1
|
Jiang S, Zhao Y, Meng Q, Ma R, Sun X, Lyu X, Zhang L, Wu G, Wang X, He Y, Liang J, Qiao Y, Wang Z, Wu Y, Wu J, Yang C, Yu H, Li Y. Advanced SERSome-based artificial-intelligence technology for identifying medicinal and edible homologs. Talanta 2025; 292:127931. [PMID: 40112588 DOI: 10.1016/j.talanta.2025.127931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Medicinal and edible homologs (MEHs) offer significant preventive and therapeutic benefits for various diseases and health functions. However, the widespread application of MEHs faces significant challenges, particularly in quality control and rapid identification. In this study, we present a novel approach that combines surface-enhanced Raman spectroscopy (SERS) based on spectral set, referred as "SERSome", with deep learning to develop an identification model for analyzing MEHs. The platform uses silver nanoparticles prepared via reduction with NaBH4, activation with sodium borohydride, and aggregation with calcium ions. The method avoids the use of additional protective agents during the reaction process, thereby reducing interference from the protective agents and other materials. Additionally, the method also overcomes the fluorescence interference from MEHs. SERSomes provide comprehensive molecular fingerprint recognition, significantly enhancing the system's detection accuracy. The introduction of Ca2+ as aggregation agent promotes the aggregation of silver nanoparticle, significantly enhancing the electromagnetic field of the nanoparticle system. The study achieves up to 98 % accuracy in identifying specific MEHs. The integration of SERSomes with deep learning offers a promising methodology for the rapid and modern detection of MEHs, advancing the MEHs industry and contributing to the protection of human health.
Collapse
Affiliation(s)
- Shuang Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yue Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Qingyu Meng
- Chinese Medicine Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Rongheng Ma
- Chinese Medicine Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xiaomeng Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaoming Lyu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Li Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Guangrun Wu
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yiyang He
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jiayue Liang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yuxin Qiao
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medical (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Yanli Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jing Wu
- School of Science, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, China
| | - Chunjuan Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Huimin Yu
- Chinese Medicine Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Chinese Medicine Department, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Ophthalmology, Heilongjiang Provincial Eye Hospital, Harbin, China; Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150023, China.
| |
Collapse
|
2
|
Shang Z, Huang L, Qin S. The underlying mechanism behind the different outcomes of COVID-19 in children and adults. Front Immunol 2025; 16:1440169. [PMID: 40370452 PMCID: PMC12075420 DOI: 10.3389/fimmu.2025.1440169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has affected hundreds of millions of people globally, resulting in millions of deaths. During this pandemic, children have demonstrated greater resistance than adults, exhibiting lower infection rates, reduced mortality, and milder symptoms. Summarizing the differences in resistance between children and adults during COVID-19 can provide insights into protective mechanisms and potential implications for future treatments. In this review, we focused on summarizing and discussing the mechanisms for better protection of children in COVID-19. These protective mechanisms encompass several factors: the baseline expression of cell surface receptor ACE2 and hydrolase TMPRSS2, the impact of complications on COVID-19, and age-related cytokine profiles. Additionally, differences in local and systemic immune responses between children and adults also contribute significantly, particularly interferon responses, heterologous protection from non-COVID-19 vaccinations, and immune status variations influenced by micronutrient levels. The advantageous protection mechanisms of these children may provide insights into the prevention and treatment of COVID-19. Importantly, while age-related metabolic profiles and differential COVID-19 vaccine responses may contribute to protection in children, current comparative research remains limited and requires further investigation.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong, China
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Ling Huang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shijie Qin
- Innovative Vaccine and Immunotherapy Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
3
|
Ma K, Xue B, Chu R, Zheng Y, Sharma S, Jiang L, Hu M, Xie Y, Hu Y, Tao T, Zhou Y, Liu D, Li Z, Yang Q, Chen Y, Wu S, Tong Y, Robinson RC, Yew WS, Jin X, Liu Y, Zhao H, Ang EL, Wei Y, Zhang Y. A Widespread Radical-Mediated Glycolysis Pathway. J Am Chem Soc 2024; 146:26187-26197. [PMID: 39283600 DOI: 10.1021/jacs.4c07718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Glycyl radical enzymes (GREs) catalyze mechanistically diverse radical-mediated reactions, playing important roles in the metabolism of anaerobic bacteria. The model bacterium Escherichia coli MG1655 contains two GREs of unknown function, YbiW and PflD, which are widespread among human intestinal bacteria. Here, we report that YbiW and PflD catalyze ring-opening C-O cleavage of 1,5-anhydroglucitol-6-phosphate (AG6P) and 1,5-anhydromannitol-6-phosphate (AM6P), respectively. The product of both enzymes, 1-deoxy-fructose-6-phosphate (DF6P), is then cleaved by the aldolases FsaA or FsaB to form glyceraldehyde-3-phosphate (G3P) and hydroxyacetone (HA), which are then reduced by the NADH-dependent dehydrogenase GldA to form 1,2-propanediol (1,2-PDO). Crystal structures of YbiW and PflD in complex with their substrates provided insights into the mechanism of radical-mediated C-O cleavage. This "anhydroglycolysis" pathway enables anaerobic growth of E. coli on 1,5-anhydroglucitol (AG) and 1,5-anhydromannitol (AM), and we probe the feasibility of harnessing this pathway for the production of 1,2-PDO, a highly demanded chiral chemical feedstock, from inexpensive starch. Discovery of the anhydroglycolysis pathway expands the known catalytic repertoire of GREs, clarifies the hitherto unknown physiological functions of the well-studied enzymes FsaA, FsaB, and GldA, and demonstrates how enzyme discovery efforts can cast light on prevalent yet overlooked metabolites in the microbiome.
