1
|
Igarashi J. Future projections for mammalian whole-brain simulations based on technological trends in related fields. Neurosci Res 2024:S0168-0102(24)00138-X. [PMID: 39571736 DOI: 10.1016/j.neures.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024]
Abstract
Large-scale brain simulation allows us to understand the interaction of vast numbers of neurons having nonlinear dynamics to help understand the information processing mechanisms in the brain. The scale of brain simulations continues to rise as computer performance improves exponentially. However, a simulation of the human whole brain has not yet been achieved as of 2024 due to insufficient computational performance and brain measurement data. This paper examines technological trends in supercomputers, cell type classification, connectomics, and large-scale activity measurements relevant to whole-brain simulation. Based on these trends, we attempt to predict the feasible timeframe for mammalian whole-brain simulation. Our estimates suggest that mouse whole-brain simulation at the cellular level could be realized around 2034, marmoset around 2044, and human likely later than 2044.
Collapse
Affiliation(s)
- Jun Igarashi
- High Performance Artificial Intelligence Systems Research Team, Center for Computational Science, RIKEN, Japan.
| |
Collapse
|
2
|
Miedema R, Strydis C. ExaFlexHH: an exascale-ready, flexible multi-FPGA library for biologically plausible brain simulations. Front Neuroinform 2024; 18:1330875. [PMID: 38680548 PMCID: PMC11045893 DOI: 10.3389/fninf.2024.1330875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/05/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction In-silico simulations are a powerful tool in modern neuroscience for enhancing our understanding of complex brain systems at various physiological levels. To model biologically realistic and detailed systems, an ideal simulation platform must possess: (1) high performance and performance scalability, (2) flexibility, and (3) ease of use for non-technical users. However, most existing platforms and libraries do not meet all three criteria, particularly for complex models such as the Hodgkin-Huxley (HH) model or for complex neuron-connectivity modeling such as gap junctions. Methods This work introduces ExaFlexHH, an exascale-ready, flexible library for simulating HH models on multi-FPGA platforms. Utilizing FPGA-based Data-Flow Engines (DFEs) and the dataflow programming paradigm, ExaFlexHH addresses all three requirements. The library is also parameterizable and compliant with NeuroML, a prominent brain-description language in computational neuroscience. We demonstrate the performance scalability of the platform by implementing a highly demanding extended-Hodgkin-Huxley (eHH) model of the Inferior Olive using ExaFlexHH. Results Model simulation results show linear scalability for unconnected networks and near-linear scalability for networks with complex synaptic plasticity, with a 1.99 × performance increase using two FPGAs compared to a single FPGA simulation, and 7.96 × when using eight FPGAs in a scalable ring topology. Notably, our results also reveal consistent performance efficiency in GFLOPS per watt, further facilitating exascale-ready computing speeds and pushing the boundaries of future brain-simulation platforms. Discussion The ExaFlexHH library shows superior resource efficiency, quantified in FLOPS per hardware resources, benchmarked against other competitive FPGA-based brain simulation implementations.
Collapse
Affiliation(s)
- Rene Miedema
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Christos Strydis
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Quantum and Computer Engineering Department, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
3
|
Wang C, Zhang T, Chen X, He S, Li S, Wu S. BrainPy, a flexible, integrative, efficient, and extensible framework for general-purpose brain dynamics programming. eLife 2023; 12:e86365. [PMID: 38132087 PMCID: PMC10796146 DOI: 10.7554/elife.86365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Elucidating the intricate neural mechanisms underlying brain functions requires integrative brain dynamics modeling. To facilitate this process, it is crucial to develop a general-purpose programming framework that allows users to freely define neural models across multiple scales, efficiently simulate, train, and analyze model dynamics, and conveniently incorporate new modeling approaches. In response to this need, we present BrainPy. BrainPy leverages the advanced just-in-time (JIT) compilation capabilities of JAX and XLA to provide a powerful infrastructure tailored for brain dynamics programming. It offers an integrated platform for building, simulating, training, and analyzing brain dynamics models. Models defined in BrainPy can be JIT compiled into binary instructions for various devices, including Central Processing Unit, Graphics Processing Unit, and Tensor Processing Unit, which ensures high-running performance comparable to native C or CUDA. Additionally, BrainPy features an extensible architecture that allows for easy expansion of new infrastructure, utilities, and machine-learning approaches. This flexibility enables researchers to incorporate cutting-edge techniques and adapt the framework to their specific needs.
