150 mg/kg/day NAC). All AL and NAC applications were performed intraperitoneally for 14 days. At the end of the experiment, the effects of AL and/or NAC applications on testicular tissue were examined histomorphometrically, histopathologically, immunohistochemically, and biochemically. It was determined that AL exposure caused histomorphometric and histopathological changes, oxidative stress, apoptosis of germ cells, and inflammation in testicular tissues. In addition, AL caused an increase in METRNL levels. It was determined that NAC treatment significantly reduced the negative effects of AL. NAC therapy may be a protective strategy in reproductive toxicity due to AL exposure.
Collapse
Affiliation(s)
- Tuba Yalçın
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey
| | - Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey.
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Akın Yiğin
- Department of Genetics, Faculty of Veterinary Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
44
|
Song L, Chang X, Hu L, Liu L, Wang G, Huang Y, Xu L, Jin B, Song J, Hu L, Zhang T, Wang Y, Xiao Y, Zhang F, Shi M, Liu L, Chen Q, Guo B, Zhou Y. Accelerating Wound Closure With Metrnl in Normal and Diabetic Mouse Skin. Diabetes 2023; 72:1692-1706. [PMID: 37683051 DOI: 10.2337/db23-0173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Impaired wound healing and ulcer complications are major causes of morbidity in patients with diabetes. Impaired wound healing is associated with increased inflammation and poor angiogenesis in diabetes patients. Here, we demonstrate that topical administration of a secreted recombinant protein (Meteorin-like [Metrnl]) accelerates wound epithelialization and angiogenesis in mice. We observed a significant increase in Metrnl expression during physiological wound healing; however, its expression remained low during diabetic wound healing. Functionally, the recombinant protein Metrnl significantly accelerated wound closure in normal and diabetic mice models including db/db, high-fat diet/streptozotocin (HFD/STZ), and STZ mice. Mechanistically, keratinocytes secrete quantities of Metrnl to promote angiogenesis; increase endothelial cell proliferation, migration, and tube formation; and enhance macrophage polarization to the M2 type. Meanwhile, M2 macrophages secrete Metrnl to further stimulate angiogenesis. Moreover, the keratinocyte- and macrophage-produced cytokine Metrnl drives postinjury angiogenesis and reepithelialization through activation of AKT phosphorylation (S473) in a KIT receptor tyrosine kinase (c-Kit)-dependent manner. In conclusion, our study suggests that Metrnl has a biological effect in accelerating wound closure through c-Kit-dependent angiogenesis and epithelialization. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Lingyu Song
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xuebing Chang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Laying Hu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lu Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guifang Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yali Huang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bangming Jin
- Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianying Song
- School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Lixin Hu
- School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Tian Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qi Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
45
|
Kaya S, Yalcın T, Tektemur A, Kuloğlu T. N-Acetylcysteine may exert hepatoprotective effect by regulating Meteorin-Like levels in Adriamycin-induced liver injury. Cell Stress Chaperones 2023; 28:849-859. [PMID: 37670199 PMCID: PMC10746670 DOI: 10.1007/s12192-023-01376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Adriamycin (ADR) is an important chemotherapeutic drug, but it has serious side effects such as hepatotoxicity. This study aimed to evaluate whether N-acetylcysteine (NAC) has hepatoprotective effects against ADR-induced hepatotoxicity in rats. In addition, it was aimed to determine how Meteorin-Like (MtrnL), which has pleiotropic effects on immunology, inflammation, and metabolism, is affected by ADR and/or NAC applications in liver tissue. 28 rats were randomly assigned to one of four equal groups in the study: control (no treatment), NAC (150 mg/kg/day of NAC intraperitoneally (i.p), ADR (15 mg/kg only on the first day of the experiment), and ADR + NAC (ADR 15 mg/kg on the first day of the experiment + 150 mg/kg/day NAC i.p). After 15 days, liver enzyme levels in serum, oxidant/antioxidant parameters in liver tissue, histopathological changes, caspase 3 (Casp3) and heat shock protein 70 (HSP-70) immunoreactivities, and MtrnL levels were examined. Histopathological changes, liver enzyme levels, as well as HSP-70, and Casp3 immunoreactivities increased due to ADR application. Additionally, MtrnL levels in liver tissue were significantly increased as a result of ADR application. However, it was detected that the NAC application significantly regulated the ADR-induced changes. Furthermore, it was determined that NAC administration regulated the changes in ADR-induced oxidative stress parameters. We propose that NAC may exert a hepatoprotective effect by regulating ADR-induced altered oxidative stress parameters, MtrnL levels, Casp3, and HSP-70 immunoreactivities in the liver.
