1
|
Li H, Zeng J, You Q, Zhang M, Shi Y, Yang X, Gu W, Liu Y, Hu N, Wang Y, Chen X, Mu J. X-ray-activated nanoscintillators integrated with tumor-associated neutrophils polarization for improved radiotherapy in metastatic colorectal cancer. Biomaterials 2025; 316:123031. [PMID: 39709848 DOI: 10.1016/j.biomaterials.2024.123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Radiotherapy, employing high-energy rays to precisely target and eradicate tumor cells, plays a pivotal role in the treatment of various malignancies. Despite its therapeutic potential, the effectiveness of radiotherapy is hindered by the tumor's inherent low radiosensitivity and the immunosuppressive microenvironment. Here we present an innovative approach that integrates peroxynitrite (ONOO-)-mediated radiosensitization with the tumor-associated neutrophils (TANs) polarization for the reversal of immunosuppressive tumor microenvironment (TME), greatly amplifying the potency of radiotherapy. Our design employs X-ray-activated lanthanide-doped scintillators (LNS) in tandem with photosensitive NO precursor to achieve in-situ ONOO- generation. Concurrently, the co-loaded TGF-β inhibitor SB525334, released from the LNS-RS nanoplatform in response to the overexpressed GSH in tumor site, promotes the reprogramming of TANs from N2 phenotype toward N1 phenotype, effectively transforming the tumor-promoting microenvironment into a tumor-inhibiting state. This 'one-two punch' therapy efficiently trigger a robust anti-tumor immune response and exert potent therapeutic effects in orthotopic colorectal cancer and melanoma mouse model. Meanwhile, it also significantly prevents liver metastasis and recurrence in metastatic colorectal cancer. The development of X-ray-controlled platforms capable of activating multiple therapeutic modalities may accelerate the clinical application of radiotherapy-based collaborative therapy.
Collapse
Affiliation(s)
- Hui Li
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China; Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Junyi Zeng
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
| | - Miaomiao Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Yuanchao Shi
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Xiaodong Yang
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Wenxing Gu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China; Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yajie Liu
- Department of Radiation Oncology, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yu Wang
- Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, 518036, Shenzhen, China.
| |
Collapse
|
2
|
Yang XX, Luo H, Zhang JJ, Ge H, Ge L. Clinical translation of ultra-high dose rate flash radiotherapy: Opportunities, challenges, and prospects. World J Radiol 2025; 17:105722. [DOI: 10.4329/wjr.v17.i4.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/09/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Ultra-high dose rate flash radiotherapy (FLASH-RT) has attracted wide attention in the field of radiotherapy in recent years. For FLASH-RT, radiation is delivered at a very high dose rate [usually thousands of times compared with conventional radiotherapy (CONV-RT)] in an extremely short time. This novel irradiation technique shows a protective effect on normal tissues, also known as the flash effect. At the same time, FLASH-RT is comparable to CONV-RT in terms of tumor-killing efficacy. As basic research dedicates to uncover the mechanisms by which FLASH-RT reduces radiation-induced normal tissue damage, clinical trials of FLASH-RT have been gradually conducted worldwide. This article systematically reviews the evidence of the feasibility and safety of FLASH-RT in clinical practice and offers insights into the future translation of this technology in clinic.
Collapse
Affiliation(s)
- Xiang-Xiang Yang
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Hui Luo
- Department of Radiation Oncology, Henan Cancer Hospital, Zhengzhou 450003, Henan Province, China
| | - Jia-Jun Zhang
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Heng Ge
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liang Ge
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
3
|
Tao J, Ning W, Lu W, Wang R, Zhou H, Zhang H, Xu J, Wang S, Teng Z, Wang L. Smart self-transforming nano-systems for overcoming biological barrier and enhancing tumor treatment efficacy. J Control Release 2025; 380:85-107. [PMID: 39880041 DOI: 10.1016/j.jconrel.2025.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Nanomedicines need to overcome multiple biological barriers in the body to reach the target area. However, traditional nanomedicines with constant physicochemical properties are not sufficient to meet the diverse and sometimes conflicting requirements during in vivo transport, making it difficult to penetrate various biological barriers, resulting in suboptimal drug delivery efficiency. Smart self-transforming nano-systems (SSTNs), capable of altering their own physicochemical properties (including size, charge, hydrophobicity, stiffness, morphology, etc.) under different physiological conditions, hold the potential to break through multiple biological barriers, thereby improving drug delivery efficiency and the efficacy of cancer treatment. In this review, we first summarize the design strategies of five most popular SSTNs (such as size-, charge-, hydrophilicity-, stiffness-, and morphology-self-transforming nano-systems), and then delve into their biomedical applications in enhancing circulation time, tissue penetration, and cellular uptake. Finally, we discuss the opportunities and challenges that SSTNs face in the future for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Jun Tao
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Weiqing Ning
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Wei Lu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Rui Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Hui Zhou
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Hongru Zhang
- Key Laboratory of Agricultural Product Processing and Quality Control, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, PR China
| | - Jiayi Xu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Shouju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, PR China.