Collapse
Affiliation(s)
- Kailiang Ma
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bo Xue
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ruoxing Chu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yuchun Zheng
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shishir Sharma
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Li Jiang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yiren Xie
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yiling Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tiantian Tao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yan Zhou
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Dazhi Liu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Meining Pharma Inc., 2-401-1, Bldg 8, Huiying Industrial Park, No. 86 West Zhonghuan Road, Tianjin Pilot Free Trade Zone, Tianjin 300308, China
| | - Zhi Li
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiaoyu Yang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yiwei Chen
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Songgu Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Tong
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Robert C Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Xinghua Jin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Yan Zhang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Carbon-Negative Synthetic Biology for Biomaterial Production from CO2 (CNSB), Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
4
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
5
|
He Q, Zhao MM, Li MJ, Li XY, Jin JM, Feng YM, Zhang L, Huang WJ, Yang F, Yang JK. Hyperglycemia induced cathepsin L maturation linked to diabetic comorbidities and COVID-19 mortality. eLife 2024; 13:RP92826. [PMID: 39150053 PMCID: PMC11329274 DOI: 10.7554/elife.92826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.
Collapse
Affiliation(s)
- Qiong He
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Miao-Miao Zhao
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ming-Jia Li
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ya Li
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian-Min Jin
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying-Mei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China, Beijing, China
| | - Wei Jin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China, Beijing, China
| | - Fangyuan Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Wang C, Wang S, Ma X, Yao X, Zhan K, Wang Z, He D, Zuo W, Han S, Zhao G, Cao B, Zhao J, Bian X, Wang J. P-selectin Facilitates SARS-CoV-2 Spike 1 Subunit Attachment to Vesicular Endothelium and Platelets. ACS Infect Dis 2024; 10:2656-2667. [PMID: 38912949 DOI: 10.1021/acsinfecdis.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
SARS-CoV-2 infection starts from the association of its spike 1 (S1) subunit with sensitive cells. Vesicular endothelial cells and platelets are among the cell types that bind SARS-CoV-2, but the effectors that mediate viral attachment on the cell membrane have not been fully elucidated. Herein, we show that P-selectin (SELP), a biomarker for endothelial dysfunction and platelet activation, can facilitate the attachment of SARS-CoV-2 S1. Since we observe colocalization of SELP with S1 in the lung tissues of COVID-19 patients, we perform molecular biology experiments on human umbilical vein endothelial cells (HUVECs) to confirm the intermolecular interaction between SELP and S1. SELP overexpression increases S1 recruitment to HUVECs and enhances SARS-CoV-2 spike pseudovirion infection. The opposite results are determined after SELP downregulation. As S1 causes endothelial inflammatory responses in a dose-dependent manner, by activating the interleukin (IL)-17 signaling pathway, SELP-induced S1 recruitment may contribute to the development of a "cytokine storm" after viral infection. Furthermore, SELP also promotes the attachment of S1 to the platelet membrane. Employment of PSI-697, a small inhibitor of SELP, markedly decreases S1 adhesion to both HUVECs and platelets. In addition to the role of membrane SELP in facilitating S1 attachment, we also discover that soluble SELP is a prognostic factor for severe COVID-19 through a meta-analysis. In this study, we identify SELP as an adhesive site for the SARS-CoV-2 S1, thus providing a potential drug target for COVID-19 treatment.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shaobo Wang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaohong Yao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kegang Zhan
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Di He
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
| | - Wenting Zuo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Songling Han
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Gaomei Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Cao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
- New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jinghong Zhao
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiuwu Bian
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
7
|
Wang J, Liang X, Zheng Y, Zhu Y, Zhou K, Wu X, Sun R, Hu Y, Zhu X, Chi H, Chen S, Lyu M, Xie Y, Yi X, Liu W, Cai X, Li S, Zhang Q, Wu C, Shi Y, Wang D, Peng M, Zhang Y, Liu H, Zhang C, Quan S, Kong Z, Kang Z, Zhu G, Zhu H, Chen S, Liang J, Yang H, Pang J, Fang Y, Chen H, Li J, Xu J, Guo T, Shen B. Pulmonary and renal long COVID at two-year revisit. iScience 2024; 27:110344. [PMID: 39055942 PMCID: PMC11269939 DOI: 10.1016/j.isci.2024.110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 01/31/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated host responses to long COVID by following up with 89 of the original 144 cohorts for 1-year (N = 73) and 2-year visits (N = 57). Pulmonary long COVID, characterized by fibrous stripes, was observed in 8.7% and 17.8% of patients at the 1-year and 2-year revisits, respectively, while renal long COVID was present in 15.2% and 23.9% of patients, respectively. Pulmonary and renal long COVID at 1-year revisit was predicted using a machine learning model based on clinical and multi-omics data collected during the first month of the disease with an accuracy of 87.5%. Proteomics revealed that lung fibrous stripes were associated with consistent down-regulation of surfactant-associated protein B in the sera, while renal long COVID could be linked to the inhibition of urinary protein expression. This study provides a longitudinal view of the clinical and molecular landscape of COVID-19 and presents a predictive model for pulmonary and renal long COVID.
