1
|
Sloboda S, Ge X, Jiang D, Su L, Wiens GD, Beveridge CA, Duchaud E, McBride MJ, Rochat T, Zhu Y. Methylation of foreign DNA overcomes the restriction barrier of Flavobacterium psychrophilum and allows efficient genetic manipulation. Appl Environ Microbiol 2025; 91:e0144824. [PMID: 39791877 PMCID: PMC11837570 DOI: 10.1128/aem.01448-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025] Open
Abstract
Flavobacterium psychrophilum causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms F. psychrophilum uses to cause disease are poorly understood. Despite considerable effort, most strains of F. psychrophilum have resisted attempts at genetic manipulation. F. psychrophilum restriction-modification (R-M) systems may contribute to this resistance. Restriction endonucleases (REases) rapidly degrade nonself DNA if it is not properly methylated by their cognate DNA methyltransferases (MTases). We used comparative genomics to show that R-M systems are abundant in F. psychrophilum and that strain-specific variations partially align with phylogeny. We identified two critical type II R-M systems, HpaII-like (FpsJI) and ScrFI-like (FpsJVI), that are conserved in most of the sequenced strains. Protection of foreign DNA against HpaII and ScrFI was achieved by expression of the MTases M.FpsJI and M.FpsJVI in Escherichia coli. Furthermore, deleting the two REase genes from F. psychrophilum resulted in efficient conjugative DNA transfer from E. coli into the otherwise genetically intractable F. psychrophilum strain CSF259-93. This allowed us to construct a CSF259-93 mutant lacking gldN, a core component of the type IX protein secretion system. The pre-methylation system developed in this study functions in all tested F. psychrophilum strains harboring HpaII-like and ScrFI-like REases. These newly developed genetic tools may allow the identification of key virulence factors and facilitate the development of live attenuated vaccines or other measures to control BCWD. IMPORTANCE Bacterial cold-water disease (BCWD) caused by Flavobacterium psychrophilum is a problem for salmonid aquaculture worldwide, and current control measures are inadequate. An obstacle in understanding and controlling BCWD is that most F. psychrophilum strains resist DNA transfer, thus limiting genetic studies of their virulence mechanisms. F. psychrophilum restriction enzymes that destroy foreign DNA were suspected to contribute to this problem. Here, we used F. psychrophilum DNA methyltransferases to modify and protect foreign DNA from digestion. This allowed efficient conjugative DNA transfer into nine diverse F. psychrophilum strains that had previously resisted DNA transfer. Using this approach, we constructed a gene deletion mutant that failed to cause disease in rainbow trout. Further genetic studies could help determine the molecular factors involved in pathogenesis and may aid development of innovative BCWD control strategies.
Collapse
Affiliation(s)
- Seada Sloboda
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, Minnesota, USA
| | - Xinwei Ge
- Department of Biosciences and Bioinformatics, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Daqing Jiang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Lin Su
- Department of Biosciences and Bioinformatics, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Gregory D. Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - Carly A. Beveridge
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, Minnesota, USA
| | - Eric Duchaud
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Tatiana Rochat
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Yongtao Zhu
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, Minnesota, USA
- Department of Biosciences and Bioinformatics, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
3
|
Thunes NC, Evenhuis JP, Lipscomb RS, Pérez-Pascual D, Stevick RJ, Birkett C, Ghigo JM, McBride MJ. Gliding motility proteins GldJ and SprB contribute to Flavobacterium columnare virulence. J Bacteriol 2024; 206:e0006824. [PMID: 38517170 PMCID: PMC11025331 DOI: 10.1128/jb.00068-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Flavobacterium columnare causes columnaris disease in fish. Columnaris disease is incompletely understood, and adequate control measures are lacking. The type IX secretion system (T9SS) is required for F. columnare gliding motility and virulence. The T9SS and gliding motility machineries share some, but not all, components. GldN (required for gliding and for secretion) and PorV (involved in secretion but not required for gliding) are both needed for virulence, implicating T9SS-mediated secretion in virulence. The role of motility in virulence is uncertain. We constructed and analyzed sprB, sprF, and gldJ mutants that were defective for motility but that maintained T9SS function to understand the role of motility in virulence. Wild-type cells moved rapidly and formed spreading colonies. In contrast, sprB and sprF deletion mutants were partially defective in gliding and formed nonspreading colonies. Both mutants exhibited reduced virulence in rainbow trout fry. A gldJ deletion mutant was nonmotile, secretion deficient, and avirulent in rainbow trout fry. To separate the roles of GldJ in secretion and in motility, we generated gldJ truncation mutants that produce nearly full-length GldJ. Mutant gldJ563, which produces GldJ truncated at amino acid 563, was defective for gliding but was competent for secretion as measured by extracellular proteolytic activity. This mutant displayed reduced virulence in rainbow trout fry, suggesting that motility contributes to virulence. Fish that survived exposure to the sprB deletion mutant or the gldJ563 mutant exhibited partial resistance to later challenge with wild-type cells. The results aid our understanding of columnaris disease and may suggest control strategies.IMPORTANCEFlavobacterium columnare causes columnaris disease in many species of freshwater fish in the wild and in aquaculture systems. Fish mortalities resulting from columnaris disease are a major problem for aquaculture. F. columnare virulence is incompletely understood, and control measures are inadequate. Gliding motility and protein secretion have been suggested to contribute to columnaris disease, but evidence directly linking motility to disease was lacking. We isolated and analyzed mutants that were competent for secretion but defective for motility. Some of these mutants exhibited decreased virulence. Fish that had been exposed to these mutants were partially protected from later exposure to the wild type. The results contribute to our understanding of columnaris disease and may aid development of control strategies.