| | - Zhaogang Teng
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Wang J, Wang T, Zhu L, Wang J, Gao Q, Guo L, Lv G, Zhang W, Zhang Z, Yang C, Yao L, Liu J, Da F. The emerging role of IL-22 as a potential radiosensitivity biomarker for radiation-induced intestinal injury. Int Immunopharmacol 2025; 155:114573. [PMID: 40199137 DOI: 10.1016/j.intimp.2025.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Considering the beneficial role played by IL-22 in alleviating radiation-induced intestinal injury through its promotion of epithelial regeneration, it was hypothesized that individuals with elevated IL-22 levels might display either minimal intestinal injury or increased resistance following ionizing irradiation exposure. To assess the impact of IL-22 on intestinal radiosensitivity, IL-22 expression levels was detected in serum of normal mice. Mice naturally with high or low levels of IL-22 or pretreated with IL-22 or anti-IL-22 were subjected to 10 Gy of total abdominal radiation (TAI). Daily observation, morphometric analysis, quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry and western blot were employed to measure weight loss, survival rate, cell proliferation and death, and DNA damage. Furthermore, influence of IL-22 pretreatment on survival of intestinal organoid exposed to 6 Gy X-rays was evaluated. The results showed that IL-22 expression levels were varied between individuals. Surprisingly, mice with high IL-22 levels displayed exacerbated intestinal injury manifesting as increased weight loss, reduced regeneration capacity and more cell apoptosis. Notably, a strong positive correlation between weight loss and IL-22 expression level was observed. Additionally, pretreatment with IL-22 resulted in increased mortality accompanied by enhanced cell apoptosis and DNA damage in crypt of early exposure, as well as diminished survival of intestinal organoid, while pretreatment with anti-IL-22 antibody alleviated the intestinal injury. In this study, we established a direct link between IL-22 and radiosensitivity, suggesting IL-22 could be used as a potential biomarker for predicting individual intestinal radiosensitivity prior to radiation exposure.
Collapse
Affiliation(s)
- Jianyu Wang
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Tonglin Wang
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Lei Zhu
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China; The Department of Public Health for the Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Junshu Wang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
| | - Qiaohui Gao
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Li Guo
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ganggang Lv
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Wenle Zhang
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Zefang Zhang
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Changbin Yang
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| | - Lin Yao
- Department of Pharmaceutical chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Junye Liu
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Fei Da
- Department of Radiation Medical Protection, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
5
|
Sun J, Yang J, Guo J, Tao L, Xu B, Wang G, Meng F, Zhong Z. Dual-targeted alpha therapy mitigates prostate cancer and boosts immune checkpoint blockade therapy. J Control Release 2025; 382:113686. [PMID: 40187648 DOI: 10.1016/j.jconrel.2025.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Alpha radionuclide with a high emitting energy and short emitting range has emerged as a new tool for the treatment of advanced tumors; however, its clinical usage stringently depends on delivery vehicle. Here, we report on Sigma-1 receptor and PSMA dual-specific peptide with efficient 225‑actinium labeling (225Ac-S1R/PSMA-P) for targeted alpha therapy and alpha-immunotherapy of murine prostate tumor. 225Ac-S1R/PSMA-P with a high specific activity and radiostability exhibited upgraded cell binding and uptake while diminished efflux in RM1-PSMA+ cancer cells. Intriguingly, 225Ac-S1R/PSMA-P afforded a peak uptake of 34.7 ± 3.2 %ID/g and elevated the radioactivity in the tumor over 7 days, with a tumor/kidney ratio of 12.2 ± 1.2 and minimal deposition in blood and other normal tissues like liver and muscle. A single injection of 225Ac-S1R/PSMA-P effectively shrank large LNCaP-FGC tumors at 1.85 or 5.5 kBq, and completely eradicated highly malignant murine RM1-PSMA+/RM1 tumors at 33.3 kBq. We further showed that 225Ac-S1R/PSMA-P at a low dose of 3.7 kBq could boost immune checkpoint blockade therapy of murine RM1-PSMA+/RM1 tumor, leading to 5 out of 7 mice tumor-free that showed durable antitumor immune memory. 225Ac-S1R/PSMA-P with excellent targeting and immune activation ability has a great clinical potential for treating advanced prostate cancer patients.
Collapse
Affiliation(s)
- Juan Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiangtao Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiakun Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Lei Tao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Bin Xu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Levy A, Massard C, Michiels S, Deutsch E. Innovative, early-phase clinical trials of drug-radiotherapy combinations. Lancet Oncol 2025; 26:e190-e202. [PMID: 40179915 DOI: 10.1016/s1470-2045(24)00664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 11/12/2024] [Indexed: 04/05/2025]
Abstract
Over the past few decades, breakthroughs in cancer biology at the molecular level have revolutionised cancer treatment. Enhanced precision in radiotherapy has not only reduced patient side-effects, but also enabled the delivery of high-dose stereotactic extracranial irradiation with unprecedented accuracy. Simultaneously, the number of medical therapies available for clinical care continues to grow. Despite the progress made with combined chemoradiotherapy, only a few drug-radiotherapy combinations have received clinical approval, leaving a vast landscape of untapped opportunities for basic, translational, and clinical research, particularly in early-phase drug-radiotherapy trials. New and promising pharmaceutical therapies, paired with advanced radiotherapy technologies, are now being tested in innovative clinical trial designs. Moreover, the integration of biological and imaging markers-both tumour-specific and peripheral-holds the potential to personalise drug-radiotherapy combinations, thereby enhancing the therapeutic index for specific patient populations. In this Review, we highlight the latest developments and future directions for early-phase clinical trials that combine precision drug-radiotherapy strategies in adult patients, with the aims of improving outcomes and expanding treatment options.
