1
|
Frazão M, Figueiredo TDG, Cipriano G. Should We Use the Functional Electrical Stimulation-Cycling Exercise in Clinical Practice? Physiological and Clinical Effects Systematic Review With Meta-analysis. Arch Phys Med Rehabil 2025; 106:404-423. [PMID: 38914190 DOI: 10.1016/j.apmr.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
OBJECTIVE To examine the evidence regarding functional electrical stimulation cycling's (FES-cycling's) physiological and clinical effects. DATA SOURCES The study was conducted in accordance with the preferred reporting items for systematic reviews and meta-analyses protocol. PubMed, Embase, Cochrane Review, CINAHL, Scopus, Sport Discus, and Web of Science databases were used. STUDY SELECTION Randomized controlled trials involving FES-cycling were included. Studies that did not involve FES-cycling in the intervention group or without the control group were excluded. Two reviewers screened titles and abstracts and then conducted a blinded full-text evaluation. A third reviewer resolved the discrepancies. DATA EXTRACTION Meta-analysis was performed using inverse variance for continuous data, with effects measured using the mean difference and random effects analysis models. A 95% confidence interval was adopted. The significance level was set at P<.05, and trends were declared at P=.05 to ≤.10. The I2 method was used for heterogeneity analysis. The minimal clinically important difference was calculated. Methodological quality was assessed using the risk of bias tool for randomized trials. The Grading of Recommendations Assessment, Development, and Evaluation method was used for the quality of the evidence analysis. DATA SYNTHESIS A total of 52 studies were included. Metabolic, cardiocirculatory, ventilatory, and peripheral muscle oxygen extraction variables presented statistical (P<.05) and clinically important differences favoring FES-cycling, with moderate-to-high certainty of evidence. It also presented statistical (P<.05) and clinically important improvements in cardiorespiratory fitness, leg and total body lean mass, power, physical fitness in intensive care (moderate-to-high certainty of evidence), and torque (low certainty of evidence). It presented a trend (P=.05 to ≤.10) of improvement in muscle volume, spasticity, and mobility (low-to-moderate certainty of evidence). It showed no difference (P>.10) in 6-minute walking distance, muscle cross-sectional area, bone density, and length of intensive care unit stay (low-to-moderate certainty of evidence). CONCLUSIONS FES-cycling exercise is a more intense stimulus modality than other comparative therapeutic modalities and presented clinically important improvement in several clinical outcomes.
Collapse
Affiliation(s)
- Murillo Frazão
- Lauro Wanderley University Hospital - UFPB/EBSERH, João Pessoa-PB; Postgraduate Program in Health Sciences and Technologies, University of Brasília - UnB, Brasília.
| | | | - Gerson Cipriano
- Postgraduate Program in Health Sciences and Technologies, University of Brasília - UnB, Brasília
| |
Collapse
|
2
|
Mosser N, Norcliffe G, Kruse A. The impact of cycling on the physical and mental health, and quality of life of people with disabilities: a scoping review. Front Sports Act Living 2025; 6:1487117. [PMID: 39835187 PMCID: PMC11743510 DOI: 10.3389/fspor.2024.1487117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Adaptive cycling holds potential for promoting physical and mental health among individuals with disabilities, who often face barriers to traditional cycling and other forms of exercise. This scoping review systematically examines existing scientific literature to assess the effects of adaptive cycling on the physical and mental health of individuals with disabilities. Following a widely recognized methodological scoping review framework, 35 qualitative and quantitative studies were identified through comprehensive database searches and manual screenings. The review highlights the positive impacts of adaptive cycling on cardiovascular fitness, muscle strength, and overall physical well-being, as well as improvements in mental health and quality of life. Despite these benefits, significant research gaps remain, particularly concerning adaptive cycling modalities, such as sociable cycles, chair transporters, and power-assisted bikes, which were underrepresented in the existing literature. This review underscores the need for further studies to provide a comprehensive understanding on the effects of different adaptive cycling modalities. Such studies are essential to improve accessibility and ultimately support the health and social inclusion of individuals with disabilities.