Collapse
Affiliation(s)
- Chaoming Wang
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Center of Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Bejing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
- Guangdong Institute of Intelligence Science and TechnologyGuangdongChina
| | - Tianqiu Zhang
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Center of Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Bejing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
| | - Xiaoyu Chen
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Center of Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Bejing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
| | - Sichao He
- Beijing Jiaotong UniversityBeijingChina
| | - Shangyang Li
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Center of Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Bejing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
| | - Si Wu
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Center of Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Bejing Key Laboratory of Behavior and Mental Health, Peking UniversityBeijingChina
- Guangdong Institute of Intelligence Science and TechnologyGuangdongChina
| |
Collapse
|
4
|
Schmitt FJ, Rostami V, Nawrot MP. Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST. Front Neuroinform 2023; 17:941696. [PMID: 36844916 PMCID: PMC9950635 DOI: 10.3389/fninf.2023.941696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Spiking neural networks (SNNs) represent the state-of-the-art approach to the biologically realistic modeling of nervous system function. The systematic calibration for multiple free model parameters is necessary to achieve robust network function and demands high computing power and large memory resources. Special requirements arise from closed-loop model simulation in virtual environments and from real-time simulation in robotic application. Here, we compare two complementary approaches to efficient large-scale and real-time SNN simulation. The widely used NEural Simulation Tool (NEST) parallelizes simulation across multiple CPU cores. The GPU-enhanced Neural Network (GeNN) simulator uses the highly parallel GPU-based architecture to gain simulation speed. We quantify fixed and variable simulation costs on single machines with different hardware configurations. As a benchmark model, we use a spiking cortical attractor network with a topology of densely connected excitatory and inhibitory neuron clusters with homogeneous or distributed synaptic time constants and in comparison to the random balanced network. We show that simulation time scales linearly with the simulated biological model time and, for large networks, approximately linearly with the model size as dominated by the number of synaptic connections. Additional fixed costs with GeNN are almost independent of model size, while fixed costs with NEST increase linearly with model size. We demonstrate how GeNN can be used for simulating networks with up to 3.5 · 106 neurons (> 3 · 1012synapses) on a high-end GPU, and up to 250, 000 neurons (25 · 109 synapses) on a low-cost GPU. Real-time simulation was achieved for networks with 100, 000 neurons. Network calibration and parameter grid search can be efficiently achieved using batch processing. We discuss the advantages and disadvantages of both approaches for different use cases.
Collapse
Affiliation(s)
| | | | - Martin Paul Nawrot
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Oláh VJ, Pedersen NP, Rowan MJM. Ultrafast simulation of large-scale neocortical microcircuitry with biophysically realistic neurons. eLife 2022; 11:e79535. [PMID: 36341568 PMCID: PMC9640191 DOI: 10.7554/elife.79535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding the activity of the mammalian brain requires an integrative knowledge of circuits at distinct scales, ranging from ion channel gating to circuit connectomics. Computational models are regularly employed to understand how multiple parameters contribute synergistically to circuit behavior. However, traditional models of anatomically and biophysically realistic neurons are computationally demanding, especially when scaled to model local circuits. To overcome this limitation, we trained several artificial neural network (ANN) architectures to model the activity of realistic multicompartmental cortical neurons. We identified an ANN architecture that accurately predicted subthreshold activity and action potential firing. The ANN could correctly generalize to previously unobserved synaptic input, including in models containing nonlinear dendritic properties. When scaled, processing times were orders of magnitude faster compared with traditional approaches, allowing for rapid parameter-space mapping in a circuit model of Rett syndrome. Thus, we present a novel ANN approach allowing for rapid, detailed network experiments using inexpensive and commonly available computational resources.