Collapse
Affiliation(s)
- Nicole C. Thunes
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - David Pérez-Pascual
- Institut Pasteur, Université Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Rebecca J. Stevick
- Institut Pasteur, Université Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Shaw CG, Pavloudi C, Crow RS, Saw JH, Smith LC. Spotting disease disrupts the microbiome of infected purple sea urchins, Strongylocentrotus purpuratus. BMC Microbiol 2024; 24:11. [PMID: 38172649 PMCID: PMC10765733 DOI: 10.1186/s12866-023-03161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Spotting disease infects a variety of sea urchin species across many different marine locations. The disease is characterized by discrete lesions on the body surface composed of discolored necrotic tissue that cause the loss of all surface appendages within the lesioned area. A similar, but separate disease of sea urchins called bald sea urchin disease (BSUD) has overlapping symptoms with spotting disease, resulting in confusions in distinguishing the two diseases. Previous studies have focus on identifying the underlying causative agent of spotting disease, which has resulted in the identification of a wide array of pathogenic bacteria that vary based on location and sea urchin species. Our aim was to investigate the spotting disease infection by characterizing the microbiomes of the animal surface and various tissues. RESULTS We collected samples of the global body surface, the lesion surface, lesioned and non-lesioned body wall, and coelomic fluid, in addition to samples from healthy sea urchins. 16S rRNA gene was amplified and sequenced from the genomic DNA. Results show that the lesions are composed mainly of Cyclobacteriaceae, Cryomorphaceae, and a few other taxa, and that the microbial composition of lesions is the same for all infected sea urchins. Spotting disease also alters the microbial composition of the non-lesioned body wall and coelomic fluid of infected sea urchins. In our closed aquarium systems, sea urchins contracted spotting disease and BSUD separately and therefore direct comparisons could be made between the microbiomes from diseased and healthy sea urchins. CONCLUSION Results show that spotting disease and BSUD are separate diseases with distinct symptoms and distinct microbial compositions.
Collapse
Affiliation(s)
- Chloe G Shaw
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Christina Pavloudi
- Department of Biological Sciences, George Washington University, Washington, DC, USA
- European Marine Biological Resource Centre (EMBRC-ERIC), Paris, France
| | - Ryley S Crow
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Jimmy H Saw
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
5
|
Wiens GD, Marancik DP, Chadwick CC, Osbourn K, Reid RM, Leeds TD. Plasma proteomic profiling of bacterial cold water disease-resistant and -susceptible rainbow trout lines and biomarker discovery. Front Immunol 2023; 14:1265386. [PMID: 37928534 PMCID: PMC10623068 DOI: 10.3389/fimmu.2023.1265386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Genetic variation for disease resistance is present in salmonid fish; however, the molecular basis is poorly understood, and biomarkers of disease susceptibility/resistance are unavailable. Previously, we selected a line of rainbow trout for high survival following standardized challenge with Flavobacterium psychrophilum (Fp), the causative agent of bacterial cold water disease. The resistant line (ARS-Fp-R) exhibits over 60 percentage points higher survival compared to a reference susceptible line (ARS-Fp-S). To gain insight into the differential host response between genetic lines, we compared the plasma proteomes from day 6 after intramuscular challenge. Pooled plasma from unhandled, PBS-injected, and Fp-injected groups were simultaneously analyzed using a TMT 6-plex label, and the relative abundance of 513 proteins was determined. Data are available via ProteomeXchange, with identifier PXD041308, and the relative protein abundance values were compared to mRNA measured from a prior, whole-body RNA-seq dataset. Our results identified a subset of differentially abundant intracellular proteins was identified, including troponin and myosin, which were not transcriptionally regulated, suggesting that these proteins were released into plasma following pathogen-induced tissue damage. A separate subset of high-abundance, secreted proteins were transcriptionally regulated in infected fish. The highest differentially expressed protein was a C1q family member (designated complement C1q-like protein 3; C1q-LP3) that was upregulated over 20-fold in the infected susceptible line while only modestly upregulated, 1.8-fold, in the infected resistant line. Validation of biomarkers was performed using immunoassays and C1q-LP3, skeletal muscle troponin C, cathelcidin 2, haptoglobin, leptin, and growth and differentiation factor 15 exhibited elevated concentration in susceptible line plasma. Complement factor H-like 1 exhibited higher abundance in the resistant line compared to the susceptible line in both control and challenged fish and thus was a baseline differentiator between lines. C1q-LP3 and STNC were elevated in Atlantic salmon plasma following experimental challenge with Fp. In summary, these findings further the understanding of the differential host response to Fp and identifies salmonid biomarkers that may have use for genetic line evaluation and on-farm health monitoring.