Collapse
Affiliation(s)
- Nina Mosser
- Department of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Glen Norcliffe
- Faculty of Environmental and Urban Change, York University, Toronto, ON, Canada
| | - Annika Kruse
- Department of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
3
|
Yang D, Mangdow M, Eickmeyer SM, Liu W. Effects of Assisted Walking Exercise in Chronic Dependent Ambulatory Stroke Survivors: A Mini-Review. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2024; 6:e240007. [PMID: 39802913 PMCID: PMC11722605 DOI: 10.20900/agmr20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Background Assisted walking exercise programs are widely recommended in rehabilitation guidelines for stroke survivors. However, most evidence supporting these programs primarily focuses on ambulatory stroke survivors or those dependent ambulatory in acute and subacute stages. There is a notable gap in the application of walking exercise programs for chronic dependent ambulatory stroke survivors despite potential benefits in reducing sedentary behavior and improving rehabilitation outcomes. Thus, this literature review aims to summarize the existing evidence on the feasibility and efficacy of assisted walking exercise programs for chronic stroke survivors who are dependent ambulators. Methods Six major databases were searched for clinical trials related to assisted walking exercise and chronic dependent ambulatory stroke. Results Seven studies (evidence with low- to moderate-quality) involving 91 chronic dependent ambulatory stroke subjects are included in this review. Conclusions These studies indicated that assisted walking exercise is feasible to perform by chronic dependent ambulatory stroke survivors and can induce continued motor recovery and functional improvement. However, the mixed and limited evidence from existing research underscores the need for future high-quality randomized controlled trials with standardized designs and outcome measures to establish evidence-based walking programs for this population.
Collapse
Affiliation(s)
- Derong Yang
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Mustapha Mangdow
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Sarah M. Eickmeyer
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Wen Liu
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
4
|
Vachova P, Fini NA, Wittwer J, Peiris CL. Effectiveness of interventions to increase physical activity in adults with SCI: a systematic review and meta-analysis. Disabil Rehabil 2024; 46:5158-5168. [PMID: 38095576 DOI: 10.1080/09638288.2023.2291550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 11/05/2024]
Abstract
PURPOSE To determine the effectiveness of interventions to increase physical activity (PA) in people with spinal cord injury (SCI). METHOD Online databases PubMed, Medline, AMED and CINAHL were searched from the earliest date available to July 2022. Randomised controlled trials (RCT) exploring the effect of interventions on physical activity in people with SCI were eligible. The search identified 1191 studies, after screening 16 reports of 15 RCT's were included. Data were extracted on participant characteristics, intervention characteristics and physical activity outcomes. Methodological quality was assessed using the PEDro Scale and certainty of evidence assessed using GRADE. Post intervention means and standard deviations were pooled in meta-analyses to calculate standardised mean differences or mean differences and 95% confidence intervals. RESULTS Fifteen trials with 693 participants (mean age 41-52) were included. There was moderate certainty evidence that exercise interventions had no effect on subjectively or objectively measured PA. There was moderate to high certainty evidence that behavioural interventions and combined behavioural and exercise interventions increased subjectively, but not objectively measured physical activity. CONCLUSION Behaviour change techniques are an important intervention component for increasing PA in people with SCI.
Collapse
Affiliation(s)
- Pavla Vachova
- NeuroRehab Allied Health Network, Deer Park, Australia
| | - Natalie A Fini
- Department of Physiotherapy, School of Health Sciences, University of Melbourne, Parkville, Australia
| | - Joanne Wittwer
- Department of Physiotherapy, Podiatry, Prosthetics and Orthotics, La Trobe University, Bundoora, Australia
| | - Casey L Peiris
- Department of Physiotherapy, Podiatry, Prosthetics and Orthotics, La Trobe University, Bundoora, Australia
| |
Collapse
|
5
|
Hoekstra S, King JA, Fenton J, Kirk N, Willis SA, Phillips SM, Webborn N, Tolfrey K, Bosch JDVD, Goosey‐Tolfrey VL. The effect of home-based neuromuscular electrical stimulation-resistance training and protein supplementation on lean mass in persons with spinal cord injury: A pilot study. Physiol Rep 2024; 12:e70073. [PMID: 39358836 PMCID: PMC11446856 DOI: 10.14814/phy2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
In persons with a spinal cord injury (SCI), resistance training using neuromuscular electrical stimulation (NMES-RT) increases lean mass in the lower limbs. However, whether protein supplementation in conjunction with NMES-RT further enhances this training effect is unknown. In this randomized controlled pilot trial, 15 individuals with chronic SCI engaged in 3 times/week NMES-RT, with (NMES+PRO, n = 8) or without protein supplementation (NMES, n = 7), for 12 weeks. Before and after the intervention, whole body and regional body composition (DXA) and fasting glucose and insulin concentrations were assessed in plasma. Adherence to the intervention components was ≥96%. Thigh lean mass was increased to a greater extent after NMES+PRO compared to NMES (0.3 (0.2, 0.4) kg; p < 0.001). Furthermore, fasting insulin concentration and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were decreased similarly in both groups (fasting insulin: 1 [-9, 11] pmol∙L-1; HOMA-IR: 0.1 [-0.3, 0.5] AU; both p ≥ 0.617). Twelve weeks of home-based NMES-RT increased thigh lean mass, an effect that was potentiated by protein supplementation. In combination with the excellent adherence and apparent improvement in cardiometabolic health outcomes, these findings support further investigation through a full-scale randomized controlled trial.