Collapse
Affiliation(s)
- Viktor J Oláh
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| | - Nigel P Pedersen
- Department of Neurology, Emory University School of MedicineAtlantaUnited States
| | - Matthew JM Rowan
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
6
|
Alevi D, Stimberg M, Sprekeler H, Obermayer K, Augustin M. Brian2CUDA: Flexible and Efficient Simulation of Spiking Neural Network Models on GPUs. Front Neuroinform 2022; 16:883700. [PMID: 36387586 PMCID: PMC9660315 DOI: 10.3389/fninf.2022.883700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 03/26/2024] Open
Abstract
Graphics processing units (GPUs) are widely available and have been used with great success to accelerate scientific computing in the last decade. These advances, however, are often not available to researchers interested in simulating spiking neural networks, but lacking the technical knowledge to write the necessary low-level code. Writing low-level code is not necessary when using the popular Brian simulator, which provides a framework to generate efficient CPU code from high-level model definitions in Python. Here, we present Brian2CUDA, an open-source software that extends the Brian simulator with a GPU backend. Our implementation generates efficient code for the numerical integration of neuronal states and for the propagation of synaptic events on GPUs, making use of their massively parallel arithmetic capabilities. We benchmark the performance improvements of our software for several model types and find that it can accelerate simulations by up to three orders of magnitude compared to Brian's CPU backend. Currently, Brian2CUDA is the only package that supports Brian's full feature set on GPUs, including arbitrary neuron and synapse models, plasticity rules, and heterogeneous delays. When comparing its performance with Brian2GeNN, another GPU-based backend for the Brian simulator with fewer features, we find that Brian2CUDA gives comparable speedups, while being typically slower for small and faster for large networks. By combining the flexibility of the Brian simulator with the simulation speed of GPUs, Brian2CUDA enables researchers to efficiently simulate spiking neural networks with minimal effort and thereby makes the advancements of GPU computing available to a larger audience of neuroscientists.
Collapse
Affiliation(s)
- Denis Alevi
- Technische Universität Berlin, Chair of Modelling of Cognitive Processes, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Marcel Stimberg
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Henning Sprekeler
- Technische Universität Berlin, Chair of Modelling of Cognitive Processes, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Klaus Obermayer
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Technische Universität Berlin, Chair of Neural Information Processing, Berlin, Germany
| | - Moritz Augustin
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Technische Universität Berlin, Chair of Neural Information Processing, Berlin, Germany
| |
Collapse
|
7
|
Mascart C, Scarella G, Reynaud-Bouret P, Muzy A. Scalability of Large Neural Network Simulations via Activity Tracking With Time Asynchrony and Procedural Connectivity. Neural Comput 2022; 34:1915-1943. [PMID: 35896155 DOI: 10.1162/neco_a_01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/27/2022] [Indexed: 11/04/2022]
Abstract
We present a new algorithm to efficiently simulate random models of large neural networks satisfying the property of time asynchrony. The model parameters (average firing rate, number of neurons, synaptic connection probability, and postsynaptic duration) are of the order of magnitude of a small mammalian brain or of human brain areas. Through the use of activity tracking and procedural connectivity (dynamical regeneration of synapses), computational and memory complexities of this algorithm are proved to be theoretically linear with the number of neurons. These results are experimentally validated by sequential simulations of millions of neurons and billions of synapses running in a few minutes using a single thread of an equivalent desktop computer.