Collapse
Affiliation(s)
- Jing Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, Zhejiang, China
- Taizhou Institute of Medicine, Health and New Drug Clinical Research, Taizhou, Zhejiang, China
| | - Xiao Liang
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yufen Zheng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, Zhejiang, China
- Taizhou Institute of Medicine, Health and New Drug Clinical Research, Taizhou, Zhejiang, China
| | - Yi Zhu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Kai Zhou
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaomai Wu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Rui Sun
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yifan Hu
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310024, China
| | - Xiaoli Zhu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hongbo Chi
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shanjun Chen
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310024, China
| | - Mengge Lyu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yuting Xie
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Xiao Yi
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310024, China
| | - Wei Liu
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310024, China
| | - Xue Cai
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Sainan Li
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Qiushi Zhang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310024, China
| | - Chunlong Wu
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou 310024, China
| | - Yingqiu Shi
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Donglian Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Minfei Peng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ying Zhang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Huafen Liu
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Chao Zhang
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Sheng Quan
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Ziqing Kong
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Zhouyang Kang
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Guangjun Zhu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hongguo Zhu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shiyong Chen
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Junbo Liang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hai Yang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jianxin Pang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yicheng Fang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Haixiao Chen
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jun Li
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, Zhejiang, China
- Taizhou Institute of Medicine, Health and New Drug Clinical Research, Taizhou, Zhejiang, China
| | - Jiaqin Xu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, Zhejiang, China
- Taizhou Institute of Medicine, Health and New Drug Clinical Research, Taizhou, Zhejiang, China
| | - Tiannan Guo
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Bo Shen
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, Zhejiang, China
| |
Collapse
|
8
|
He Y, Miao C, Yang S, Xu C, Liu Y, Zhu X, Wen Y, Wu R, Zhao Q, Huang X, Yan Q, Lang Y, Zhao S, Wang Y, Han X, Cao S, Hu Y, Du S. Sialic acids as attachment factors in mosquitoes mediating Japanese encephalitis virus infection. J Virol 2024; 98:e0195923. [PMID: 38634598 PMCID: PMC11092328 DOI: 10.1128/jvi.01959-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The role of Culex mosquitoes in the transmission of Japanese encephalitis virus (JEV) is crucial, yet the mechanisms of JEV infection in these vectors remain unclear. Previous research has indicated that various host factors participate in JEV infection. Herein, we present evidence that mosquito sialic acids enhance JEV infection both in vivo and in vitro. By treating mosquitoes and C6/36 cells with neuraminidase or lectin, the function of sialic acids is effectively blocked, resulting in significant inhibition of JEV infection. Furthermore, knockdown of the sialic acid biosynthesis genes in Culex mosquitoes also leads to a reduction in JEV infection. Moreover, our research revealed that sialic acids play a role in the attachment of JEV to mosquito cells, but not in its internalization. To further explore the mechanisms underlying the promotion of JEV attachment by sialic acids, we conducted immunoprecipitation experiments to confirm the direct binding of sialic acids to the last α-helix in JEV envelope protein domain III. Overall, our study contributes to a molecular comprehension of the interaction between mosquitoes and JEV and offers potential strategies for preventing the dissemination of flavivirus in natural environments.IMPORTANCEIn this study, we aimed to investigate the impact of glycoconjugate sialic acids on mosquito infection with Japanese encephalitis virus (JEV). Our findings demonstrate that sialic acids play a crucial role in enhancing JEV infection by facilitating the attachment of the virus to the cell membrane. Furthermore, our investigation revealed that sialic acids directly bind to the final α-helix in the JEV envelope protein domain III, thereby accelerating virus adsorption. Collectively, our results highlight the significance of mosquito sialic acids in JEV infection within vectors, contributing to a better understanding of the interaction between mosquitoes and JEV.