Collapse
Affiliation(s)
- Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France; Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Université Paris Saclay, Villejuif, France; Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France.
| | - Christophe Massard
- Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Université Paris Saclay, Villejuif, France; Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France; Drug Development Department (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Stefan Michiels
- Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France; Office of Biostatistics and Epidemiology Department, Gustave Roussy, Université Paris Saclay, Villejuif, France; Oncostat U1018, Inserm, Labeled Ligue Contre le Cancer, Université Paris Saclay, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France; Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Université Paris Saclay, Villejuif, France; Faculté de Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Léost F, Potiron V, Lepareur N, Rbah-Vidal L, Garcion E, Dumas F, Chérel M, Tripier R, Barbet J. ["Optimizing Imaging and Dose-Response in Radiotherapies" XVIth workshop organised by the Cancéropôle Grand-Ouest's "Vectorisation, Imagerie, Radiothérapies" network - 4-7 October 2023, Erquy, France]. Bull Cancer 2025; 112:435-445. [PMID: 39988486 DOI: 10.1016/j.bulcan.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
The sixteenth edition of the international workshop organized by "Tumour Targeting & Radiotherapies" network of the Cancéropôle Grand-Ouest focused on the problem of optimizing the dose-effect relationships of internal and external radiotherapy, using a variety of innovations from different disciplines, such as technological and imaging advances, vectorization, artificial intelligence, modeling and combined therapies.
Collapse
Affiliation(s)
- Françoise Léost
- Cancéropôle Grand-Ouest, IRS-UN, 8, quai Moncousu, 44007 Nantes cedex 1, France.
| | - Vincent Potiron
- Institut de cancérologie de l'Ouest, site de Saint-Herblain, Saint-Herblain, France; CNRS, US2B, UMR 6286, Nantes université, 44000 Nantes, France
| | - Nicolas Lepareur
- Inrae, Inserm, CLCC Eugène-Marquis, Institut Nutrition, Métabolismes et Cancer (NUMECAN), UMR_A 1341, UMR_S 1241, université de Rennes, Rennes, France
| | - Latifa Rbah-Vidal
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI(2)NA, université d'Angers, 44000 Nantes, France
| | - Emmanuel Garcion
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, CRCI(2)NA, Nantes université, 49000 Angers, France
| | - Florence Dumas
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, CRCI(2)NA, Nantes université, 49000 Angers, France
| | - Michel Chérel
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, CRCI(2)NA, université d'Angers, 44000 Nantes, France
| | - Raphaël Tripier
- UMR CNRS-UBO 6521 CEMCA, université de Brest, 6, avenue V.-Le-Gorgeu, 29200 Brest, France
| | | |
Collapse
|
8
|
Liu D, Wang H, Yang W, Bai Y, Wu Z, Cui T, Bian K, Yi J, Shao C, Zhang B. One-Dose Bioorthogonal Gadolinium Nanoprobes for Prolonged Radiosensitization of Tumor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500504. [PMID: 40059485 DOI: 10.1002/smll.202500504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Indexed: 04/17/2025]
Abstract
Developing effective radiotherapy is impeded by tumor radioresistance, imprecise treatment, and the need for accurate imaging. Herein, a multifunctional gadolinium-based nanoprobe (GBD) is presented, integrating bioorthogonal click chemistry and theranostics to enhance tumor retention, magnetic resonance imaging (MRI) contrast, and radiosensitivity. GBD synthesis involved biomimetic mineralization of bovine serum albumin (BSA) with gadolinium ions to form nanoparticles (GB), followed by conjugation with dibenzocyclooctyne (DBCO). The optimized GBD exhibited an elevated longitudinal relaxivity (r1) of 25.54 mM-1 s-1, which represented a 6.7-fold enhancement compared to the clinical MRI contrast agent magnevist (Gd-DTPA, 3.81 mM-1 s-1). Notably, the application of bioorthogonal click chemistry enhanced the affinity and retention of GBD within tumor cells modified to express azide as an artificial receptor. This novel strategy enhanced tumor retention up to 16 days postinjection, outperforming DBCO-modified small molecule gadolinium (Gd-DBCO) with less than 1-day retention. Such prolonged retention facilitated continuous radiosensitization throughout the radiotherapy course, negating the need for multiple injections, and substantially boosted the effectiveness of radiotherapy. This study demonstrates the transformative potential of combining bioorthogonal click chemistry with nanotechnology in radiotherapy, offering a precise tumor targeting platform, real-time monitoring, and improved treatment outcomes.