Collapse
Affiliation(s)
- Sven Hoekstra
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- Department of Exercise and Sport ScienceSt. Mary's UniversitySan AntonioTexasUSA
- Department of Rehabilitation MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - James A. King
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of LeicesterLeicesterUK
| | - Jordan Fenton
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Natasha Kirk
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Scott A. Willis
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of LeicesterLeicesterUK
| | | | - Nick Webborn
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Keith Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | | | - Vicky L. Goosey‐Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| |
Collapse
|
6
|
Alashram AR. Efficacy of arm crank ergometry on individuals with spinal cord injury: A systematic review of randomized controlled trials. PM R 2024; 16:1001-1011. [PMID: 38581364 DOI: 10.1002/pmrj.13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 04/08/2024]
Abstract
OBJECTIVES To investigate the efficacy of arm crank ergometry (ACE) on physical, psychological, and quality of life outcomes in individuals with spinal cord injury (SCI). LITERATURE SURVEY A comprehensive search was conducted on PubMed, Scopus, MEDLINE, Physiotherapy Evidence Database (PEDro), Web of Science, REHABDATA, and Embase from inception until July 2023. METHODOLOGY Studies were included if the sample was composed of individuals with SCI, the intervention followed an ACE intervention, and the study was a randomized controlled trial including at least one outcome measure evaluating physical, psychological, or quality of life. The PEDro scale was used to assess the methodological quality of the included studies. The meta-analysis was not feasible due to the heterogeneity in the treatment protocols and outcome measures among the selected studies. SYNTHESIS Of 1013 articles, seven studies (n = 200), with 16% of participants being female, were included in this review. The scores on the PEDro scale ranged from 6 to 8, with a median score of 7. There were variations in treatment protocols and outcome measures, resulting in heterogeneous findings. The effects of the ACE interventions on physical, psychological, and quality of life outcomes showed inconsistency. CONCLUSIONS ACE training proves to be a suitable and safe intervention for individuals with traumatic SCI. Nevertheless, the existing evidence concerning its effects on physical, psychological, and quality of life outcomes in individuals with SCI is limited. Further trials are required to investigate the effects of various ACE training protocols on SCI populations.
Collapse
Affiliation(s)
- Anas R Alashram
- Department of Physiotherapy, Middle East University, Amman, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
7
|
Graf ES, Perret C, Labruyère R, Möller JC, Wirz M. Health-enhancing physical activity interventions in non-ambulatory people with severe motor impairments - a scoping review. Ann Med 2023; 55:2219065. [PMID: 37287318 PMCID: PMC10251793 DOI: 10.1080/07853890.2023.2219065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
PURPOSE Non-ambulatory people with severe motor impairments due to chronic neurological diagnoses are forced into a sedentary lifestyle. The purpose of this scoping review was to understand the type and amount of physical activity interventions performed in this population as well as their effect. METHODS PubMed, Cochran and CINAHL Complete were systematically searched for articles describing physical activity interventions in people with a chronic, stable central nervous system lesion. The outcome measures needed to include physiological or psychological variables, measures of general health or quality of life. RESULTS Of the initial 7554 articles, 34 were included after the title, abstract, and full-text screening. Only six studies were designed as randomized-controlled trials. Most interventions were supported by technologies, mainly functional electrical stimulation (cycling or rowing). The duration of the intervention ranged from four to 52 weeks. Endurance and strength training interventions (and a combination of both) were performed and over 70% of studies resulted in health improvements. CONCLUSIONS Non-ambulatory people with severe motor impairments may benefit from physical activity interventions. However, the number of studies and their comparability is very limited. This indicates the need for future research with standard measures to develop evidence-based, specific recommendations for physical activity in this population.Key messagesPhysical activity interventions can have health benefits in non-ambulatory people with severe motor impairments.Even simple, low-tech interventions allow for health-enhancing training.