Collapse
Affiliation(s)
| | - Gilles Scarella
- Université Côte d'Azur, CNRS, I3S, France.,Université Côte d'Azur, CNRS, LJAD, 06103 Nice, France
| | | | | |
Collapse
|
8
|
Tiddia G, Golosio B, Albers J, Senk J, Simula F, Pronold J, Fanti V, Pastorelli E, Paolucci PS, van Albada SJ. Fast Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster. Front Neuroinform 2022; 16:883333. [PMID: 35859800 PMCID: PMC9289599 DOI: 10.3389/fninf.2022.883333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Spiking neural network models are increasingly establishing themselves as an effective tool for simulating the dynamics of neuronal populations and for understanding the relationship between these dynamics and brain function. Furthermore, the continuous development of parallel computing technologies and the growing availability of computational resources are leading to an era of large-scale simulations capable of describing regions of the brain of ever larger dimensions at increasing detail. Recently, the possibility to use MPI-based parallel codes on GPU-equipped clusters to run such complex simulations has emerged, opening up novel paths to further speed-ups. NEST GPU is a GPU library written in CUDA-C/C++ for large-scale simulations of spiking neural networks, which was recently extended with a novel algorithm for remote spike communication through MPI on a GPU cluster. In this work we evaluate its performance on the simulation of a multi-area model of macaque vision-related cortex, made up of about 4 million neurons and 24 billion synapses and representing 32 mm2 surface area of the macaque cortex. The outcome of the simulations is compared against that obtained using the well-known CPU-based spiking neural network simulator NEST on a high-performance computing cluster. The results show not only an optimal match with the NEST statistical measures of the neural activity in terms of three informative distributions, but also remarkable achievements in terms of simulation time per second of biological activity. Indeed, NEST GPU was able to simulate a second of biological time of the full-scale macaque cortex model in its metastable state 3.1× faster than NEST using 32 compute nodes equipped with an NVIDIA V100 GPU each. Using the same configuration, the ground state of the full-scale macaque cortex model was simulated 2.4× faster than NEST.
Collapse
Affiliation(s)
- Gianmarco Tiddia
- Department of Physics, University of Cagliari, Monserrato, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Monserrato, Italy
| | - Bruno Golosio
- Department of Physics, University of Cagliari, Monserrato, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Monserrato, Italy
| | - Jasper Albers
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Johanna Senk
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Francesco Simula
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Jari Pronold
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Viviana Fanti
- Department of Physics, University of Cagliari, Monserrato, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Monserrato, Italy
| | - Elena Pastorelli
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | | | - Sacha J. van Albada
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Trensch G, Morrison A. A System-on-Chip Based Hybrid Neuromorphic Compute Node Architecture for Reproducible Hyper-Real-Time Simulations of Spiking Neural Networks. Front Neuroinform 2022; 16:884033. [PMID: 35846779 PMCID: PMC9277345 DOI: 10.3389/fninf.2022.884033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the great strides neuroscience has made in recent decades, the underlying principles of brain function remain largely unknown. Advancing the field strongly depends on the ability to study large-scale neural networks and perform complex simulations. In this context, simulations in hyper-real-time are of high interest, as they would enable both comprehensive parameter scans and the study of slow processes, such as learning and long-term memory. Not even the fastest supercomputer available today is able to meet the challenge of accurate and reproducible simulation with hyper-real acceleration. The development of novel neuromorphic computer architectures holds out promise, but the high costs and long development cycles for application-specific hardware solutions makes it difficult to keep pace with the rapid developments in neuroscience. However, advances in System-on-Chip (SoC) device technology and tools are now providing interesting new design possibilities for application-specific implementations. Here, we present a novel hybrid software-hardware architecture approach for a neuromorphic compute node intended to work in a multi-node cluster configuration. The node design builds on the Xilinx Zynq-7000 SoC device architecture that combines a powerful programmable logic gate array (FPGA) and a dual-core ARM Cortex-A9 processor extension on a single chip. Our proposed architecture makes use of both and takes advantage of their tight coupling. We show that available SoC device technology can be used to build smaller neuromorphic computing clusters that enable hyper-real-time simulation of networks consisting of tens of thousands of neurons, and are thus capable of meeting the high demands for modeling and simulation in neuroscience.