Collapse
Affiliation(s)
- Dinghua Liu
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Hui Wang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhuoyao Wu
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Tianming Cui
- Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 201210, China
| | - Kexin Bian
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jinyan Yi
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
9
|
Gu C, Wang D, Zhu S, Wang X, Tian X, Liao Y, Gu Z. A Pyroptosis Radiosensitizer Facilitates Hypoxic Tumor Necrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409594. [PMID: 39989228 DOI: 10.1002/smll.202409594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Hypoxia-related tumor radioresistance markedly impairs the efficacy of radiotherapy. Herein, a targeted radiosensitization strategy is introduced, leveraging the upregulation of gasdermin C (GSDMC) in hypoxic tumor cells, aiming to induce pyroptosis through the application of a cobalt-containing polyoxometalate-based radiosensitizer. This novel radiosensitizer is designed for the precisely controlled release of cobalt ions upon X-ray irradiation, thereby activating caspase-8 and prompting the cleavage of GSDMC. This sequence of events selectively triggers pyroptosis in hypoxic tumor cells, directly addressing radioresistance. The ensuing results highlight the enhanced radiotherapy efficacy and tumor necrosis both in vitro and in vivo models. Overall, the findings confirm the effectiveness of this strategy targeting high GSDMC expression in hypoxic tumors to induce pyroptosis for precise radiotherapy. Such findings encourage further exploration of hypoxia-driven pyroptosis to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyi Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - You Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Nguyen VK, Tsai SW, Cho IC, Chao TC, Hsiao IT, Huang HC, Liaw JW. Gold Nanoparticle-Enhanced Production of Reactive Oxygen Species for Radiotherapy and Phototherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:317. [PMID: 39997879 PMCID: PMC11858237 DOI: 10.3390/nano15040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025]
Abstract
Gold nanoparticles (GNPs) have gained significant attention as multifunctional agents in biomedical applications, particularly for enhancing radiotherapy. Their advantages, including low toxicity, high biocompatibility, and excellent conductivity, make them promising candidates for improving treatment outcomes across various radiation sources, such as femtosecond lasers, X-rays, Cs-137, and proton beams. However, a deeper understanding of their precise mechanisms in radiotherapy is essential for maximizing their therapeutic potential. This review explores the role of GNPs in enhancing reactive oxygen species (ROS) generation through plasmon-induced hot electrons or radiation-induced secondary electrons, leading to cellular damage in organelles such as mitochondria and the cytoskeleton. This additional pathway enhances radiotherapy efficacy, offering new therapeutic possibilities. Furthermore, we discuss emerging trends and future perspectives, highlighting innovative strategies for integrating GNPs into radiotherapy. This comprehensive review provides insights into the mechanisms, applications, and potential clinical impact of GNPs in cancer treatment.
Collapse
Affiliation(s)
- Viet-Khang Nguyen
- Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Shiao-Wen Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - I-Chun Cho
- Radiation Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan; (I.-C.C.); (T.-C.C.)
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Tsi-Chian Chao
- Radiation Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan; (I.-C.C.); (T.-C.C.)
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Ing-Tsung Hsiao
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Hsiao-Chieh Huang
- Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan;
| | - Jiunn-Woei Liaw
- Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
- Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan;
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
11
|
Zhao F, Han H, Wang J, Wang J, Zhai J, Zhu G. Oversecretion of CCL3 by Irradiation-Induced Senescent Osteocytes Mediates Bone Homeostasis Imbalance. Cells 2025; 14:249. [PMID: 39996722 PMCID: PMC11853822 DOI: 10.3390/cells14040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Various stressors such as ionizing radiation (IR), chemotherapeutic agents, oxidative stress, and inflammatory responses can trigger the stress-induced premature senescence (SIPS) of cells in the bone microenvironment, including osteocytes. However, little is known about the mechanisms underlying the senescent cellular regulation of the differentiation potential and bone homeostasis. Here, we report a secretory change in senescent osteocytes activated by IR, its subsequent impact on osteogenic and osteoclastic differentiation, and the inflammatory cascade response. It was observed that osteocytes exhibited altered biological function, persistent and incomplete DNA damage repair, and characteristic senescence phenotypes after exposure to IR in vitro. Meanwhile, a concomitant increase in the CC chemokine ligand 3 (CCL3), a key component of the senescence-associated secretory phenotype (SASP), was observed in the IR-induced senescent osteocytes, which could further downregulate the osteogenic differentiation and enhance the osteoclastic differentiation in cell supernatant co-culture experiments. Notably, the enhancement of the PI3K/Akt/NF-κB signaling pathway in IR-induced senescent osteocytes appears to be an essential driver of the imbalance between the osteogenic and osteoclastic differentiation potentials. Taken together, these data suggest a novel role of CCL3 in IR-induced bone homeostatic imbalance through SASP cascade secretion, mediated by the PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China; (F.Z.); (H.H.); (J.W.); (J.W.); (J.Z.)
| |
Collapse
|
12
|
Chandrasekaran B, Bayan MF, Hmedat A, Al-Jaidi BA, Al-Tawalbeh DM, Abuarqoub D, Rasras AJ, Jaradat DMM, Dakkah AN, Hourani W, Karpoormath R. Synthesis, Anticancer Screening, and In Silico Evaluations of Thieno[2,3- c]pyridine Derivatives as Hsp90 Inhibitors. Pharmaceuticals (Basel) 2025; 18:153. [PMID: 40005967 PMCID: PMC11858597 DOI: 10.3390/ph18020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Thieno[2,3-c]pyridines and their analogs are not well explored for their anticancer properties. Hence, our research aimed to establish the anticancer potential of thieno[2,3-c]pyridines through cell-based assays and in silico evaluations. Methods: Thieno[2,3-c]pyridine derivatives 6(a-k) were synthesized and characterized using FT-IR, 1H-NMR, 13C-NMR, and HRMS. All the synthesized compounds were screened initially for their anticancer activity against MCF7 and T47D (breast cancer), HSC3 (head and neck cancer), and RKO (colorectal cancer) cell lines using MTT assay. Apoptosis and cell cycle analyses were conducted using Annexin V/propidium iodide (PI) double staining for apoptosis assessment and PI staining for cell cycle analysis to investigate the mechanisms underlying the reduced cell viability. In silico molecular docking was accomplished for the synthesized compounds against the Hsp90 and determined pharmacokinetics properties. Results: From the screening assay, compounds 6a and 6i were identified as potential inhibitors and were further subjected to IC50 determination. The compound 6i showed potent inhibition against HSC3 (IC50 = 10.8 µM), T47D (IC50 = 11.7 µM), and RKO (IC50 = 12.4 µM) cell lines, all of which indicated a broad spectrum of anticancer activity. Notably, 6i was found to induce G2 phase arrest, thereby inhibiting cell cycle progression. Molecular docking results indicated crucial molecular interactions of the synthesized ligands against the target Hsp90. Conclusion: The compound 6i induced cell death via mechanisms that are different from apoptosis. Thus, the synthesized thieno[2,3-c]pyridine derivatives can be suitable lead compounds to be optimized to obtain potent anticancer agents through Hsp90 inhibition.
