1
|
Sauma-Sánchez T, Alcorta J, Tamayo-Leiva J, Díez B, Bezuidenhout H, Cowan DA, Ramond JB. Functional redundancy buffers the effect of poly-extreme environmental conditions on southern African dryland soil microbial communities. FEMS Microbiol Ecol 2024; 100:fiae157. [PMID: 39568064 PMCID: PMC11636270 DOI: 10.1093/femsec/fiae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/09/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Drylands' poly-extreme conditions limit edaphic microbial diversity and functionality. Furthermore, climate change exacerbates soil desiccation and salinity in most drylands. To better understand the potential effects of these changes on dryland microbial communities, we evaluated their taxonomic and functional diversities in two Southern African dryland soils with contrasting aridity and salinity. Fungal community structure was significantly influenced by aridity and salinity, while Bacteria and Archaea only by salinity. Deterministic homogeneous selection was significantly more important for bacterial and archaeal communities' assembly in hyperarid and saline soils when compared to those from arid soils. This suggests that niche partitioning drives bacterial and archaeal communities' assembly under the most extreme conditions. Conversely, stochastic dispersal limitations drove the assembly of fungal communities. Hyperarid and saline soil communities exhibited similar potential functional capacities, demonstrating a disconnect between microbial structure and function. Structure variations could be functionally compensated by different taxa with similar functions, as implied by the high levels of functional redundancy. Consequently, while environmental selective pressures shape the dryland microbial community assembly and structures, they do not influence their potential functionality. This suggests that they are functionally stable and that they could be functional even under harsher conditions, such as those expected with climate change.
Collapse
Affiliation(s)
- Tomás Sauma-Sánchez
- Extreme Ecosystem Microbiomics & Ecogenomics (E²ME) Laboratory, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jaime Alcorta
- Microbial Ecology of Extreme Systems Laboratory, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8331150, Chile
| | - Javier Tamayo-Leiva
- Microbial Ecology of Extreme Systems Laboratory, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR), Santiago 8370449, Chile
| | - Beatriz Díez
- Microbial Ecology of Extreme Systems Laboratory, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR), Santiago 8370449, Chile
| | - Hugo Bezuidenhout
- Scientific Services Kimberley, South African National Parks, Kimberley 8306, South Africa
- Applied Behavioural Ecology & Ecosystem Research Unit, UNISA, P/Bag X6, Florida 1710, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, P/Bag X20, Pretoria 0028, South Africa
| | - Jean-Baptiste Ramond
- Extreme Ecosystem Microbiomics & Ecogenomics (E²ME) Laboratory, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, P/Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
2
|
Andreani-Gerard CM, Cambiazo V, González M. Biosynthetic gene clusters from uncultivated soil bacteria of the Atacama Desert. mSphere 2024; 9:e0019224. [PMID: 39287428 PMCID: PMC11520301 DOI: 10.1128/msphere.00192-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Soil microorganisms mediate several biological processes through the secretion of natural products synthesized in specialized metabolic pathways, yet functional characterization in ecological contexts remains challenging. Using culture-independent metagenomic analyses of microbial DNA derived directly from soil samples, we examined the potential of biosynthetic gene clusters (BGCs) from six bacterial communities distributed along an altitudinal gradient of the Andes Mountains in the Atacama Desert. We mined 38 metagenome-assembled genomes (MAGs) and identified 168 BGCs. Results indicated that most predicted BGCs were classified as non-ribosomal-peptides (NRP), post-translational modified peptides (RiPP), and terpenes, which were mainly identified in genomes of species from Acidobacteriota and Proteobacteria phyla. Based on BGC composition according to types of core biosynthetic genes, six clusters of MAGs were observed, three of them with predominance for a single phylum, of which two also showed specificity to a single sampling site. Comparative analyses of accessory genes in BGCs showed associations between membrane transporters and other protein domains involved in specialized metabolism with classes of biosynthetic cores, such as resistance-nodulation-cell division (RND) multidrug efflux pumps with RiPPs and the iron-dependent transporter TonB with terpenes. Our findings increase knowledge regarding the biosynthetic potential of uncultured bacteria inhabiting pristine locations from one of the oldest and driest nonpolar deserts on Earth.IMPORTANCEMuch of what we know about specialized metabolites in the Atacama Desert, including Andean ecosystems, comes from isolated microorganisms intended for drug development and natural product discovery. To complement research on the metabolic potential of microbes in extreme environments, comparative analyses on functional annotations of biosynthetic gene clusters (BGCs) from uncultivated bacterial genomes were carried out. Results indicated that in general, BGCs encode for structurally unique metabolites and that metagenome-assembled genomes did not show an obvious relationship between the composition of their core biosynthetic potential and taxonomy or geographic distribution. Nevertheless, some members of Acidobacteriota showed a phylogenetic relationship with specific metabolic traits and a few members of Proteobacteria and Desulfobacterota exhibited niche adaptations. Our results emphasize that studying specialized metabolism in environmental samples may significantly contribute to the elucidation of structures, activities, and ecological roles of microbial molecules.