Collapse
Affiliation(s)
- Yi He
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chang Miao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiping Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Changhao Xu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuwei Liu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Zhu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yifei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xinfeng Han
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yajie Hu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
9
|
Lin C, Tian Q, Guo S, Xie D, Cai Y, Wang Z, Chu H, Qiu S, Tang S, Zhang A. Metabolomics for Clinical Biomarker Discovery and Therapeutic Target Identification. Molecules 2024; 29:2198. [PMID: 38792060 PMCID: PMC11124072 DOI: 10.3390/molecules29102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
As links between genotype and phenotype, small-molecule metabolites are attractive biomarkers for disease diagnosis, prognosis, classification, drug screening and treatment, insight into understanding disease pathology and identifying potential targets. Metabolomics technology is crucial for discovering targets of small-molecule metabolites involved in disease phenotype. Mass spectrometry-based metabolomics has implemented in applications in various fields including target discovery, explanation of disease mechanisms and compound screening. It is used to analyze the physiological or pathological states of the organism by investigating the changes in endogenous small-molecule metabolites and associated metabolism from complex metabolic pathways in biological samples. The present review provides a critical update of high-throughput functional metabolomics techniques and diverse applications, and recommends the use of mass spectrometry-based metabolomics for discovering small-molecule metabolite signatures that provide valuable insights into metabolic targets. We also recommend using mass spectrometry-based metabolomics as a powerful tool for identifying and understanding metabolic patterns, metabolic targets and for efficacy evaluation of herbal medicine.
Collapse
Affiliation(s)
- Chunsheng Lin
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China;
| | - Sifan Guo
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Dandan Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Ying Cai
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Zhibo Wang
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Hang Chu
- Department of Biomedical Sciences, Beijing City University, Beijing 100193, China;
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Aihua Zhang
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| |
Collapse
|
10
|
Zhao J, Wang Q, Liu Z, Zhang M, Li J, Fu ZF, Zhao L, Zhou M. Neuroinvasive virus facilitates viral replication by employing lipid droplets to reduce arachidonic acid-induced ferroptosis. J Biol Chem 2024; 300:107168. [PMID: 38490434 PMCID: PMC10999822 DOI: 10.1016/j.jbc.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Lipids have been previously implicated in the lifecycle of neuroinvasive viruses. However, the role of lipids in programmed cell death and the relationship between programmed cell death and lipid droplets (LDs) in neuroinvasive virus infection remains unclear. Here, we found that the infection of neuroinvasive virus, such as rabies virus and encephalomyocarditis virus could enhance the LD formation in N2a cells, and decreasing LDs production by targeting diacylglycerol acyltransferase could suppress viral replication. The lipidomics analysis revealed that arachidonic acid (AA) was significantly increased after reducing LD formation by restricting diacylglycerol acyltransferase, and AA was further demonstrated to induce ferroptosis to inhibit neuroinvasive virus replication. Moreover, lipid peroxidation and viral replication inhibition could be significantly alleviated by a ferroptosis inhibitor, ferrostatin-1, indicating that AA affected neuroinvasive virus replication mainly through inducing ferroptosis. Furthermore, AA was demonstrated to activate the acyl-CoA synthetase long-chain family member 4-lysophosphatidylcholine acyltransferase 3-cytochrome P450 oxidoreductase axis to induce ferroptosis. Our findings highlight novel cross-talks among viral infection, LDs, and ferroptosis for the first time, providing a potential target for antiviral drug development.
Collapse
Affiliation(s)
- Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Qianruo Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Zhenkun Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Mai Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Jinquan Li
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China.
| |
Collapse
|
11
|
Camelo ALM, Zamora Obando HR, Rocha I, Dias AC, Mesquita ADS, Simionato AVC. COVID-19 and Comorbidities: What Has Been Unveiled by Metabolomics? Metabolites 2024; 14:195. [PMID: 38668323 PMCID: PMC11051775 DOI: 10.3390/metabo14040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has brought about diverse impacts on the global population. Individuals with comorbidities were more susceptible to the severe symptoms caused by the virus. Within the crisis scenario, metabolomics represents a potential area of science capable of providing relevant information for understanding the metabolic pathways associated with the intricate interaction between the viral disease and previous comorbidities. This work aims to provide a comprehensive description of the scientific production pertaining to metabolomics within the specific context of COVID-19 and comorbidities, while highlighting promising areas for exploration by those interested in the subject. In this review, we highlighted the studies of metabolomics that indicated a variety of metabolites associated with comorbidities and COVID-19. Furthermore, we observed that the understanding of the metabolic processes involved between comorbidities and COVID-19 is limited due to the urgent need to report disease outcomes in individuals with comorbidities. The overlap of two or more comorbidities associated with the severity of COVID-19 hinders the comprehension of the significance of each condition. Most identified studies are observational, with a restricted number of patients, due to challenges in sample collection amidst the emergent situation.