Collapse
Affiliation(s)
- Eveline S. Graf
- Institute of Physiotherapy, School of Health Sciences, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Claudio Perret
- Swiss Paraplegic Research, Nottwil, Switzerland
- Division of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Rob Labruyère
- Swiss Children’s Rehab, University Children’s Hospital Zurich, Affoltern am Albis, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - J. Carsten Möller
- Rehaklinik Zihlschlacht, Zihlschlacht, Switzerland
- Department of Neurology, Philipps University, Marburg, Germany
| | - Markus Wirz
- Institute of Physiotherapy, School of Health Sciences, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| |
Collapse
|
8
|
Hodgkiss DD, Bhangu GS, Lunny C, Jutzeler CR, Chiou SY, Walter M, Lucas SJE, Krassioukov AV, Nightingale TE. Exercise and aerobic capacity in individuals with spinal cord injury: A systematic review with meta-analysis and meta-regression. PLoS Med 2023; 20:e1004082. [PMID: 38011304 PMCID: PMC10712898 DOI: 10.1371/journal.pmed.1004082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/11/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND A low level of cardiorespiratory fitness [CRF; defined as peak oxygen uptake ([Formula: see text]O2peak) or peak power output (PPO)] is a widely reported consequence of spinal cord injury (SCI) and a major risk factor associated with chronic disease. However, CRF can be modified by exercise. This systematic review with meta-analysis and meta-regression aimed to assess whether certain SCI characteristics and/or specific exercise considerations are moderators of changes in CRF. METHODS AND FINDINGS Databases (MEDLINE, EMBASE, CENTRAL, and Web of Science) were searched from inception to March 2023. A primary meta-analysis was conducted including randomised controlled trials (RCTs; exercise interventions lasting >2 weeks relative to control groups). A secondary meta-analysis pooled independent exercise interventions >2 weeks from longitudinal pre-post and RCT studies to explore whether subgroup differences in injury characteristics and/or exercise intervention parameters explained CRF changes. Further analyses included cohort, cross-sectional, and observational study designs. Outcome measures of interest were absolute (A[Formula: see text]O2peak) or relative [Formula: see text]O2peak (R[Formula: see text]O2peak), and/or PPO. Bias/quality was assessed via The Cochrane Risk of Bias 2 and the National Institute of Health Quality Assessment Tools. Certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Random effects models were used in all meta-analyses and meta-regressions. Of 21,020 identified records, 120 studies comprising 29 RCTs, 67 pre-post studies, 11 cohort, 7 cross-sectional, and 6 observational studies were included. The primary meta-analysis revealed significant improvements in A[Formula: see text]O2peak [0.16 (0.07, 0.25) L/min], R[Formula: see text]O2peak [2.9 (1.8, 3.9) mL/kg/min], and PPO [9 (5, 14) W] with exercise, relative to controls (p < 0.001). Ninety-six studies (117 independent exercise interventions comprising 1,331 adults with SCI) were included in the secondary, pooled meta-analysis which demonstrated significant increases in A[Formula: see text]O2peak [0.22 (0.17, 0.26) L/min], R[Formula: see text]O2peak [2.8 (2.2, 3.3) mL/kg/min], and PPO [11 (9, 13) W] (p < 0.001) following exercise interventions. There were subgroup differences for R[Formula: see text]O2peak based on exercise modality (p = 0.002) and intervention length (p = 0.01), but there were no differences for A[Formula: see text]O2peak. There were subgroup differences (p ≤ 0.018) for PPO based on time since injury, neurological level of injury, exercise modality, and frequency. The meta-regression found that studies with a higher mean age of participants were associated with smaller changes in A[Formula: see text]O2peak and R[Formula: see text]O2peak (p < 0.10). GRADE indicated a moderate level of certainty in the estimated effect for R[Formula: see text]O2peak, but low levels for A[Formula: see text]O2peak and PPO. This review may be limited by the small number of RCTs, which prevented a subgroup analysis within this specific study design. CONCLUSIONS Our primary meta-analysis confirms that performing exercise >2 weeks results in significant improvements to A[Formula: see text]O2peak, R[Formula: see text]O2peak, and PPO in individuals with SCI. The pooled meta-analysis subgroup comparisons identified that exercise interventions lasting up to 12 weeks yield the greatest change in R[Formula: see text]O2peak. Upper-body aerobic exercise and resistance training also appear the most effective at improving R[Formula: see text]O2peak and PPO. Furthermore, acutely injured, individuals with paraplegia, exercising for ≥3 sessions/week will likely experience the greatest change in PPO. Ageing seemingly diminishes the adaptive CRF responses to exercise training in individuals with SCI. REGISTRATION PROSPERO: CRD42018104342.