Collapse
Affiliation(s)
- Constanza M. Andreani-Gerard
- Millennium Institute Center for Genome Regulation (CRG)
- Bioinformatic and Gene Expression Laboratory, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Santiago, Chile
- Center for Mathematical Modeling (CMM) – Universidad de Chile, Santiago, Chile
| | - Verónica Cambiazo
- Millennium Institute Center for Genome Regulation (CRG)
- Bioinformatic and Gene Expression Laboratory, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Santiago, Chile
| | - Mauricio González
- Millennium Institute Center for Genome Regulation (CRG)
- Bioinformatic and Gene Expression Laboratory, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Santiago, Chile
| |
Collapse
|
3
|
Gan HY, Hohberg K, Schneider C, Ebner M, Marais E, Miranda T, Lehmitz R, Maggs-Kölling G, Bocherens H. The hidden oases: unveiling trophic dynamics in Namib's fog plant ecosystem. Sci Rep 2024; 14:13334. [PMID: 38858480 PMCID: PMC11164947 DOI: 10.1038/s41598-024-61796-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
The Namib Desert is a hyperarid coastal desert where fog is a major moisture source. We hypothesized that the fog-harvesting grass Stipagrostis sabulicola establishes an important ecological niche, termed the "Fog-Plant-Oases" (FPOs), and serves as the primary carbon source for the invertebrate community. To determine this, we measured the natural variations of the stable carbon and nitrogen isotopes (δ13C and δ15N) of invertebrates as well as that of plant biomass and belowground detritus and estimated the contributions of the fog plants in their diets. Our findings revealed a complex trophic structure and demonstrated that S. sabulicola fuels carbon flow from lower to higher trophic levels in the aboveground food web. The distinct δ13C values of bacterial- and fungal-feeding nematodes indicated however the separation of the aboveground niche, which is primarily sustained by S. sabulicola, from the belowground niche, where wind-blown sediments may serve as the main energy source for the soil biota. Our findings further accentuate the critical role of S. sabulicola FPOs in establishing complex trophic dynamics and a distinctive food web within the hyperarid Namib dunes.
Collapse
Affiliation(s)
- Huei Ying Gan
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Hölderlindstr. 12, 72074, Tübingen, Germany.
| | - Karin Hohberg
- Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826, Görlitz, Germany
| | - Clément Schneider
- Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826, Görlitz, Germany
| | - Martin Ebner
- Department of Geosciences, Biogeology, University of Tübingen, Hölderlindstr. 12, 72074, Tübingen, Germany
| | - Eugene Marais
- Gobabeb-Namib Research Institute, Walvis Bay, 13013, Namibia
| | - Tatiana Miranda
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Hölderlindstr. 12, 72074, Tübingen, Germany
| | - Ricarda Lehmitz
- Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826, Görlitz, Germany
| | | | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Hölderlindstr. 12, 72074, Tübingen, Germany
- Department of Geosciences, Biogeology, University of Tübingen, Hölderlindstr. 12, 72074, Tübingen, Germany
| |
Collapse
|
4
|
Legeay J, Errafii K, Ziami A, Hijri M. The rhizosphere of a drought-tolerant plant species in Morocco: A refuge of high microbial diversity with no taxon preference. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13254. [PMID: 38725134 PMCID: PMC11082428 DOI: 10.1111/1758-2229.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 05/13/2024]
Abstract
Arid and semi-arid areas are facing increasingly severe water deficits that are being intensified by global climate changes. Microbes associated with plants native to arid regions provide valuable benefits to plants, especially in water-stressed environments. In this study, we used 16S rDNA metabarcoding analysis to examine the bacterial communities in the bulk soil, rhizosphere and root endosphere of the plant Malva sylvestris L. in Morocco, along a gradient of precipitation. We found that the rhizosphere of M. sylvestris did not show significant differences in beta-diversity compared to bulk soil, although, it did display an increased degree of alpha-diversity. The endosphere was largely dominated by the genus Rhizobium and displayed remarkable variation between plants, which could not be attributed to any of the variables observed in this study. Overall, the effects of precipitation level were relatively weak, which may be related to the intense drought in Morocco at the time of sampling. The dominance of Rhizobium in a non-leguminous plant is particularly noteworthy and may permit the utilization of this bacterial taxon to augment drought tolerance; additionally, the absence of any notable selection of the rhizosphere of M. sylvestris suggests that it is not significatively affecting its soil environment.