Collapse
Affiliation(s)
- André Luiz Melo Camelo
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Hans Rolando Zamora Obando
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Isabela Rocha
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Aline Cristina Dias
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Alessandra de Sousa Mesquita
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Ana Valéria Colnaghi Simionato
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
- National Institute of Science and Technology for Bioanalytics—INCTBio, Institute of Chemistry, Universidade Estadual de (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| |
Collapse
|
12
|
Valencia I, Lumpuy-Castillo J, Magalhaes G, Sánchez-Ferrer CF, Lorenzo Ó, Peiró C. Mechanisms of endothelial activation, hypercoagulation and thrombosis in COVID-19: a link with diabetes mellitus. Cardiovasc Diabetol 2024; 23:75. [PMID: 38378550 PMCID: PMC10880237 DOI: 10.1186/s12933-023-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Early since the onset of the COVID-19 pandemic, the medical and scientific community were aware of extra respiratory actions of SARS-CoV-2 infection. Endothelitis, hypercoagulation, and hypofibrinolysis were identified in COVID-19 patients as subsequent responses of endothelial dysfunction. Activation of the endothelial barrier may increase the severity of the disease and contribute to long-COVID syndrome and post-COVID sequelae. Besides, it may cause alterations in primary, secondary, and tertiary hemostasis. Importantly, these responses have been highly decisive in the evolution of infected patients also diagnosed with diabetes mellitus (DM), who showed previous endothelial dysfunction. In this review, we provide an overview of the potential triggers of endothelial activation related to COVID-19 and COVID-19 under diabetic milieu. Several mechanisms are induced by both the viral particle itself and by the subsequent immune-defensive response (i.e., NF-κB/NLRP3 inflammasome pathway, vasoactive peptides, cytokine storm, NETosis, activation of the complement system). Alterations in coagulation mediators such as factor VIII, fibrin, tissue factor, the von Willebrand factor: ADAMST-13 ratio, and the kallikrein-kinin or plasminogen-plasmin systems have been reported. Moreover, an imbalance of thrombotic and thrombolytic (tPA, PAI-I, fibrinogen) factors favors hypercoagulation and hypofibrinolysis. In the context of DM, these mechanisms can be exacerbated leading to higher loss of hemostasis. However, a series of therapeutic strategies targeting the activated endothelium such as specific antibodies or inhibitors against thrombin, key cytokines, factor X, complement system, the kallikrein-kinin system or NETosis, might represent new opportunities to address this hypercoagulable state present in COVID-19 and DM. Antidiabetics may also ameliorate endothelial dysfunction, inflammation, and platelet aggregation. By improving the microvascular pathology in COVID-19 and post-COVID subjects, the associated comorbidities and the risk of mortality could be reduced.
Collapse
Affiliation(s)
- Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, 28009, Madrid, Spain.
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Giselle Magalhaes
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain.
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain.
| |
Collapse
|
13
|
Sun X, Hu X, Zhang Q, Zhao L, Sun X, Yang L, Jin M. Sodium taurocholate hydrate inhibits influenza virus replication and suppresses influenza a Virus-triggered inflammation in vitro and in vivo. Int Immunopharmacol 2023; 122:110544. [PMID: 37392567 DOI: 10.1016/j.intimp.2023.110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Influenza A virus is an important respiratory pathogen that poses serious threats to human health. Owing to the high mutation rate of viral genes, weaker cross-protection of vaccines, and rapid emergence of drug resistance, there is an urgent need to develop new antiviral drugs against influenza viruses. Taurocholic acid is a primary bile acid that promotes digestion, absorption, and excretion of dietary lipids. Here, we demonstrate that sodium taurocholate hydrate (STH) exhibits broad-spectrum antiviral activity against influenza strains H5N6, H1N1, H3N2, H5N1, and H9N2 in vitro. STH significantly inhibited the early stages of influenza A virus replication. The levels of influenza virus viral RNA (vRNA), complementary RNA (cRNA), and mRNA were specifically reduced in virus-infected cells following STH treatment. In vivo, STH treatment of infected mice alleviated clinical signs and reduced weight loss and mortality. STH also reduced TNF-α, IL-1β, and IL-6 overexpression. STH significantly inhibited the upregulation of TLR4 and the NF-kB family member p65, both in vivo and in vitro. These results suggest that STH exerts a protective effect against influenza infection via suppression of the NF-kB pathway, highlighting the potential use of STH as a drug for treating influenza infection.