Collapse
Affiliation(s)
- Balakumar Chandrasekaran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (M.F.B.); (A.N.D.); (W.H.)
| | - Mohammad F. Bayan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (M.F.B.); (A.N.D.); (W.H.)
| | - Ali Hmedat
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Bilal A. Al-Jaidi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (B.A.A.-J.); (D.M.A.-T.)
| | - Deniz M. Al-Tawalbeh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (B.A.A.-J.); (D.M.A.-T.)
| | - Duaa Abuarqoub
- Department of Pharmacology and Medical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Anas J. Rasras
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan; (A.J.R.); (D.M.M.J.)
| | - Da’san M. M. Jaradat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan; (A.J.R.); (D.M.M.J.)
| | - Abdel Naser Dakkah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (M.F.B.); (A.N.D.); (W.H.)
| | - Wafa Hourani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (M.F.B.); (A.N.D.); (W.H.)
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa;
| |
Collapse
|
13
|
Salvanou EA, Apostolopoulou A, Xanthopoulos S, Koelewijn S, van Overeem P, Laurent G, Bazzi R, Denat F, Roux S, Bouziotis P. 161Terbium-Labeled Gold Nanoparticles as Nanoscale Brachytherapy Agents Against Breast Cancer. MATERIALS (BASEL, SWITZERLAND) 2025; 18:248. [PMID: 39859720 PMCID: PMC11766487 DOI: 10.3390/ma18020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025]
Abstract
Due to their intriguing emission profile, Terbium-161 (161Tb) radiopharmaceuticals seem to bring significant advancement in theranostic applications to cancer treatment. The combination of 161Tb with nanoscale brachytherapy as an approach for cancer treatment is particularly advantageous and promising. Herein, we propose the application of a hybrid nanosystem comprising gold decorated (Au@TADOTAGA) iron oxide nanoflowers as a form of injectable nanobrachytherapy for the local treatment of breast cancer. More specifically, Au@TADOTAGA and NFAu@TADOTAGA NPs were efficiently radiolabeled with 161Tb, and their in vitro stability was assessed up to 21 d post-radiolabeling. Furthermore, their cytotoxic profile against 4T1 breast cancer cells was evaluated, and their ex vivo biodistribution characteristics were revealed after intratumoral injection in the same animal model. The enhanced retention at the tumor site urged us to evaluate the therapeutic effect of the [161Tb]Tb-NFAu@TADOTAGA nanosystem after intratumoral administration to 4T1-tumor-bearing mice, over a period of 24 days. Three different therapeutic protocols were performed in order to identify which therapeutic approach would offer the optimum results and identify the proposed nanosystem as a promising nanoscale brachytherapy agent.
Collapse
Affiliation(s)
- Evangelia-Alexandra Salvanou
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece; (A.A.); (S.X.); (P.B.)
| | - Adamantia Apostolopoulou
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece; (A.A.); (S.X.); (P.B.)
| | - Stavros Xanthopoulos
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece; (A.A.); (S.X.); (P.B.)
| | - Stuart Koelewijn
- Terthera b.v., Minervum 7070, 4817 ZK Breda, The Netherlands; (S.K.); (P.v.O.)
| | | | - Gautier Laurent
- Laboratoire Chrono-Environnement, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (G.L.); (R.B.); (S.R.)
| | - Rana Bazzi
- Laboratoire Chrono-Environnement, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (G.L.); (R.B.); (S.R.)
| | - Franck Denat
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, F-21078 Dijon, France;
| | - Stéphane Roux
- Laboratoire Chrono-Environnement, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (G.L.); (R.B.); (S.R.)
| | - Penelope Bouziotis
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece; (A.A.); (S.X.); (P.B.)
| |
Collapse
|
14
|
Guo Z, Wang X, Han Y, Shen S, Tian P, Hu Y, Ding Z, Fu Q, Liu Z. Targeted Radionuclide Therapy Activates Prodrugs for Treating Metastasis. ACS CENTRAL SCIENCE 2024; 10:2321-2330. [PMID: 39735312 PMCID: PMC11672548 DOI: 10.1021/acscentsci.4c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/31/2024]
Abstract
Over 90% of cancer patients succumb to metastasis, yet conventional frontline therapy struggles to halt the progression of metastatic tumors. Targeted radionuclide therapy, which delivers radiation precisely to tumor sites, shows promise for treating metastasis. The rational design of a prodrug activation platform using radionuclides would be an ideal approach to synergize chemotherapy with targeted radionuclide therapy, yet it has not been established. Here, we present targeted radionuclide therapy-induced cleavage chemistry that enables the controlled release of oxaliplatin and its axis ligands from oxaliplatin(IV) complexes in living systems. Of note, this strategy demonstrates feasibility over clinically relevant β-emitting radionuclides and exhibits dose dependence. These advantages were taken into account, and a Lutetium-177-activatable platinum(IV) based prodrug system was designed that could achieve localized activation at the tumor site with high efficiency, thereby suppressing subcutaneous and metastatic 4T1 tumors. In summary, our approach highlights the potential of radionuclides as reaction switches, bridging the gap between the radiotherapy-induced reaction and internal radiation. It may provide a new perspective for future combination therapy.