Collapse
Affiliation(s)
- Jean Legeay
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| | - Khaoula Errafii
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| | - Abdelhadi Ziami
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| | - Mohamed Hijri
- African Genome CenterUniversity Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
- Institut de Recherche en Biologie VégétaleDépartement de Sciences Biologiques, Université de MontréalMontrealQuebecCanada
| |
Collapse
|
5
|
Amenta ML, Vaccaro F, Varriale S, Sangaré JR, Defez R, Mengoni A, Bianco C. Cereals can trap endophytic bacteria with potential beneficial traits when grown ex-situ in harsh soils. FEMS Microbiol Ecol 2024; 100:fiae041. [PMID: 38544316 PMCID: PMC11009874 DOI: 10.1093/femsec/fiae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Microbial communities associated with plants growing in harsh conditions, including salinity and water deficiency, have developed adaptive features which permit them to grow and survive under extreme environmental conditions. In the present study, an ex-situ plant trapping method has been applied to collect the culturable microbial diversity associated with the soil from harsh and remote areas. Oryza sativa cv. Baldo and Triticum durum Primadur plants were used as recruiters, while the soil surrounding the roots of Oryza glaberrima plants from remote regions of Mali (West Africa) was used as substrate for their growth. The endophytic communities recruited by the two plant species belonged to Proteobacteria and Firmicutes, and the dominant genera were Bacillus, Kosakonia, and Enterobacter. These endophytes were characterized by analyzing some of the most common plant growth promoting traits. Halotolerant, inorganic phosphate-solubilizing and N-fixing strains were found, and some of them simultaneously showing these three traits. We verified that 'Baldo' recruited mostly halotolerant and P-solubilizers endophytes, while the endophytes selected by 'Primadur' were mainly N-fixers. The applied ex-situ plant trapping method allowed to isolate endophytes with potential beneficial traits that could be applied for the improvement of rice and wheat growth under adverse environmental conditions.
Collapse
Affiliation(s)
- Maria Laura Amenta
- National Research Council, Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Francesca Vaccaro
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Stefano Varriale
- National Research Council,
Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Jean Rodrigue Sangaré
- Institut d'Economie Rurale (IER), Centre Régional de Recherche Agronomique (CRRA) de Sikasso, B.P: 16, Mali
| | - Roberto Defez
- National Research Council, Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Carmen Bianco
- National Research Council, Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
6
|
Van Goethem MW, Marasco R, Hong P, Daffonchio D. The antibiotic crisis: On the search for novel antibiotics and resistance mechanisms. Microb Biotechnol 2024; 17:e14430. [PMID: 38465465 PMCID: PMC10926060 DOI: 10.1111/1751-7915.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
In the relentless battle for human health, the proliferation of antibiotic-resistant bacteria has emerged as an impending catastrophe of unprecedented magnitude, potentially driving humanity towards the brink of an unparalleled healthcare crisis. The unyielding advance of antibiotic resistance looms as the foremost threat of the 21st century in clinical, agricultural and environmental arenas. Antibiotic resistance is projected to be the genesis of the next global pandemic, with grim estimations of tens of millions of lives lost annually by 2050. Amidst this impending calamity, our capacity to unearth novel antibiotics has languished, with the past four decades marred by a disheartening 'antibiotic discovery void'. With nearly 80% of our current antibiotics originating from natural or semi-synthetic sources, our responsibility is to cast our investigative nets into uncharted ecological niches teeming with microbial strife, the so-called 'microbial oases of interactions'. Within these oases of interactions, where microorganisms intensively compete for space and nutrients, a dynamic and ever-evolving microbial 'arms race' is constantly in place. Such a continuous cycle of adaptation and counter-adaptation is a fundamental aspect of microbial ecology and evolution, as well as the secrets to unique, undiscovered antibiotics, our last bastion against the relentless tide of resistance. In this context, it is imperative to invest in research to explore the competitive realms, like the plant rhizosphere, biological soil crusts, deep sea hydrothermal vents, marine snow and the most modern plastisphere, in which competitive interactions are at the base of the microorganisms' struggle for survival and dominance in their ecosystems: identify novel antibiotic by targeting microbial oases of interactions could represent a 'missing piece of the puzzle' in our fight against antibiotic resistance.