Collapse
Affiliation(s)
- Guido Trensch
- Simulation and Data Laboratory Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, Jülich Research Centre, Jülich, Germany
- Department of Computer Science 3—Software Engineering, RWTH Aachen University, Aachen, Germany
| | - Abigail Morrison
- Simulation and Data Laboratory Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, Jülich Research Centre, Jülich, Germany
- Department of Computer Science 3—Software Engineering, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA-Institute Brain Structure-Function Relationship (JBI-1/INM-10), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
10
|
Ostrau C, Klarhorst C, Thies M, Rückert U. Benchmarking Neuromorphic Hardware and Its Energy Expenditure. Front Neurosci 2022; 16:873935. [PMID: 35720731 PMCID: PMC9201569 DOI: 10.3389/fnins.2022.873935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
We propose and discuss a platform overarching benchmark suite for neuromorphic hardware. This suite covers benchmarks from low-level characterization to high-level application evaluation using benchmark specific metrics. With this rather broad approach we are able to compare various hardware systems including mixed-signal and fully digital neuromorphic architectures. Selected benchmarks are discussed and results for several target platforms are presented revealing characteristic differences between the various systems. Furthermore, a proposed energy model allows to combine benchmark performance metrics with energy efficiency. This model enables the prediction of the energy expenditure of a network on a target system without actually having access to it. To quantify the efficiency gap between neuromorphics and the biological paragon of the human brain, the energy model is used to estimate the energy required for a full brain simulation. This reveals that current neuromorphic systems are at least four orders of magnitude less efficient. It is argued, that even with a modern fabrication process, two to three orders of magnitude are remaining. Finally, for selected benchmarks the performance and efficiency of the neuromorphic solution is compared to standard approaches.
Collapse
|
11
|
Müller E, Arnold E, Breitwieser O, Czierlinski M, Emmel A, Kaiser J, Mauch C, Schmitt S, Spilger P, Stock R, Stradmann Y, Weis J, Baumbach A, Billaudelle S, Cramer B, Ebert F, Göltz J, Ilmberger J, Karasenko V, Kleider M, Leibfried A, Pehle C, Schemmel J. A Scalable Approach to Modeling on Accelerated Neuromorphic Hardware. Front Neurosci 2022; 16:884128. [PMID: 35663548 PMCID: PMC9157770 DOI: 10.3389/fnins.2022.884128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Neuromorphic systems open up opportunities to enlarge the explorative space for computational research. However, it is often challenging to unite efficiency and usability. This work presents the software aspects of this endeavor for the BrainScaleS-2 system, a hybrid accelerated neuromorphic hardware architecture based on physical modeling. We introduce key aspects of the BrainScaleS-2 Operating System: experiment workflow, API layering, software design, and platform operation. We present use cases to discuss and derive requirements for the software and showcase the implementation. The focus lies on novel system and software features such as multi-compartmental neurons, fast re-configuration for hardware-in-the-loop training, applications for the embedded processors, the non-spiking operation mode, interactive platform access, and sustainable hardware/software co-development. Finally, we discuss further developments in terms of hardware scale-up, system usability, and efficiency.