Collapse
Affiliation(s)
- Daniel D. Hodgkiss
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurjeet S. Bhangu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- MD Undergraduate Program, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Carole Lunny
- Knowledge Translation Program, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, and University of British Columbia, Vancouver, Canada
| | - Catherine R. Jutzeler
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Schulthess Clinic, Zurich, Switzerland
| | - Shin-Yi Chiou
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Trauma Science Research, University of Birmingham, Birmingham, United Kingdom
| | - Matthias Walter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, Canada
| | - Tom E. Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Centre for Trauma Science Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Hutchinson MJ, Paulson TAW, Leicht CA, Bennett H, Eston R, Goosey-Tolfrey VL. Oxygen uptake and heart rate responses to 4 weeks of RPE-guided handcycle training. Eur J Appl Physiol 2023; 123:1965-1973. [PMID: 37119361 PMCID: PMC10460742 DOI: 10.1007/s00421-023-05210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE To investigate the efficacy of using Ratings of Perceived Exertion (RPE) to prescribe and regulate a 4-week handcycle training intervention. METHODS Thirty active adults, untrained in upper body endurance exercise, were divided into three groups to complete a 4-week intervention: (i) RPE-guided training (n = 10; 2 female), (ii) power output (PO)-guided (n = 10; 2 female) training, or (iii) non-training control (n = 10; 4 female). Training groups performed three sessions of handcycling each week. Oxygen uptake ([Formula: see text]), heart rate (HR), and Feeling Scale (FS) rating were collected during training sessions. RPE-guided training was performed at RPE 13. PO-guided training was matched for percentage of peak PO per session, based upon that achieved by the RPE-guided training group. RESULTS There were no differences in percentage of peak [Formula: see text] (66 ± 13% vs 61 ± 9%, p = 0.22), peak HR (75 ± 8% vs 71 ± 6%, p = 0.11) or FS rating (1.2 ± 1.9 vs 0.8 ± 1.6, p = 0.48) between RPE- and PO-guided training, respectively. The average coefficient of variation in percentage of peak HR between consecutive training sessions was 2.8% during RPE-guided training, and 3.4% during PO-guided training. CONCLUSION Moderate-vigorous intensity handcycling exercise can be prescribed effectively using RPE across a chronic training intervention, suggesting utility for practitioners in a variety of rehabilitation settings.
Collapse
Affiliation(s)
- Michael J Hutchinson
- British Paralympic Association, London, UK
- Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | - Christof A Leicht
- Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Hunter Bennett
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia.
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia.
| | - Roger Eston
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | | |
Collapse
|
10
|
Adamson B, Wyatt N, Key L, Boone C, Motl RW. Results of the MOVE MS Program: A Feasibility Study on Group Exercise for Individuals with Multiple Sclerosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6567. [PMID: 37623153 PMCID: PMC10454660 DOI: 10.3390/ijerph20166567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Exercise improves a wide range of symptoms experienced by those living with multiple sclerosis (MS) and may foster community and a positive sense of disability identity. However, exercise rates remain low. Sustained exercise participation has the greatest likelihood of improving symptoms and requires a theory-based approach accounting for the barriers faced by people with MS that impede exercise participation long-term. MOVE MS is a once weekly group exercise program based on Social Cognitive Theory supporting long-term exercise participation through peer instruction, behavior change education, multiple exercise modalities, and seated instruction. This feasibility study evaluated MOVE MS with a 7-month trial. The primary scientific outcome was exercise participation and the secondary outcomes were MS symptoms/impact, self-efficacy, depression, anxiety, disability identity, and quality of life, among others. We further conducted semi-structured formative interviews post-intervention. Thirty-three participants began the program. The onset of COVID-19 necessitated a shift toward online delivery. Seventeen participants completed the program. There were non-significant improvements in exercise participation (Godin Leisure-Time Exercise Questionnaire, baseline mean = 14.2 (SD = 11.8), post-intervention mean = 16.6 (SD = 11.2), F-value = 0.53 (Partial Eta2 = 0.08), and several secondary outcomes (including the MS Impact Scale, MS Walking Scale, and the Leeds MS Quality of Life Scale). Sixteen participants were interviewed, and analysis yielded five themes on program components and feedback. MOVE MS-delivered in-person or online-may be a feasible option for long-term exercise programming for people with MS.