Collapse
Affiliation(s)
- Marc W. Van Goethem
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Pei‐Ying Hong
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Water Desalination and Reuse CenterBiological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
7
|
León-Sobrino C, Ramond JB, Coclet C, Kapitango RM, Maggs-Kölling G, Cowan D. Temporal dynamics of microbial transcription in wetted hyperarid desert soils. FEMS Microbiol Ecol 2024; 100:fiae009. [PMID: 38299778 PMCID: PMC10913055 DOI: 10.1093/femsec/fiae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/02/2024] Open
Abstract
Rainfall is rare in hyperarid deserts but, when it occurs, it triggers large biological responses essential for the long-term maintenance of the ecosystem. In drylands, microbes play major roles in nutrient cycling, but their responses to short-lived opportunity windows are poorly understood. Due to its ephemeral nature, mRNA is ideally suited to study microbiome dynamics upon abrupt changes in the environment. We analyzed microbial community transcriptomes after simulated rainfall in a Namib Desert soil over 7 days. Using total mRNA from dry and watered plots we infer short-term functional responses in the microbiome. A rapid two-phase cycle of activation and return to basal state was completed in a short period. Motility systems activated immediately, whereas competition-toxicity increased in parallel to predator taxa and the drying of soils. Carbon fixation systems were downregulated, and reactivated upon return to a near-dry state. The chaperone HSP20 was markedly regulated by watering across all major bacteria, suggesting a particularly important role in adaptation to desiccated ecosystems. We show that transcriptomes provide consistent and high resolution information on microbiome processes in a low-biomass environment, revealing shared patterns across taxa. We propose a structured dispersal-predation dynamic as a central driver of desert microbial responses to rainfall.
Collapse
Affiliation(s)
- Carlos León-Sobrino
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- Extreme Ecosystem Microbiomics and Ecogenomics (E²ME) Lab., Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clément Coclet
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
| | | | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
| |
Collapse
|
8
|
Dong L, Li MX, Li S, Yue LX, Ali M, Han JR, Lian WH, Hu CJ, Lin ZL, Shi GY, Wang PD, Gao SM, Lian ZH, She TT, Wei QC, Deng QQ, Hu Q, Xiong JL, Liu YH, Li L, Abdelshafy OA, Li WJ. Aridity drives the variability of desert soil microbiomes across north-western China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168048. [PMID: 37890638 DOI: 10.1016/j.scitotenv.2023.168048] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/23/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Dryland covers >35 % of the terrestrial surface and the global extent of dryland increases due to the forecasted increase in aridity driven by climate change. Due to the climate change-driven aridity ecosystems, deserts provide one of the most hostile environments for microbial life and survival. Therefore, a detailed study was carried out to explore the deserts with different aridity levels (exposed to severe climate change) influence on microbial (bacteria, fungi, and protist) diversity patterns, assembly processes, and co-occurrence. The results revealed that the aridity (semi-arid, arid, and hyper-arid) patterns caused distinct changes in environmental heterogeneity in desert ecosystems. Similarly, microbial diversities were also reduced with increasing the aridity pattern, and it was found that environmental heterogeneity is highly involved in affecting microbial diversities under different ecological niches. Interestingly, it was found that certain microbes, including bacterial (Firmicutes), fungal (Sordariomycetes), and protistan (Ciliophora) abundance increased with increasing aridity levels, indicating that these microbes might possess the capability to tolerate the environmental stress conditions. Moreover, microbial community turnover analysis revealed that bacterial diversities followed homogenous selection, whereas fungi and protists were mostly driven by the dispersal limitation pattern. Co-occurrence network analysis showed that hyper-arid and arid conditions tightened the bacterial and fungal communities and had more positive associations compared to protistan. In conclusion, multiple lines of evidence were provided to shed light on the habitat specialization impact on microbial (bacteria, fungi, and protists) communities and composition under different desert ecosystems.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mei-Xiang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ling-Xiang Yue
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jia-Rui Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Zhi-Liang Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Guo-Yuan Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Pan-Deng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Shao-Ming Gao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ting-Ting She
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Qi-Chuang Wei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qian Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Jia-Liang Xiong