Collapse
Affiliation(s)
- Eric Müller
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Elias Arnold
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Oliver Breitwieser
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Milena Czierlinski
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Arne Emmel
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Jakob Kaiser
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Christian Mauch
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Sebastian Schmitt
- Third Institute of Physics, University of Göttingen, Göttingen, Germany
| | - Philipp Spilger
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Raphael Stock
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Yannik Stradmann
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Johannes Weis
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Andreas Baumbach
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
- Department of Physiology, University of Bern, Bern, Switzerland
| | | | - Benjamin Cramer
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Falk Ebert
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Julian Göltz
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Joscha Ilmberger
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Vitali Karasenko
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Mitja Kleider
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Aron Leibfried
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Christian Pehle
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Johannes Schemmel
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Albers J, Pronold J, Kurth AC, Vennemo SB, Haghighi Mood K, Patronis A, Terhorst D, Jordan J, Kunkel S, Tetzlaff T, Diesmann M, Senk J. A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations. Front Neuroinform 2022; 16:837549. [PMID: 35645755 PMCID: PMC9131021 DOI: 10.3389/fninf.2022.837549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Modern computational neuroscience strives to develop complex network models to explain dynamics and function of brains in health and disease. This process goes hand in hand with advancements in the theory of neuronal networks and increasing availability of detailed anatomical data on brain connectivity. Large-scale models that study interactions between multiple brain areas with intricate connectivity and investigate phenomena on long time scales such as system-level learning require progress in simulation speed. The corresponding development of state-of-the-art simulation engines relies on information provided by benchmark simulations which assess the time-to-solution for scientifically relevant, complementary network models using various combinations of hardware and software revisions. However, maintaining comparability of benchmark results is difficult due to a lack of standardized specifications for measuring the scaling performance of simulators on high-performance computing (HPC) systems. Motivated by the challenging complexity of benchmarking, we define a generic workflow that decomposes the endeavor into unique segments consisting of separate modules. As a reference implementation for the conceptual workflow, we develop beNNch: an open-source software framework for the configuration, execution, and analysis of benchmarks for neuronal network simulations. The framework records benchmarking data and metadata in a unified way to foster reproducibility. For illustration, we measure the performance of various versions of the NEST simulator across network models with different levels of complexity on a contemporary HPC system, demonstrating how performance bottlenecks can be identified, ultimately guiding the development toward more efficient simulation technology.
Collapse
Affiliation(s)
- Jasper Albers
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
- *Correspondence: Jasper Albers
| | - Jari Pronold
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Anno Christopher Kurth
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Stine Brekke Vennemo
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | | | - Alexander Patronis
- Jülich Supercomputing Centre (JSC), Jülich Research Centre, Jülich, Germany
| | - Dennis Terhorst
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Jakob Jordan
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Susanne Kunkel
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Tom Tetzlaff
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Johanna Senk
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
13
|
Peres L, Rhodes O. Parallelization of Neural Processing on Neuromorphic Hardware. Front Neurosci 2022; 16:867027. [PMID: 35620669 PMCID: PMC9128596 DOI: 10.3389/fnins.2022.867027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Learning and development in real brains typically happens over long timescales, making long-term exploration of these features a significant research challenge. One way to address this problem is to use computational models to explore the brain, with Spiking Neural Networks a popular choice to capture neuron and synapse dynamics. However, researchers require simulation tools and platforms to execute simulations in real- or sub-realtime, to enable exploration of features such as long-term learning and neural pathologies over meaningful periods. This article presents novel multicore processing strategies on the SpiNNaker Neuromorphic hardware, addressing parallelization of Spiking Neural Network operations through allocation of dedicated computational units to specific tasks (such as neural and synaptic processing) to optimize performance. The work advances previous real-time simulations of a cortical microcircuit model, parameterizing load balancing between computational units in order to explore trade-offs between computational complexity and speed, to provide the best fit for a given application. By exploiting the flexibility of the SpiNNaker Neuromorphic platform, up to 9× throughput of neural operations is demonstrated when running biologically representative Spiking Neural Networks.