Collapse
Affiliation(s)
- Zhibin Guo
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xuanyu Wang
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Han
- China
Institute of Atomic Energy, Institute of Nuclear Technology, Beijing 102413, China
| | - Siyong Shen
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng Tian
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuchen Hu
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | | | - Qunfeng Fu
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
- Changping
Laboratory, Beijing 102206, China
- Peking
University-Tsinghua University Centre for Life Sciences, Peking University, Beijing 100871, China
- Key
Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), NMPA Key Laboratory for Research and Evaluation
of Radiopharmaceuticals (National Medical Products Administration),
Department of Nuclear Medicine, Peking University
Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
15
|
Niu H, Li KY, Yu T, Zhang M, Ji Z, Yu P, Yi X, Liu G. Worldwide Research Trends and Regional Differences in the Development of Precision Medicine Under Data-Driven Approach: A Bibliometric Analysis. J Multidiscip Healthc 2024; 17:5259-5275. [PMID: 39563835 PMCID: PMC11575460 DOI: 10.2147/jmdh.s482543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Background Precision medicine is an innovative approach that integrates genomics, clinical informatics, and proteomics to address both genetic and environmental factors in disease prevention and treatment. This bibliometric study analyzes research trends, collaboration patterns, and the unique characteristics of precision medicine across countries to inform future research directions. Methods A comprehensive search was conducted in the Web of Science Core Collection (1999-2022) database to identify publications related to precision medicine. The analysis of publication patterns, collaborations, institutions, authors, and research hotspots was performed utilizing Microsoft PowerPoint 2019 in conjunction with the Bibliometrix package in R. Results A total of 30,777 publications on precision medicine were identified. The United States and the United Kingdom were recognized as the primary contributors, while European countries exhibited substantial collaborative efforts. Harvard University and the University of California System have played pivotal roles in advancing the field. The keywords analysis showed that in the early 2000s, "gene expression" and "personalized outcomes" were key themes. Since 2015, there's been a significant shift towards advanced technologies like artificial intelligence, machine learning, liquid biopsy, highlighting their growing importance in precision medicine. Research topics across various countries exhibit certain global similarities. However, different nations exhibit distinct thematic research focuses. China emphasizes "Informatics", "Hepatocellular Carcinoma", "Photothermal Therapy", and "Lung Adenocarcinoma", while the United States prioritizes "Informatics", "Treatment Rules", and "Consortium Guidelines". Germany and France share similar interests in particular research domains. Conclusion Precision medicine is rapidly globalizing, with significant contributions from multiple countries and emerging technologies acting as catalysts for further development. Greater international cooperation is essential to elevate the quality and impact of research. These advancements hold great potential for transforming personalized healthcare by integrating cutting-edge scientific disciplines.
Collapse
Affiliation(s)
- Heyuan Niu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Kai Yu Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Tao Yu
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Maorun Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Zhe Ji
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Ping Yu
- Library of Tianjin Medical University, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xianfu Yi
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
16
|
Heilemann G, Georg D, Dobiasch M, Widder J, Renner A. Automation of ePROMs in radiation oncology and its impact on patient response and bias. Radiother Oncol 2024; 199:110427. [PMID: 39002570 DOI: 10.1016/j.radonc.2024.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE This study evaluates the impact of integrating a novel, in-house developed electronic Patient-Reported Outcome Measures (ePROMs) tool with a commercial Oncology Information System (OIS) on patient response rates and potential biases in real-world data science applications. MATERIALS AND METHODS We designed an ePROMs tool using the NodeJS web application framework, automatically sending e-mail questionnaires to patients based on their treatment schedules in the OIS. The tool is used across various treatment sites to collect PROMs data in a real-world setting. This research examined the effects of increasing automation levels on both recruitment and response rates, as well as potential biases across different patient cohorts. Automation was implemented in three escalating levels, from telephone reminders for missing reports to minimal intervention from study nurses. RESULTS From August 2020 to December 2023, 1,944 patients participated in the PROMs study. Our findings indicate that automating the workflows substantially reduced the patient management workload. However, higher levels of automation led to lower response rates, particularly in collecting late-phase symptoms in breast and head-and-neck cancer cohorts. Additionally, email-based PROMs introduced an age bias when recruiting new patients for the ePROMs study. Nevertheless, age was not a significant predictor of early dropout or missing symptom reports among patients participating. Notably, increased automation was significantly correlated with lower response rates in breast (p = 0.026) and head-and-neck cancer patients (p < 0.001). CONCLUSION Integrating ePROMs within the OIS can significantly reduce workload and personnel resources. However, this efficiency may compromise patient responses in certain groups. A balance must be achieved between workload, resource allocation, and the sensitivity needed to detect clinically significant effects. This may necessitate customized automation levels tailored to specific cancer groups, highlighting a fundamental trade-off between operational efficiency and data quality.