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Osama Abdalla Abdelshafy
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
9
|
Taniguchi T, Isobe K, Imada S, Eltayeb MM, Akaji Y, Nakayama M, Allen MF, Aronson EL. Root endophytic bacterial and fungal communities in a natural hot desert are differentially regulated in dry and wet seasons by stochastic processes and functional traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165524. [PMID: 37467971 DOI: 10.1016/j.scitotenv.2023.165524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Dryland ecosystems experience seasonal cycles of severe drought and moderate precipitation. Desert plants may develop symbiotic relationships with root endophytic microbes to survive under the repeated wet and extremely dry conditions. Although community coalescence has been found in many systems, the colonization by functional microbes and its relationship to seasonal transitions in arid regions are not well understood. Here we examined root endophytic microbial taxa, and their traits in relation to their root colonization, during the dry and wet seasons in a hot desert of the southwestern United States. We used high-throughput DNA sequencing of 16S rRNA and internal transcribed spacer gene profiling of five desert shrubs, and analyzed the seasonal change in endophytic microbial lineages. Goodness of fit to the neutral community model in relationship to microbial traits was evaluated. In summer, Actinobacteria and Bacteroidia increased, although this was not genus-specific. For fungi, Glomeraceae selectively increased in summer. In winter, Gram-negative bacterial genera, including those capable of nitrogen fixation and plant growth promotion, increased. Neutral model analysis revealed a strong stochastic influence on endophytic bacteria but a weak effect for fungi, especially in summer. The taxa with higher frequency than that predicted by neutral model shared environmental adaptability and symbiotic traits, whereas the frequency of pathogenic fungi was at or under the predicted value. These results suggest that community assembly of bacteria and fungi is regulated differently. The bacterial community was affected by stochastic and deterministic processes via bacterial response to drought (response trait), beneficial effect on plants (effect trait), and likely stable mutualistic interactions with plants suggested by the frequency of nodule bacteria. For fungi, mycorrhizal fungi were selected by plants in summer. The regulation of beneficial microbes by plants in both dry and wet seasons suggests the presence of plant-soil positive feedback in this natural desert ecosystem.
Collapse
Affiliation(s)
- Takeshi Taniguchi
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan.
| | - Kazuo Isobe
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shogo Imada
- Department of Radioecology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Mohamed M Eltayeb
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan; Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Shambat 13314, Sudan
| | - Yasuaki Akaji
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Masataka Nakayama
- Research Group for Environmental Science, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
| | - Michael F Allen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Emma L Aronson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Li T, Gao J. Attribution of dispersal limitation can better explain the assembly patterns of plant microbiota. FRONTIERS IN PLANT SCIENCE 2023; 14:1168760. [PMID: 37941678 PMCID: PMC10628812 DOI: 10.3389/fpls.2023.1168760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Disentangling community assembly processes is crucial for fully understanding the function of microbiota in agricultural ecosystems. However, numerous plant microbiome surveys have gradually revealed that stochastic processes dominate the assembly of the endophytic root microbiota in conflict with strong host filtering effects, which is an important issue. Resolving such conflicts or inconsistencies will not only help accurately predict the composition and structure of the root endophytic microbiota and its driving mechanisms, but also provide important guidance on the correlation between the relative importance of deterministic and stochastic processes in the assembly of the root endophytic microbiota, and crop productivity and nutritional quality. Here, we propose that the inappropriate division of dispersal limitation may be the main reason for such inconsistency, which can be resolved after the proportion of dispersal limitation is incorporated into the deterministic processes. The rationality of this adjustment under the framework of the formation of a holobiont between the microbiome and the plant host is herein explained, and a potential theoretical framework for dynamic assembly patterns of endophytic microbiota along the soil-plant continuum is proposed. Considering that the assembly of root endophytic microbiota is complicated, we suggest caution and level-by-level verification from deterministic processes to neutral components to stochastic processes when deciding on the attribution of dispersal limitation in the future to promote the expansion and application of microbiome engineering in sustainable agricultural development based on community assembly patterns.