Collapse
Affiliation(s)
- Brynn Adamson
- Department of Health Sciences, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80907, USA
| | - Nic Wyatt
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 506 S. Wright St., Urbana, IL 61801, USA
| | - Latashia Key
- Department of Recreation, Sport, and Tourism, University of Illinois at Urbana-Champaign, 506 S. Wright St., Urbana, IL 61801, USA
| | - Carrena Boone
- Department of Health Sciences, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80907, USA
| | - Robert W. Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1200 West Harrison St., Chicago, IL 60607, USA
| |
Collapse
|
11
|
Alrashidi AA, Nightingale TE, Bhangu GS, Bissonnette-Blais V, Krassioukov AV. Post-processing Peak Oxygen Uptake Data Obtained During Cardiopulmonary Exercise Testing in Individuals With Spinal Cord Injury: A Scoping Review and Analysis of Different Post-processing Strategies. Arch Phys Med Rehabil 2023; 104:965-981. [PMID: 36584803 DOI: 10.1016/j.apmr.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To review the evidence regarding the most common practices adopted with cardiopulmonary exercise testing (CPET) in individuals with spinal cord injury (SCI), with the following specific aims to (1) determine the most common averaging strategies of peak oxygen uptake (V̇o2peak), (2) review the endpoint criteria adopted to determine a valid V̇o2peak, and (3) investigate the effect of averaging strategies on V̇o2peak values in a convenience sample of individuals with SCI (between the fourth cervical and sixth thoracic spinal segments). DATA SOURCES Searches for this scoping review were conducted in MEDLINE (PubMed), EMBASE, and Web Science. STUDY SELECTION Studies were included if (1) were original research on humans published in English, (2) recruited adults with traumatic and non-traumatic SCI, and (3) V̇o2peak reported and measured directly during CPET to volitional exhaustion. Full-text review identified studies published before April 2021 for inclusion. DATA EXTRACTION Extracted data included authors name, journal name, publication year, participant characteristics, and comprehensive information relevant to CPET. DATA SYNTHESIS We extracted data from a total of 197 studies involving 4860 participants. We found that more than 50% of studies adopted a 30-s averaging strategy. A wide range of endpoint criteria were used to confirm the attainment of maximal effort. In the convenience sample of individuals with SCI (n=30), the mean V̇o2peak decreased as epoch (ie, time) lengths increased. Reported V̇o2peak values differed significantly (P<.001) between averaging strategies, with epoch length explaining 56% of the variability. CONCLUSIONS The adoption of accepted and standardized methods for processing and analyzing CPET data are needed to ensure high-quality, reproducible research, and inform population-specific normative values for individuals with SCI.
Collapse
Affiliation(s)
- Abdullah A Alrashidi
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada; Department of Physical Therapy, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Tom E Nightingale
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurjeet S Bhangu
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada
| | - Virgile Bissonnette-Blais
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada
| | - Andrei V Krassioukov
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada; Division of Physical Medicine and Rehabilitation, UBC, Vancouver, Canada; G.F. Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, Canada.
| |
Collapse
|
12
|
Mat Rosly M, Mat Rosly H. Home-based exergaming training effects for two individuals with spinal cord injury: A case report. Physiother Theory Pract 2023; 39:208-218. [PMID: 34842507 DOI: 10.1080/09593985.2021.2001881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Exergaming is a type of serious game that requires active bodily movements for video gameplay. This game-based exercise is gaining interest as a form of leisure activity of moderate-vigorous dose intensity. OBJECTIVE This case report sought to assess the effects of exergaming training (i.e. Move Boxing, Move Tennis, and Move Gladiator Duel) on aerobic capacity, feasibility, enjoyment and motivation in two individuals with spinal cord injury (SCI). CASE DESCRIPTIONS Two males with SCI at the level of L4 and T10, aged 32 and 39, respectively, underwent home-based exergaming training sessions over a period of 12-18 weeks, conducted within moderate-vigorous intensity training zones for health improvements as recommended by health guidelines. Their peak oxygen consumption (VO2), physical activity levels and perceived enjoyment were evaluated before, during and after the completion of the training. OUTCOMES Participant peak VO2 improved (effect size g = 2.7) from their baseline values (Participant A: 16.0 ± 0.7 mL/kg/min to 41.7 ± 8.1 mL/kg/min; Participant B: 13.5 ± 0.8 mL/kg/min to 32.7 ± 5.2 mL/kg/min), with an increase in overall weekly physical activity levels. Both participants maintained a relatively high level of enjoyment scores throughout their training period (mean: 31.9 ± 3.2, p = .56, 95% CI 0.22-1.0). CONCLUSION A home-based exergaming training program improved aerobic capacity and level of physical activity, while maintaining adherence to the exercise within a relatively high perception of enjoyment for these two participants. The relatively high enjoyment scores maintained throughout the duration of the exergaming training period suggested its feasibility as a home-based exercise program and perceived as enjoyable by these individuals.