Collapse
Affiliation(s)
- Xiaolu Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, China
| | - Xiaotong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, China
| | - Qiang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, China
| | - Li Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Perakakis N, Harb H, Hale BG, Varga Z, Steenblock C, Kanczkowski W, Alexaki VI, Ludwig B, Mirtschink P, Solimena M, Toepfner N, Zeissig S, Gado M, Abela IA, Beuschlein F, Spinas GA, Cavelti-Weder C, Gerber PA, Huber M, Trkola A, Puhan MA, Wong WWL, Linkermann A, Mohan V, Lehnert H, Nawroth P, Chavakis T, Mingrone G, Wolfrum C, Zinkernagel AS, Bornstein SR. Mechanisms and clinical relevance of the bidirectional relationship of viral infections with metabolic diseases. Lancet Diabetes Endocrinol 2023; 11:675-693. [PMID: 37524103 DOI: 10.1016/s2213-8587(23)00154-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 08/02/2023]
Abstract
Viruses have been present during all evolutionary steps on earth and have had a major effect on human history. Viral infections are still among the leading causes of death. Another public health concern is the increase of non-communicable metabolic diseases in the last four decades. In this Review, we revisit the scientific evidence supporting the presence of a strong bidirectional feedback loop between several viral infections and metabolic diseases. We discuss how viruses might lead to the development or progression of metabolic diseases and conversely, how metabolic diseases might increase the severity of a viral infection. Furthermore, we discuss the clinical relevance of the current evidence on the relationship between viral infections and metabolic disease and the present and future challenges that should be addressed by the scientific community and health authorities.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Hani Harb
- Medical Microbiology and Virology, Technische Universität Dresden, Dresden 01307, Germany
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University of Zürich, Zürich, Switzerland
| | - Charlotte Steenblock
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Waldemar Kanczkowski
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Vasileia Ismini Alexaki
- Institute for Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Barbara Ludwig
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Peter Mirtschink
- Institute for Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; Department of Molecular Diabetology, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Nicole Toepfner
- Department of Pediatrics, Technische Universität Dresden, Dresden 01307, Germany
| | - Sebastian Zeissig
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany; Department of Medicine I, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Manuel Gado
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Irene Alma Abela
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University of Zürich, Zürich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giatgen A Spinas
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Claudia Cavelti-Weder
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Philipp A Gerber
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Milo A Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zürich, Switzerland
| | - Wendy Wei-Lynn Wong
- and Department of Molecular Life Science, University of Zürich, Zürich, Switzerland
| | - Andreas Linkermann
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Chennai, Tamil Nadu, India
| | - Hendrik Lehnert
- Presidential Office, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - Peter Nawroth
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Triantafyllos Chavakis
- Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; Institute for Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy; Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University of Zürich, Zürich, Switzerland
| | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany; Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
15
|
Steenblock C, Toepfner N, Beuschlein F, Perakakis N, Mohan Anjana R, Mohan V, Mahapatra NR, Bornstein SR. SARS-CoV-2 infection and its effects on the endocrine system. Best Pract Res Clin Endocrinol Metab 2023; 37:101761. [PMID: 36907787 PMCID: PMC9985546 DOI: 10.1016/j.beem.2023.101761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing corona virus disease 2019 (COVID-19) can infect multiple tissues, including endocrine organs, such as the pancreas, adrenal, thyroid, and adipose tissue. The main receptor for SARS-CoV-2, ACE2, is ubiquitously expressed in the cells of the endocrine organs and accordingly, the virus has been detected in various amounts in all endocrine tissues in post-mortem samples from COVID-19 patients. The infection with SARS-CoV-2 may directly lead to organ damage or dysfunction, such as hyperglycaemia or in rare cases, new-onset diabetes. Furthermore, an infection with SARS-CoV-2 may have indirect effects affecting the endocrine system. The exact mechanisms are not yet completely understood and have to be further investigated. Conversely, endocrine diseases may affect the severity of COVID-19 and emphasis has to be laid on reducing the prevalence, or enhance the treatment, of these often non-communicable diseases in the future.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Nicole Toepfner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Ranjit Mohan Anjana
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, Chennai, Tamil Nadu, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, Chennai, Tamil Nadu, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
16
|
Liu Y, Wang Z, Zhuang X, Zhang S, Chen Z, Zou Y, Sheng J, Li T, Tai W, Yu J, Wang Y, Zhang Z, Chen Y, Tong L, Yu X, Wu L, Chen D, Zhang R, Jin N, Shen W, Zhao J, Tian M, Wang X, Cheng G. Inactivated vaccine-elicited potent antibodies can broadly neutralize SARS-CoV-2 circulating variants. Nat Commun 2023; 14:2179. [PMID: 37069158 PMCID: PMC10107573 DOI: 10.1038/s41467-023-37926-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
A full understanding of the inactivated COVID-19 vaccine-mediated antibody responses to SARS-CoV-2 circulating variants will inform vaccine effectiveness and vaccination development strategies. Here, we offer insights into the inactivated vaccine-induced antibody responses after prime-boost vaccination at both the polyclonal and monoclonal levels. We characterized the VDJ sequence of 118 monoclonal antibodies (mAbs) and found that 20 neutralizing mAbs showed varied potency and breadth against a range of variants including XBB.1.5, BQ.1.1, and BN.1. Bispecific antibodies (bsAbs) based on nonoverlapping mAbs exhibited enhanced neutralizing potency and breadth against the most antibody-evasive strains, such as XBB.1.5, BQ.1.1, and BN.1. The passive transfer of mAbs or their bsAb effectively protected female hACE2 transgenic mice from challenge with an infectious Delta or Omicron BA.2 variant. The neutralization mechanisms of these antibodies were determined by structural characterization. Overall, a broad spectrum of potent and distinct neutralizing antibodies can be induced in individuals immunized with the SARS-CoV-2 inactivated vaccine BBIBP-CorV, suggesting the application potential of inactivated vaccines and these antibodies for preventing infection by SARS-CoV-2 circulating variants.