Collapse
Affiliation(s)
| | - Jiangyun Gao
- Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
11
|
Thanh NC, Narayanan M, Saravanan M, Chinnathambi A, Ali Alharbi S, Brindhadevi K, Sharma A, Pugazhendhi A. Bio/phyremediation potential of Leptospirillum ferrooxidans and Ricinus communis on metal contaminated mine sludge. CHEMOSPHERE 2023; 339:139739. [PMID: 37549749 DOI: 10.1016/j.chemosphere.2023.139739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
The heavy metal pollution is a serious environmental pollution around the globe and threatens the ecosystem. The physicochemical traits (pH, Electrical conductivity, hardness, NPK, Al, Fe, Cd, Cr, Pb, Mg, and Mn) of soil sample collected from the polluted site were analyzed and found that the most of the metal contents were beyond the acceptable limits of national standards. The metals such as Mn (1859.37 ± 11.25 mg kg-1), Cd (24.86 ± 1.85 mg kg-1), Zn (795.64 ± 9.24 mg kg-1), Pb (318.62 ± 5.85 mg kg-1), Cr (186.84 ± 6.84 mg kg-1), and Al (105.84 ± 5.42 mg kg-1) were crossing the permissible limits. The pre-isolated L. ferrooxidans showed considerable metal tolerance to metals such as Al, Cd, Cr, Pb, Mg, and Mn at up to the concentration of 750 μg mL-1 and also have remediation potential on polluted soil in a short duration of treatment. The greenhouse study demonstrated that the bio/phytoremediation potential of metal tolerant L. ferrooxidans and R. communis under various remediation (A, B, and C) groups. Surprisingly, remediation group C demonstrated greater phytoextraction potential than the other remediation groups (A and B). These results strongly suggest that coexistence of L. ferrooxidans and R. communis had a significant positive effect on phytoextraction on metal-contaminated soil.
Collapse
Affiliation(s)
- Nguyen Chi Thanh
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, 700000, Vietnam
| | - Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, Tamil Nadu, India
| | - Mythili Saravanan
- Department of Pharmaceutical Sciences, North Carolina Central University, USA
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Kathirvel Brindhadevi
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Mohali-140103, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico
| | - Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
12
|
Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Habitats Within the Plant Root Differ in Bacterial Network Topology and Taxonomic Assortativity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:165-175. [PMID: 36463399 DOI: 10.1094/mpmi-09-22-0188-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The root microbiome is composed of distinct epiphytic (rhizosphere) and endophytic (endosphere) habitats. Differences in abiotic and biotic factors drive differences in microbial community diversity and composition between these habitats, though how they shape the interactions among community members is unknown. Here, we coupled a large-scale characterization of the rhizosphere and endosphere bacterial communities of 30 plant species across two watering treatments with co-occurrence network analysis to understand how root habitats and soil moisture shape root bacterial network properties. We used a novel bootstrapping procedure and null network modeling to overcome some of the limitations associated with microbial co-occurrence network construction and analysis. Endosphere networks had elevated node betweenness centrality versus the rhizosphere, indicating greater overall connectivity among core bacterial members of the root endosphere. Taxonomic assortativity was higher in the endosphere, whereby positive co-occurrence was more likely between bacteria within the same phylum while negative co-occurrence was more likely between bacterial taxa from different phyla. This taxonomic assortativity could be driven by positive and negative interactions among members of the same or different phylum, respectively, or by similar niche preferences associated with phylum rank among root inhabiting bacteria across plant host species. In contrast to the large differences between root habitats, drought had limited effects on network properties but did result in a higher proportion of shared co-occurrences between rhizosphere and endosphere networks. Our study points to fundamentally different ecological processes shaping bacterial co-occurrence across root habitats. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Connor R Fitzpatrick
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga L5L 1C6, Canada
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Julia Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto M5S 3B2, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto M5S 3B2, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto M5S 3B2, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Peter M Kotanen