Collapse
Affiliation(s)
- Sercan Kaya
- Health Services Vocational School, Batman University, Batman, Turkey.
| | - Tuba Yalcın
- Health Services Vocational School, Batman University, Batman, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
46
|
Chen Z, Li J, Peng H, Zhang M, Wu X, Gui F, Li W, Ai F, Yu B, Liu Y. Meteorin-like/Meteorin-β protects LPS-induced acute lung injury by activating SIRT1-P53-SLC7A11 mediated ferroptosis pathway. Mol Med 2023; 29:144. [PMID: 37880599 PMCID: PMC10601160 DOI: 10.1186/s10020-023-00714-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Ferroptosis plays an essential role in lipopolysaccharide (LPS)-induced acute lung injury (ALI). Meteorin-like/Meteorin-β (Metrnβ) is a protein secreted by skeletal muscle and adipose tissue and plays a role in cardiovascular diseases. However, its role in acute lung injury has not been elucidated. METHODS In this study, we used an adenovirus (Ad) delivery system to overexpress or knockdown Metrnβ in lung tissue to examine the role of Metrnβ in LPS-induced acute lung injury. RESULTS We found that ferroptosis was increased during LPS-induced ALI. The expression of Metrnβ was reduced in ALI lung tissue. Overexpression of Metrnβ in lung tissue alleviated LPS-induced lung injury, inflammation, and ferroptosis. Moreover, Metrnβ knockout in lung tissue accelerated LPS-induced ALI, inflammation, and ferroptosis. We also cultured MLE-12 cells and transfected the cells with Ad-Metrnβ or Metrnβ siRNA. Metrnβ overexpression ameliorated LPS-induced MLE cell death, inflammation and ferroptosis, while Metrnβ knockdown aggregated cell survival and decreased inflammation and ferroptosis. Moreover, we found that Metrnβ enhanced ferroptosis-related Gpx4 expression and reduced ferroportin and ferritin levels. Furthermore, we found that Metrnβ positively regulated SIRT1 transcription thus inhibited P53, increased SLC7A11 expression. When we used the ferroptosis inhibitor ferrostatin-1, the deteriorating effects of Metrnβ knockout were abolished in ALI mice. Moreover, SIRT1 knockout also abolished the protective effects of Metrnβ overexpression in vivo. CONCLUSIONS Taken together, Metrnβ could protect LPS-induced ALI by activating SIRT1-P53- SLC7A11 mediated ferroptosis inhibition.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Jun Li
- Department of Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Huan Peng
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Mengli Zhang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xian Wu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Feng Gui
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Wei Li
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China.
| | - Bo Yu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China.
| | - Yijue Liu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
47
|
Wang X, Zhou L. The multifaceted role of macrophages in homeostatic and injured skeletal muscle. Front Immunol 2023; 14:1274816. [PMID: 37954602 PMCID: PMC10634307 DOI: 10.3389/fimmu.2023.1274816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Skeletal muscle is essential for body physical activity, energy metabolism, and temperature maintenance. It has excellent capabilities to maintain homeostasis and to regenerate after injury, which indispensably relies on muscle stem cells, satellite cells (MuSCs). The quiescence, activation, and differentiation of MuSCs are tightly regulated in homeostatic and regenerating muscles. Among the important regulators are intramuscular macrophages, which are functionally heterogeneous with different subtypes present in a spatiotemporal manner to regulate the balance of different MuSC statuses. During chronic injury and aging, intramuscular macrophages often undergo aberrant activation, which in turn disrupts muscle homeostasis and regenerative repair. Growing evidence suggests that the aberrant activation is mainly triggered by altered muscle microenvironment. The trained immunity that affects myeloid progenitors during hematopoiesis may also contribute. Aged immune system may contribute, in part, to the aging-related sarcopenia and compromised skeletal muscle injury repair. As macrophages are actively involved in the progression of many muscle diseases, manipulating their functional activation has become a promising therapeutic approach, which requires comprehensive knowledge of the cellular and molecular mechanisms underlying the diverse activation. To this end, we discuss here the current knowledge of multifaceted role of macrophages in skeletal muscle homeostasis, injury, and repair.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | | |
Collapse
|
48
|
Altintas N, Fazlioglu N, Guzel S, Yilmaz A, Aydın C. Is meteorin-like (Metrnl) a novel biomarker to distinguish patients with obstructive sleep apnea (OSA) and patients with OSA at vascular risk. Sleep Breath 2023; 27:1865-1874. [PMID: 36877355 DOI: 10.1007/s11325-023-02800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
PURPOSE Metrnl, a newly discovered adipokine with significant expression in white adipose tissue, promotes energy expenditure and contributes to the development of cardiovascular disorders. Endocan is a surrogate marker for endothelial dysfunction and is linked to cardiovascular risk factors. Higher cardiovascular morbidity and mortality have been linked to obstructive sleep apnea (OSA). In this study, we investigated the potential of serum Metrnl and endocan as biomarkers to identify patients with OSA who are at increased cardiovascular risk and differentiate them from healthy controls. METHODS The study included the evaluation of serum levels of endocan and Metrnl in individuals with OSA and healthy controls. All participants underwent full polysomnography to evaluate their sleep, and carotid intima-media thickness (CIMT) was measured in each of them. RESULTS Patients with OSA (n = 117) had considerably lower levels of Metrnl and significantly higher levels of endocan than controls (n = 59). Once confounding factors were taken into account, both Metrnl and endocan were effective predictors of OSA. Additionally, the severity of OSA, as determined by the apnea-hypopnea index (AHI), was linked to Metrnl and endocan levels. The study also found a significant and independent inverse association between CIMT and Metrnl, along with a positive association with endocan after making multiple adjustments. Furthermore, there was a significant and independent connection between CIMT and AHI. CONCLUSION Based on these findings, Metrnl and endocan have the potential to be valuable markers for identifying patients with OSA who are at increased risk of early vascular damage.