Collapse
Affiliation(s)
- G Heilemann
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Image and Knowledge Driven Precision Radiation Oncology, Department of Radiation Oncology, Medical University Vienna, Vienna, Austria.
| | - D Georg
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Image and Knowledge Driven Precision Radiation Oncology, Department of Radiation Oncology, Medical University Vienna, Vienna, Austria
| | - M Dobiasch
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - J Widder
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Image and Knowledge Driven Precision Radiation Oncology, Department of Radiation Oncology, Medical University Vienna, Vienna, Austria
| | - A Renner
- Department of Radiation Oncology, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Image and Knowledge Driven Precision Radiation Oncology, Department of Radiation Oncology, Medical University Vienna, Vienna, Austria
| |
Collapse
|
17
|
Li Y, Wang Y, Zhao L, Stenzel MH, Jiang Y. Metal ion interference therapy: metal-based nanomaterial-mediated mechanisms and strategies to boost intracellular "ion overload" for cancer treatment. MATERIALS HORIZONS 2024; 11:4275-4310. [PMID: 39007354 DOI: 10.1039/d4mh00470a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Metal ion interference therapy (MIIT) has emerged as a promising approach in the field of nanomedicine for combatting cancer. With advancements in nanotechnology and tumor targeting-related strategies, sophisticated nanoplatforms have emerged to facilitate efficient MIIT in xenografted mouse models. However, the diverse range of metal ions and the intricacies of cellular metabolism have presented challenges in fully understanding this therapeutic approach, thereby impeding its progress. Thus, to address these issues, various amplification strategies focusing on ionic homeostasis and cancer cell metabolism have been devised to enhance MIIT efficacy. In this review, the remarkable progress in Fe, Cu, Ca, and Zn ion interference nanomedicines and understanding their intrinsic mechanism is summarized with particular emphasis on the types of amplification strategies employed to strengthen MIIT. The aim is to inspire an in-depth understanding of MIIT and provide guidance and ideas for the construction of more powerful nanoplatforms. Finally, the related challenges and prospects of this emerging treatment are discussed to pave the way for the next generation of cancer treatments and achieve the desired efficacy in patients.
Collapse
Affiliation(s)
- Yutang Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Yandong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Li Zhao
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| |
Collapse
|
18
|
Zhang Q, Kuang G, Wang L, Fan L, Zhou Y, Shang L, Zhao Y, Sun W. Bio-inspired biorthogonal compartmental microparticles for tumor chemotherapy and photothermal therapy. J Nanobiotechnology 2024; 22:498. [PMID: 39164657 PMCID: PMC11337894 DOI: 10.1186/s12951-024-02778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Microcarrier is a promising drug delivery system demonstrating significant value in treating cancers. One of the main goals is to devise microcarriers with ingenious structures and functions to achieve better therapeutic efficacy in tumors. Here, inspired by the nucleus-cytoplasm structure of cells and the material exchange reaction between them, we develop a type of biorthogonal compartmental microparticles (BCMs) from microfluidics that can separately load and sequentially release cyclooctene-modified doxorubicin prodrug (TCO-DOX) and tetrazine-modified indocyanine green (Tz-ICG) for tumor therapy. The Tz-ICG works not only as an activator for TCO-DOX but also as a photothermal agent, allowing for the combination of bioorthogonal chemotherapy and photothermal therapy (PTT). Besides, the modification of DOX with cyclooctene significantly decreases the systemic toxicity of DOX. As a result, the developed BCMs demonstrate efficient in vitro tumor cell eradication and exhibit notable tumor growth inhibition with favorable safety. These findings illustrate that the formulated BCMs establish a platform for bioorthogonal prodrug activation and localized delivery, holding significant potential for cancer therapy and related applications.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Gaizhen Kuang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Li Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Lu Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yechao Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yuanjin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
19
|
Luo X, Liu H, Wen J, Hu J, Li Y, Li G, Dai G, Li Y, Li J. Composite hydrogels with antioxidant and robust adhesive properties for the prevention of radiation-induced dermatitis. J Mater Chem B 2024; 12:6927-6939. [PMID: 38904166 DOI: 10.1039/d4tb00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Radiotherapy is a pivotal means of cancer treatment, but it often leads to radiation dermatitis, a skin injury caused by radiation-induced excess reactive oxygen species (ROS). Scavenging free radicals in the course of radiation therapy will be an effective means to prevent radiation dermatitis. This study demonstrates a novel double network hydrogel doped with MoS2 nanosheets for the prevention of radiation-induced dermatitis. The resultant SPM hydrogel constructed from polyacrylamide (PAM) and sodium alginate (SA) nanofiber presented favorable mechanical and adhesion properties. It could conform well to the human body's irregular contours without secondary dressing fixation, making it suitable for skin protection applications. The in vitro and in vivo experiments showed that the antioxidant properties conferred by MoS2 nanosheets enable SPM to effectively mitigate excessive ROS and reduce oxidative stress, thereby preventing radiation dermatitis caused by oxidative damage. Biosafety assessments indicated good biocompatibility of the composite hydrogel, suggesting SPM's practicality and potential as an external dressing for skin radiation protection.
Collapse
Affiliation(s)
- Xue Luo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Huan Liu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jing Wen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jiaxin Hu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Yongzhi Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Guangjun Li
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Guyu Dai
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610065, P. R. China.