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga L5L 1C6, Canada
| | - Marc T J Johnson
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga L5L 1C6, Canada
| |
Collapse
|
13
|
Marasco R, Ramond JB, Van Goethem MW, Rossi F, Daffonchio D. Diamonds in the rough: Dryland microorganisms are ecological engineers to restore degraded land and mitigate desertification. Microb Biotechnol 2023. [PMID: 36641786 PMCID: PMC10364308 DOI: 10.1111/1751-7915.14216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/16/2023] Open
Abstract
Our planet teeters on the brink of massive ecosystem collapses, and arid regions experience manifold environmental and climatic challenges that increase the magnitude of selective pressures on already stressed ecosystems. Ultimately, this leads to their aridification and desertification, that is, to simplified and barren ecosystems (with proportionally less microbial load and diversity) with altered functions and food webs and modification of microbial community network. Thus, preserving and restoring soil health in such a fragile biome could help buffer climate change's effects. We argue that microorganisms and the protection of their functional properties and networks are key to fight desertification. Specifically, we claim that it is rational, possible and certainly practical to rely on native dryland edaphic microorganisms and microbial communities as well as dryland plants and their associated microbiota to conserve and restore soil health and mitigate soil depletion in newly aridified lands. Furthermore, this will meet the objective of protecting/stabilizing (and even enhancing) soil biodiversity globally. Without urgent conservation and restoration actions that take into account microbial diversity, we will ultimately, and simply, not have anything to protect anymore.
Collapse
Affiliation(s)
- Ramona Marasco
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Jean-Baptiste Ramond
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marc W Van Goethem
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Federico Rossi
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Pisa, Italy
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, Saudi Arabia
| |
Collapse
|
14
|
Wicaksono WA, Egamberdieva D, Berg C, Mora M, Kusstatscher P, Cernava T, Berg G. Function-Based Rhizosphere Assembly along a Gradient of Desiccation in the Former Aral Sea. mSystems 2022; 7:e0073922. [PMID: 36377901 PMCID: PMC9765073 DOI: 10.1128/msystems.00739-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022] Open
Abstract
The desiccation of the Aral Sea represents one of the largest human-made environmental regional disasters. The salt- and toxin-enriched dried-out basin provides a natural laboratory for studying ecosystem functioning and rhizosphere assembly under extreme anthropogenic conditions. Here, we investigated the prokaryotic rhizosphere communities of the native pioneer plant Suaeda acuminata (C.A.Mey.) Moq. in comparison to bulk soil across a gradient of desiccation (5, 10, and 40 years) by metagenome and amplicon sequencing combined with quantitative PCR (qPCR) analyses. The rhizosphere effect was evident due to significantly higher bacterial abundances but less diversity in the rhizosphere compared to bulk soil. Interestingly, in the highest salinity (5 years of desiccation), rhizosphere functions were mainly provided by archaeal communities. Along the desiccation gradient, we observed a significant change in the rhizosphere microbiota, which was reflected by (i) a decreasing archaeon-bacterium ratio, (ii) replacement of halophilic archaea by specific plant-associated bacteria, i.e., Alphaproteobacteria and Actinobacteria, and (iii) an adaptation of specific, potentially plant-beneficial biosynthetic pathways. In general, both bacteria and archaea were found to be involved in carbon cycling and fixation, as well as methane and nitrogen metabolism. Analysis of metagenome-assembled genomes (MAGs) showed specific signatures for production of osmoprotectants, assimilatory nitrate reduction, and transport system induction. Our results provide evidence that rhizosphere assembly by cofiltering specific taxa with distinct traits is a mechanism which allows plants to thrive under extreme conditions. Overall, our findings highlight a function-based rhizosphere assembly, the importance of plant-microbe interactions in salinated soils, and their exploitation potential for ecosystem restoration approaches. IMPORTANCE The desertification of the Aral Sea basin in Uzbekistan and Kazakhstan represents one of the most serious anthropogenic