Collapse
Affiliation(s)
- Maziah Mat Rosly
- Department of Physiology, Faculty of Medicine, University of Malaya, Jalan Universiti, Kuala Lumpur, Malaysia
| | - Hadi Mat Rosly
- Department of Mechatronics Engineering, Faculty of Engineering International Islamic University, Jalan Gombak, Malaysia
| |
Collapse
|
13
|
Rappelt L, Held S, Donath L. Handcycling with concurrent lower body low-frequency electromyostimulation significantly increases acute oxygen uptake: implications for rehabilitation and prevention. PeerJ 2022; 10:e13333. [PMID: 35607449 PMCID: PMC9123886 DOI: 10.7717/peerj.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/04/2022] [Indexed: 01/13/2023] Open
Abstract
Background Acute increases in exercise-induced oxygen uptake (V̇O2) is crucial for aerobic training adaptations and depends on how much muscle mass is involved during exercising. Thus, handcycling is per se limited for higher maximal oxygen uptakes (V̇O2max) due to restricted muscle involvement. Handcycling with additional and simultaneous application of low-frequency electromyostimulation (EMS) to the lower extremities might be a promising stimulus to improve aerobic capacity in disabled and rehabilitative populations. Method Twenty-six healthy young adults (13 female, age: 23.4 ± 4.5 years, height: 1.77 ± 0.09 m, mass: 71.7 ± 16.7 kg) completed 4 ×10 minutes of sitting (SIT), sitting with concurrent EMS (EMS_SIT), handcycling (60 rpm, 1/2 bodyweight as resistance in watts) (HANDCYCLE) and handcycling with concurrent EMS of the lower extremities (EMS_HANDCYCLE). During EMS_SIT and EMS_HANDCYCLE, low frequency EMS (impulse frequency: 4Hz, impulse width: 350 µs, continuous stimulation) was applied to gluteal, quadriceps and calf muscles. The stimulation intensity was selected so that the perceived pain could be sustained for a duration of 10 minutes (gluteus: 80.0 ± 22.7 mA, quadriceps: 94.5 ± 20.5 mA, calves: 77.5 ± 19.1 mA). Results Significant mode-dependent changes of V̇O2 were found (p < 0.001, η p 2 = 0.852). Subsequent post-hoc testing indicated significant difference between SIT vs. EMS_SIT (4.70 ± 0.75 vs. 10.61 ± 4.28 ml min-1 kg-1, p < 0.001), EMS_SIT vs. HANDCYCLE (10.61 ± 4.28 vs. 13.52 ± 1.40 ml min-1 kg-1, p = 0.005), and between HANDCYCLE vs. EMS_HANDCYCLE (13.52 ± 1.40 vs. 18.98 ± 4.89 ml min-1 kg-1, p = 0.001). Conclusion Handcycling with simultaneous lower body low-frequency EMS application elicits notably higher oxygen uptake during rest and moderately loaded handcycling and may serve as an additional cardiocirculatory training stimuli for improvements in aerobic capacity in wheelchair and rehabilitation settings.