| |
Collapse
|
20
|
Corish S, Fulton BA, Galbraith L, Coltart K, Duffton A. Impact of patient information format on the experience of cancer patients treated with radiotherapy. Tech Innov Patient Support Radiat Oncol 2024; 30:100252. [PMID: 38779037 PMCID: PMC11109017 DOI: 10.1016/j.tipsro.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Radiotherapy (RT) stands as one of the main cancer treatments. The impact of RT and cancer treatment can have a physical and psychological impact on patients and their carers. To gain patient's trust, and ensure they feel valued, information should be provided before, during, and after RT. Patient and public involvement (PPI) has been lacking, and increased engagement with PPI groups could improve this. This rapid review aims to analyse the literature, and describe and report patient perception, experience, and satisfaction regarding the information received concerning their course of RT. Methods To allow the synthesis of results, a pragmatic decision was made to use a rapid review approach to analyse the literature, providing more timely information to inform future work. This rapid review utilised systematic review methods and was conducted according to a pre-defined protocol including clear inclusion criteria (PROSPERO registration: CRD42023415916).Electronic databases CINAHL, AMED, Pubmed/MEDLINE, EMBASE, and PsycINFO were searched using a comprehensive search for published studies from January 2012 to November 2023. Two independent reviewers applied the eligibility criteria. Evidence from literature was extracted and transcribed into qualitative data and Braun and Clarke's six-step thematic analysis (TA) was employed to determine themes by one reviewer and checked by a second [26]. Due to the heterogeneity of the included literature, the analysis of this review is presented primarily through narrative synthesis. Results Sixty eight articles met the inclusion criteria for this review. Emerging themes included; a desire for information based on patient characteristics, information format, patient preparedness, timing e.g. timing of information and changing priorities over time, health care professional (HCP) involvement, barriers to information, and motivators for better information delivery. Conclusions Several factors can influence a patient's desire for information, from whom and when they receive it, to what format they would prefer to receive it. There is benefit to be gained in employing PPI and patient advocacy to inform future studies that aim to further understand the themes that emerged from this review. Such studies can therefore inform HCPs in providing patient-specific information and support by utilising multiple teaching strategies available to them.
Collapse
Affiliation(s)
| | - Ben A Fulton
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| | | | | | - Aileen Duffton
- Beatson West of Scotland Cancer Centre, Glasgow, UK
- Institute of Cancer Science, University of Glasgow, UK
| |
Collapse
|
21
|
Zheng C, Niu M, Kong Y, Liu X, Li J, Gong X, Ren X, Hong C, Yin M, Wang L. Oral administration of probiotic spore ghosts for efficient attenuation of radiation-induced intestinal injury. J Nanobiotechnology 2024; 22:303. [PMID: 38822376 PMCID: PMC11140926 DOI: 10.1186/s12951-024-02572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.
Collapse
Affiliation(s)
- Cuixia Zheng
- Translational medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yueyue Kong
- Xinjiang Aksu First People's Hospital, Akesu, 843000, China
| | - Xinxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China
| | - Junxiu Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xunwei Gong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyuan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Hong
- Translational medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Menghao Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Pingyuan Lab, Henan Normal University, Xinxiang, 453007, China.
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China.
| |
Collapse
|
22
|
Possenti L, Vitullo P, Cicchetti A, Zunino P, Rancati T. Modeling hypoxia-induced radiation resistance and the impact of radiation sources. Comput Biol Med 2024; 173:108334. [PMID: 38520919 DOI: 10.1016/j.compbiomed.2024.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Hypoxia contributes significantly to resistance in radiotherapy. Our research rigorously examines the influence of microvascular morphology on radiotherapy outcome, specifically focusing on how microvasculature shapes hypoxia within the microenvironment and affects resistance to a standard treatment regimen (30×2GyRBE). Our computational modeling extends to the effects of different radiation sources. For photons and protons, our analysis establishes a clear correlation between hypoxic volume distribution and treatment effectiveness, with vascular density and regularity playing a crucial role in treatment success. On the contrary, carbon ions exhibit distinct effectiveness, even in areas of intense hypoxia and poor vascularization. This finding points to the potential of carbon-based hadron therapy in overcoming hypoxia-induced resistance to RT. Considering that the spatial scale analyzed in this study is closely aligned with that of imaging data voxels, we also address the implications of these findings in a clinical context envisioning the possibility of detecting subvoxel hypoxia.
Collapse
Affiliation(s)
- Luca Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy.
| | - Piermario Vitullo
- MOX, Department of Mathematics, Politecnico di Milano, P.zza Da Vinci 32, Milan, 20133, Italy
| | - Alessandro Cicchetti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, P.zza Da Vinci 32, Milan, 20133, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| |
Collapse
|
23
|
Li X, Wei Y, Zhang Z, Zhang X. Harnessing genetically engineered cell membrane-derived vesicles as biotherapeutics. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:44-63. [PMID: 39698409 PMCID: PMC11648408 DOI: 10.20517/evcna.2023.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/22/2024] [Indexed: 12/20/2024]
Abstract
Cell membrane-derived vesicles (CMVs) are particles generated from living cells, including extracellular vesicles (EVs) and artificial extracellular vesicles (aEVs) prepared from cell membranes. CMVs possess considerable potential in drug delivery, regenerative medicine, immunomodulation, disease diagnosis, etc. owing to their stable lipid bilayer structure, favorable biocompatibility, and low toxicity. Although the majority of CMVs inherit certain attributes from the original cells, it is still difficult to execute distinct therapeutic functions, such as organ targeting, signal regulation, and exogenous biotherapeutic supplementation. Hence, engineering CMVs by genetic engineering, chemical modification, and hybridization is a promising way to endow CMVs with specific functions and open up novel vistas for applications. In particular, there is a growing interest in genetically engineered CMVs harnessed to exhibit biotherapeutics. Herein, we outline the preparation strategies and their characteristics for purifying CMVs. Additionally, we review the advances of genetically engineered CMVs utilized to target organs, regulate signal transduction, and deliver biomacromolecules and chemical drugs. Furthermore, we also summarize the emerging therapeutic applications of genetically engineered CMVs in addressing tumors, diabetes, systemic lupus erythematosus, and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaohong Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Yuting Wei
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Zhirang Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| |
Collapse
|