Collapse
Affiliation(s)
- Gregory D. Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture (USDA), Kearneysville, WV, United States
| | - David P. Marancik
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, Grenada
| | | | - Keira Osbourn
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture (USDA), Kearneysville, WV, United States
| | - Ross M. Reid
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture (USDA), Kearneysville, WV, United States
| | - Timothy D. Leeds
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture (USDA), Kearneysville, WV, United States
| |
Collapse
|
6
|
Zhu Y, Lechardeur D, Bernardet JF, Kerouault B, Guérin C, Rigaudeau D, Nicolas P, Duchaud E, Rochat T. Two functionally distinct heme/iron transport systems are virulence determinants of the fish pathogen Flavobacterium psychrophilum. Virulence 2022; 13:1221-1241. [PMID: 35880611 PMCID: PMC9331221 DOI: 10.1080/21505594.2022.2101197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 10/26/2022] Open
Abstract
Bacterial pathogens have a critical impact on aquaculture, a sector that accounts for half of the human fish consumption. Flavobacterium psychrophilum (phylum Bacteroidetes) is responsible for bacterial cold-water disease in salmonids worldwide. The molecular factors involved in host invasion, colonization and haemorrhagic septicaemia are mostly unknown. In this study, we identified two new TonB-dependent receptors, HfpR and BfpR, that are required for adaptation to iron conditions encountered during infection and for virulence in rainbow trout. Transcriptional analyses revealed that their expression is tightly controlled and upregulated under specific iron sources and concentrations. Characterization of deletion mutants showed that they act without redundancy: BfpR is required for optimal growth in the presence of high haemoglobin level, while HfpR confers the capacity to acquire nutrient iron from haem or haemoglobin under iron scarcity. The gene hfpY, co-transcribed with hfpR, encodes a protein related to the HmuY family. We demonstrated that HfpY binds haem and contributes significantly to host colonization and disease severity. Overall, these results are consistent with a model in which both BfpR and Hfp systems promote haem uptake and respond to distinct signals to adapt iron acquisition to the different stages of pathogenesis. Our findings give insight into the molecular basis of pathogenicity of a serious pathogen belonging to the understudied family Flavobacteriaceae and point to the newly identified haem receptors as promising targets for antibacterial development.
Collapse
Affiliation(s)
- Yueying Zhu
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Delphine Lechardeur
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Cyprien Guérin
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Pierre Nicolas
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Duchaud
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tatiana Rochat
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
7
|
Conrad RA, Evenhuis JP, Lipscomb RS, Birkett C, McBride MJ. Siderophores Produced by the Fish Pathogen Flavobacterium columnare Strain MS-FC-4 Are Not Essential for Its Virulence. Appl Environ Microbiol 2022; 88:e0094822. [PMID: 35969053 PMCID: PMC9469716 DOI: 10.1128/aem.00948-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 01/17/2023] Open
Abstract
Flavobacterium columnare causes columnaris disease in wild and aquaculture-reared freshwater fish. F. columnare virulence mechanisms are not well understood, and current methods to control columnaris disease are inadequate. Iron acquisition from the host is important for the pathogenicity and virulence of many bacterial pathogens. F. columnare iron acquisition has not been studied in detail. We identified genes predicted to function in siderophore production for ferric iron uptake. Genes predicted to encode the proteins needed for siderophore synthesis, export, uptake, and regulation were deleted from F. columnare strain MS-FC-4. The mutants were examined for defects in siderophore production, for growth defects in iron-limited conditions, and for virulence against zebrafish and rainbow trout. Mutants lacking all siderophore activity were obtained. These mutants displayed growth defects when cultured under iron-limited conditions, but they retained virulence against zebrafish and rainbow trout similar to that exhibited by the wild type, indicating that the F. columnare MS-FC-4 siderophores are not required for virulence under the conditions tested. IMPORTANCE Columnaris disease, which is caused by Flavobacterium columnare, is a major problem for freshwater aquaculture. Little is known regarding F. columnare virulence factors, and control measures are limited. Iron acquisition mechanisms such as siderophores are important for virulence of other pathogens. We identified F. columnare siderophore biosynthesis, export, and uptake genes. Deletion of these genes eliminated siderophore production and resulted in growth defects under iron-limited conditions but did not alter virulence in rainbow trout or zebrafish. The results indicate that the F. columnare strain MS-FC-4 siderophores are not critical virulence factors under the conditions tested but may be important for survival under iron-limited conditions in natural aquatic environments or aquaculture systems.
Collapse
Affiliation(s)
- Rachel A. Conrad
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia, USA
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia, USA
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, U.S. Department of Agriculture, Kearneysville, West Virginia, USA
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|