environmental disasters of the last century. Since the 1960s, the world's fourth-largest inland body of water has been constantly shrinking, which has resulted in an extreme increase of salinity accompanied by accumulation of many hazardous and carcinogenic substances, as well as heavy metals, in the dried-out basin. Here, we investigated bacterial and archaeal communities in the rhizosphere of pioneer plants by combining classic molecular methods with amplicon sequencing as well as metagenomics for functional insights. By implementing a desiccation gradient, we observed (i) remarkable differences in the archaeon-bacterium ratio of plant rhizosphere samples, (ii) replacement of archaeal indicator taxa during succession, and (iii) the presence of specific, potentially plant-beneficial biosynthetic pathways in archaea present during the early stages. In addition, our results provide hitherto-undescribed insights into the functional redundancy between plant-associated archaea and bacteria.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | | | - Maximilian Mora
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Peter Kusstatscher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
15
|
Saadouli I, Marasco R, Mejri L, Hamden H, Guerfali MM, Stathopoulou P, Daffonchio D, Cherif A, Ouzari HI, Tsiamis G, Mosbah A. Diversity and adaptation properties of actinobacteria associated with Tunisian stone ruins. Front Microbiol 2022; 13:997832. [PMID: 36583041 PMCID: PMC9793712 DOI: 10.3389/fmicb.2022.997832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Stone surface is a unique biological niche that may host a rich microbial diversity. The exploration of the biodiversity of the stone microbiome represents a major challenge and an opportunity to characterize new strains equipped with valuable biological activity. Here, we explored the diversity and adaptation strategies of total bacterial communities associated with Roman stone ruins in Tunisia by considering the effects of geo-climatic regions and stone geochemistry. Environmental 16S rRNA gene amplicon was performed on DNA extracted from stones samples collected in three different sampling sites in Tunisia, along an almost 400km aridity transect, encompassing Mediterranean, semiarid and arid climates. The library was sequenced on an Illumina MiSeq sequencing platform. The cultivable Actinobacteria were isolated from stones samples using the dilution plate technique. A total of 71 strains were isolated and identified based on 16S rRNA gene sequences. Cultivable actinobacteria were further investigated to evaluate the adaptative strategies adopted to survive in/on stones. Amplicon sequencing showed that stone ruins bacterial communities were consistently dominated by Cyanobacteria, followed by Proteobacteria and Actinobacteria along the aridity gradient. However, the relative abundance of the bacterial community components changed according to the geo-climatic origin. Stone geochemistry, particularly the availability of magnesium, chromium, and copper, also influenced the bacterial communities' diversity. Cultivable actinobacteria were further investigated to evaluate the adaptative strategies adopted to survive in/on stones. All the cultivated bacteria belonged to the Actinobacteria class, and the most abundant genera were Streptomyces, Kocuria and Arthrobacter. They were able to tolerate high temperatures (up to 45°C) and salt accumulation, and they produced enzymes involved in nutrients' solubilization, such as phosphatase, amylase, protease, chitinase, and cellulase. Actinobacteria members also had an important role in the co-occurrence interactions among bacteria, favoring the community interactome and stabilization. Our findings provide new insights into actinobacteria's diversity, adaptation, and role within the microbiome associated with stone ruins.
Collapse
Affiliation(s)
- Ilhem Saadouli
- Laboratory of Microorganisms and Active Biomolecules, LMBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lassaad Mejri
- Laboratory “Energy and Matter for Development of Nuclear Sciences” (LR16CNSTN02), National Center for Nuclear Sciences and Technology, Sidi Thabet Technopark, Sidi Thabet, Tunisia
| | - Haytham Hamden
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN02, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Meriem M’saad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN02, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology Sidi Thabet, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, LMBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Amor Mosbah
- BVBGR-LR11ES31, Higher Institute of Biotechnology Sidi Thabet, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| |
Collapse
|