Collapse
Affiliation(s)
- Luca Peres
- Advanced Processor Technologies Group, Department of Computer Science, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
14
|
Heittmann A, Psychou G, Trensch G, Cox CE, Wilcke WW, Diesmann M, Noll TG. Simulating the Cortical Microcircuit Significantly Faster Than Real Time on the IBM INC-3000 Neural Supercomputer. Front Neurosci 2022; 15:728460. [PMID: 35126034 PMCID: PMC8811464 DOI: 10.3389/fnins.2021.728460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
This article employs the new IBM INC-3000 prototype FPGA-based neural supercomputer to implement a widely used model of the cortical microcircuit. With approximately 80,000 neurons and 300 Million synapses this model has become a benchmark network for comparing simulation architectures with regard to performance. To the best of our knowledge, the achieved speed-up factor is 2.4 times larger than the highest speed-up factor reported in the literature and four times larger than biological real time demonstrating the potential of FPGA systems for neural modeling. The work was performed at Jülich Research Centre in Germany and the INC-3000 was built at the IBM Almaden Research Center in San Jose, CA, United States. For the simulation of the microcircuit only the programmable logic part of the FPGA nodes are used. All arithmetic is implemented with single-floating point precision. The original microcircuit network with linear LIF neurons and current-based exponential-decay-, alpha-function- as well as beta-function-shaped synapses was simulated using exact exponential integration as ODE solver method. In order to demonstrate the flexibility of the approach, additionally networks with non-linear neuron models (AdEx, Izhikevich) and conductance-based synapses were simulated, applying Runge-Kutta and Parker-Sochacki solver methods. In all cases, the simulation-time speed-up factor did not decrease by more than a very few percent. It finally turns out that the speed-up factor is essentially limited by the latency of the INC-3000 communication system.
Collapse
Affiliation(s)
- Arne Heittmann
- JARA-Institute Green IT (PGI-10), Jülich Research Centre, Jülich, Germany
| | - Georgia Psychou
- JARA-Institute Green IT (PGI-10), Jülich Research Centre, Jülich, Germany
| | - Guido Trensch
- Simulation and Data Laboratory Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, Jülich Research Centre, Jülich, Germany
| | - Charles E. Cox
- IBM Research Division, Almaden Research Center, San Jose, CA, United States
| | - Winfried W. Wilcke
- IBM Research Division, Almaden Research Center, San Jose, CA, United States
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tobias G. Noll
- JARA-Institute Green IT (PGI-10), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
15
|
Dasbach S, Tetzlaff T, Diesmann M, Senk J. Dynamical Characteristics of Recurrent Neuronal Networks Are Robust Against Low Synaptic Weight Resolution. Front Neurosci 2021; 15:757790. [PMID: 35002599 PMCID: PMC8740282 DOI: 10.3389/fnins.2021.757790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
The representation of the natural-density, heterogeneous connectivity of neuronal network models at relevant spatial scales remains a challenge for Computational Neuroscience and Neuromorphic Computing. In particular, the memory demands imposed by the vast number of synapses in brain-scale network simulations constitute a major obstacle. Limiting the number resolution of synaptic weights appears to be a natural strategy to reduce memory and compute load. In this study, we investigate the effects of a limited synaptic-weight resolution on the dynamics of recurrent spiking neuronal networks resembling local cortical circuits and develop strategies for minimizing deviations from the dynamics of networks with high-resolution synaptic weights. We mimic the effect of a limited synaptic weight resolution by replacing normally distributed synaptic weights with weights drawn from a discrete distribution, and compare the resulting statistics characterizing firing rates, spike-train irregularity, and correlation coefficients with the reference solution. We show that a naive discretization of synaptic weights generally leads to a distortion of the spike-train statistics. If the weights are discretized such that the mean and the variance of the total synaptic input currents are preserved, the firing statistics remain unaffected for the types of networks considered in this study. For networks with sufficiently heterogeneous in-degrees, the firing statistics can be preserved even if all synaptic weights are replaced by the mean of the weight distribution. We conclude that even for simple networks with non-plastic neurons and synapses, a discretization of synaptic weights can lead to substantial deviations in the firing statistics unless the discretization is performed with care and guided by a rigorous validation process. For the network model used in this study, the synaptic weights can be replaced by low-resolution weights without affecting its macroscopic dynamical characteristics, thereby saving substantial amounts of memory.
Collapse
Affiliation(s)
- Stefan Dasbach
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Tom Tetzlaff
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Johanna Senk
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| |
Collapse
|