Collapse
Grants
- National Key R&D Program of China (2021YFC2300200, 2020YFC1200104, 2018YFA0507202, 2021YFC2302405, 2022YFC2302204), the National Natural Science Foundation of China (32188101, 31825001, 81730063, and 81961160737), the Yunnan Cheng gong expert workstation (202005AF150034), Innovation Team Project of Yunnan Science and Technology Department (202105AE160020), and Tsinghua-Foshan Innovation Special Fund (2022THFS6124).
- National Key R&D Program of China (2022YFC2303403)
- National Key R&D Program of China (2021YFC2300104, 2022YFF1203103), the National Natural Science Foundation of China (32171202), and Vanke Special Fund for Public Health and Health Discipline Development, Tsinghua University (20221080056).
Collapse
Affiliation(s)
- Yubin Liu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Ziyi Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Zhicheng Chen
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Yan Zou
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Jie Sheng
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Tianpeng Li
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Yunfeng Chen
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Liangqin Tong
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xi Yu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Linjuan Wu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dong Chen
- Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Renli Zhang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Weijun Shen
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China.
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China.
| |
Collapse
|
17
|
Qi F, Qin C. Characteristics of animal models for COVID-19. Animal Model Exp Med 2022; 5:401-409. [PMID: 36301011 PMCID: PMC9610135 DOI: 10.1002/ame2.12278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), the most consequential pandemic of this century, threatening human health and public safety. SARS-CoV-2 has been continuously evolving through mutation of its genome and variants of concern have emerged. The World Health Organization R&D Blueprint plan convened a range of expert groups to develop animal models for COVID-19, a core requirement for the prevention and control of SARS-CoV-2 pandemic. The animal model construction techniques developed during the SARS-CoV and MERS-CoV pandemics were rapidly deployed and applied in the establishment of COVID-19 animal models. To date, a large number of animal models for COVID-19, including mice, hamsters, minks and nonhuman primates, have been established. Infectious diseases produce unique manifestations according to the characteristics of the pathogen and modes of infection. Here we classified animal model resources around the infection route of SARS-CoV-2, and summarized the characteristics of the animal models constructed via transnasal, localized, and simulated transmission routes of infection.
Collapse
Affiliation(s)
- Feifei Qi
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina,National Center of Technology Innovation for Animal ModelBeijingChina
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina,National Center of Technology Innovation for Animal ModelBeijingChina
| |
Collapse
|
18
|
Abstract
Metabolic adaptation to viral infections critically determines the course and manifestations of disease. At the systemic level, a significant feature of viral infection and inflammation that ensues is the metabolic shift from anabolic towards catabolic metabolism. Systemic metabolic sequelae such as insulin resistance and dyslipidaemia represent long-term health consequences of many infections such as human immunodeficiency virus, hepatitis C virus and severe acute respiratory syndrome coronavirus 2. The long-held presumption that peripheral and tissue-specific 'immune responses' are the chief line of defence and thus regulate viral control is incomplete. This Review focuses on the emerging paradigm shift proposing that metabolic engagements and metabolic reconfiguration of immune and non-immune cells following virus recognition modulate the natural course of viral infections. Early metabolic footprints are likely to influence longer-term disease manifestations of infection. A greater appreciation and understanding of how local biochemical adjustments in the periphery and tissues influence immunity will ultimately lead to interventions that curtail disease progression and identify new and improved prognostic biomarkers.
Collapse
Affiliation(s)
- Clovis S Palmer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA.
| |
Collapse
|
19
|
Zhang X, Si G, Lu H, Zhang W, Zheng S, Huang Z, Liu L, Xue Y, Zheng G. SARS-CoV-2 omicron variant clearance delayed in breakthrough cases with elevated fasting blood glucose. Virol J 2022; 19:148. [PMID: 36100916 PMCID: PMC9468532 DOI: 10.1186/s12985-022-01877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Omicron variant (B.1.1.529) is a dominant variant worldwide. However, the risk factors for Omicron variant clearance are yet unknown. The present study aimed to investigate the risk factors for early viral clearance of Omicron variant in patients with a history of inactivated vaccine injection. Methods Demographic, clinical, and epidemiological data from 187 patients were collected retrospectively during the Omicron variant wave. Results 73/187 and 114/187 patients were administered two and three doses of vaccine, respectively. The median duration of SARS-CoV-2 RNA positivity was 9 days, and the difference between patients with two and three vaccine injections was insignificant (P = 0.722). Fever was the most common symptom (125/187), and most patients (98.4%) had a fever for < 7 days. The RNA was undetectable in 65/187 patients on day 7. Univariable logistic analysis showed that baseline glucose, uric acid, lymphocytes count, platelet count, and CD4+ T lymphocyte count were associated with SARS-CoV-2 RNA-positivity on day 7. Multivariable analysis showed that glucose ≥ 6.1 mmol/L and CD4+T lymphocytes count were independent risk factors for RNA positivity on day 7. 163/187 patients had an undetectable RNA test on day 14, and uric acid was the only independent risk factor for RNA positivity. Moreover, baseline glucose was negatively correlated with uric acid and CD4+ and CD8+ T cell count, while uric acid was positively correlated with CD4+ and CD8+ T cell count. Conclusions Omicron variant clearance was delayed in breakthrough cases with elevated fasting blood glucose, irrespective of the doses of inactivated vaccine.