Collapse
Affiliation(s)
- Nejat Altintas
- Department of Pulmonary Medicine, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey.
| | - Nevin Fazlioglu
- Department of Pulmonary Medicine, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Savas Guzel
- Department of Biochemistry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Ahsen Yilmaz
- Department of Biochemistry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Cihan Aydın
- Department of Cardiology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
49
|
Moradi N, Fadaei R, Roozbehkia M, Nourbakhsh M, Nourbakhsh M, Razzaghy-Azar M, Larijani B. Meteorin-like Protein and Asprosin Levels in Children and Adolescents with Obesity and Their Relationship with Insulin Resistance and Metabolic Syndrome. Lab Med 2023; 54:457-463. [PMID: 36762837 DOI: 10.1093/labmed/lmac152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE Two newly discovered adipokines, including Meteorin-like protein (Metrnl) and asprosin, have been implicated in glucose and insulin metabolism. This study aimed to investigate the associations of these adipokines with obesity in children and adolescents. METHODS This study was performed on 35 normal-weight children and 35 children with obesity. Anthropometric and biochemical parameters were determined. Serum concentrations of Metrnl, asprosin, and insulin were measured using enzyme-linked immunosorbent assay. RESULTS Metrnl level was significantly lower in obese children than normal-weight children. Additionally, Metrnl was negatively correlated with body mass index (BMI), insulin, waist-to-hip ratio, and homeostatic model assessment of insulin resistance (HOMA-IR). Our results also revealed that circulating asprosin levels were significantly increased in obese children compared to the control subjects and were positively correlated with BMI, insulin, HOMA-IR, cholesterol, and LDL-C. CONCLUSION Obesity is accompanied by significant alterations in Metrnl and asprosin and therefore these adipokines, especially Metrnl, are suggested as new promising therapeutic targets for obesity and its associated metabolic imbalances.
Collapse
Affiliation(s)
- Nariman Moradi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism, Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Fadaei
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Roozbehkia
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, TehranIran
| | - Mitra Nourbakhsh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Nourbakhsh
- Hazrat Aliasghar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Razzaghy-Azar
- Hazrat Aliasghar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism, Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Xie G, Jin H, Mikhail H, Pavel V, Yang G, Ji B, Lu B, Li Y. Autophagy in sarcopenia: Possible mechanisms and novel therapies. Biomed Pharmacother 2023; 165:115147. [PMID: 37473679 DOI: 10.1016/j.biopha.2023.115147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
With global population aging, age-related diseases, especially sarcopenia, have attracted much attention in recent years. Characterized by low muscle strength, low muscle quantity or quality and low physical performance, sarcopenia is one of the major factors associated with an increased risk of falls and disability. Much effort has been made to understand the cellular biological and physiological mechanisms underlying sarcopenia. Autophagy is an important cellular self-protection mechanism that relies on lysosomes to degrade misfolded proteins and damaged organelles. Research designed to obtain new insight into human diseases from the autophagic aspect has been carried out and has made new progress, which encourages relevant studies on the relationship between autophagy and sarcopenia. Autophagy plays a protective role in sarcopenia by modulating the regenerative capability of satellite cells, relieving oxidative stress and suppressing the inflammatory response. This review aims to reveal the specific interaction between sarcopenia and autophagy and explore possible therapies in hopes of encouraging more specific research in need and unlocking novel promising therapies to ameliorate sarcopenia.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Herasimenka Mikhail
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|