Collapse
Affiliation(s)
- Xiujun Zhang
- Institute of Hepatology, The Third People's Hospital of Changzhou, No. 300 Lanling North Road, Changzhou, 213000, Jiangsu, China.,Department of Infectious Diseases, The Third People's Hospital of Changzhou, Changzhou, China
| | - Guocan Si
- Institute of Hepatology, The Third People's Hospital of Changzhou, No. 300 Lanling North Road, Changzhou, 213000, Jiangsu, China.,Department of Infectious Diseases, The Third People's Hospital of Changzhou, Changzhou, China
| | - Huifen Lu
- Institute of Hepatology, The Third People's Hospital of Changzhou, No. 300 Lanling North Road, Changzhou, 213000, Jiangsu, China.,Department of Infectious Diseases, The Third People's Hospital of Changzhou, Changzhou, China
| | - Wei Zhang
- Institute of Hepatology, The Third People's Hospital of Changzhou, No. 300 Lanling North Road, Changzhou, 213000, Jiangsu, China.,Department of Infectious Diseases, The Third People's Hospital of Changzhou, Changzhou, China
| | - Shuqin Zheng
- Institute of Hepatology, The Third People's Hospital of Changzhou, No. 300 Lanling North Road, Changzhou, 213000, Jiangsu, China.,Department of Infectious Diseases, The Third People's Hospital of Changzhou, Changzhou, China
| | - Zeyu Huang
- Institute of Hepatology, The Third People's Hospital of Changzhou, No. 300 Lanling North Road, Changzhou, 213000, Jiangsu, China
| | - Longgen Liu
- Institute of Hepatology, The Third People's Hospital of Changzhou, No. 300 Lanling North Road, Changzhou, 213000, Jiangsu, China.,Department of Infectious Diseases, The Third People's Hospital of Changzhou, Changzhou, China
| | - Yuan Xue
- Institute of Hepatology, The Third People's Hospital of Changzhou, No. 300 Lanling North Road, Changzhou, 213000, Jiangsu, China. .,Department of Infectious Diseases, The Third People's Hospital of Changzhou, Changzhou, China.
| | - Guojun Zheng
- Institute of Hepatology, The Third People's Hospital of Changzhou, No. 300 Lanling North Road, Changzhou, 213000, Jiangsu, China. .,Clinical Laboratory, The Third People's Hospital of Changzhou, Changzhou, China.
| |
Collapse
|
20
|
Xiao X, Tong L, Bogan JS, Wang P, Cheng G. Diabetes and COVID-19, a link revealed. LIFE MEDICINE 2022; 1:64-66. [PMID: 36820103 PMCID: PMC9936808 DOI: 10.1093/lifemedi/lnac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Xiaoping Xiao
- Section of Endocrinology, Department of Internal Medicine, and Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Liangqin Tong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jonathan S Bogan
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Penghua Wang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Gong Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Xia S, Wang L, Zhu Y, Lu L, Jiang S. Origin, virological features, immune evasion and intervention of SARS-CoV-2 Omicron sublineages. Signal Transduct Target Ther 2022; 7:241. [PMID: 35853878 PMCID: PMC9295084 DOI: 10.1038/s41392-022-01105-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, a large number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continuously emerged and posed a major threat to global public health. Among them, particularly, Omicron variant (B.1.1.529), first identified in November 2021, carried numerous mutations in its spike protein (S), and then quickly spread around the world. Currently, Omicron variant has expanded into more than one hundred sublineages, such as BA.1, BA.2, BA.2.12.1, BA.4 and BA.5, which have already become the globally dominant variants. Different from other variants of concern (VOCs) of SARS-CoV-2, the Omicron variant and its sublineages exhibit increased transmissibility and immune escape from neutralizing antibodies generated through previous infection or vaccination, and have caused numerous re-infections and breakthrough infections. In this prospective, we have focused on the origin, virological features, immune evasion and intervention of Omicron sublineages, which will benefit the development of next-generation vaccines and therapeutics, including pan-sarbecovirus and universal anti-CoV therapeutics, to combat currently circulating and future emerging Omicron sublineages as well as other SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Lijue Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Vergara-Alert J, Izquierdo-Useros N. An anti-SARS-CoV-2 metabolite is reduced in diabetes. Nat Metab 2022; 4:501-502. [PMID: 35534728 DOI: 10.1038/s42255-022-00569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Júlia Vergara-Alert
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain.
- Infectious Disease Networking Biomedical Research Center (CIBERINFEC), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|