Collapse
Affiliation(s)
- Ludwig Rappelt
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Steffen Held
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
14
|
Valentino SE, Hutchinson MJ, Goosey-Tolfrey VL, MacDonald MJ. The effects of perceptually regulated exercise training on cardiorespiratory fitness and peak power output in adults with spinal cord injury: a systematic review and meta-analysis. Arch Phys Med Rehabil 2022; 103:1398-1409. [DOI: 10.1016/j.apmr.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
|
15
|
Hisham H, Justine M, Hasnan N, Manaf H. Effects of Paraplegia Fitness Integrated Training on Physical Function and Exercise Self-Efficacy and Adherence Among Individuals With Spinal Cord Injury. Ann Rehabil Med 2022; 46:33-44. [PMID: 35272438 PMCID: PMC8913273 DOI: 10.5535/arm.21127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Objective To determine the effects of the Paraplegia Fitness Integrated Training (PARAFiT) program, which is an integrated graded physical exercise and health education program for individuals with spinal cord injury (SCI). Methods This nonrandomized single-blind study included 44 participants, who were assigned to either an intervention (PARAFiT) group or an active control (conventional physiotherapy) group. The intervention group underwent the PARAFiT program (8 weeks), which consisted of circuit-based interval training, progressive upper limb resistance training, and health education sessions. During the unsupervised period, the intervention group continuously underwent health education program once a month for 2 months (8 weeks). Repeated-measures analysis of variance was used for the analysis. Results The intervention group presented with a higher level of physical activity than did the control group; however, the difference was not significant (p=0.36). Additionally, the intervention group presented with better exercise self-efficacy and cardiorespiratory fitness and stronger bilateral shoulder muscle and handgrip than did the control group (all p<0.05). Exercise adherence was higher in the intervention group than in the control group during both the supervised (80% vs. 75%) and unsupervised (40% vs. 20%) periods. Conclusion The PARAFiT program enhanced the level of physical activity, exercise self-efficacy, physical fitness, and exercise adherence among the patients with SCI. Future studies should incorporate guidelines for home-based exercises and regular monitoring to promote long-term adherence to exercise and physical activity among individuals with SCI.
Collapse
|
16
|
Low drop-out rates in the HandbikeBattle free-living training study: understanding the reasons for dropping out. Spinal Cord Ser Cases 2022; 8:20. [PMID: 35132066 PMCID: PMC8821557 DOI: 10.1038/s41394-022-00490-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
STUDY DESIGN Longitudinal observational study. OBJECTIVES During the five-month free-living training period for the HandbikeBattle event several participants dropped out. The aim of this study was to clarify the numbers and reasons for drop out, and to characterize the differences between study participants who did (dropouts) and did not (competitors) drop out during the training period for the HandbikeBattle event. SETTING Former participants of the HandbikeBattle, a handcycling race on an Austrian mountain. METHODS Participants (N = 313 (N = 209 (67%) with spinal cord injury or spina bifida)) enrolled between 2013-2018. Drop out and reasons for drop out were registered. Competitors and dropouts were compared regarding personal, disability, physical, and psychological factors, which were measured at the start of the training period. RESULTS Forty-five participants (14%) dropped out during the training period with medical complications (49%) and motivational problems (29%) as main reasons. The only differences were that competitors participated more in sports before the study (p = 0.01) and achieved a higher peak power output (p = 0.04) compared to dropouts. CONCLUSIONS The drop-out rate of the HandbikeBattle study was low compared to previous exercise intervention studies, which might be related to the less strictly imposed free-living training. Persons with less experience in sport and a lower fitness level might need more attention during a training intervention to prevent them from dropping out.
Collapse
|
17
|
Hutchinson MJ, Goosey-Tolfrey VL. Rethinking aerobic exercise intensity prescription in adults with spinal cord injury: time to end the use of "moderate to vigorous" intensity? Spinal Cord 2022; 60:484-490. [PMID: 34880442 PMCID: PMC9209328 DOI: 10.1038/s41393-021-00733-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022]
Abstract
STUDY DESIGN Cohort study. OBJECTIVES To investigate and critique different methods for aerobic exercise intensity prescription in adults with spinal cord injury (SCI). SETTING University laboratory in Loughborough, UK. METHODS Trained athletes were split into those with paraplegia (PARA; n = 47), tetraplegia (TETRA; n = 20) or alternate health condition (NON-SCI; n = 67). Participants completed a submaximal step test with 3 min stages, followed by graded exercise test to exhaustion. Handcycling, arm crank ergometry or wheelchair propulsion were performed depending on the sport of the participant. Oxygen uptake (V̇O2), heart rate (HR), blood lactate concentration ([BLa]) and ratings of perceived exertion (RPE) on Borg's RPE scale were measured throughout. Lactate thresholds were identified according to log-V̇O2 plotted against log-[BLa] (LT1) and 1.5 mmol L-1 greater than LT1 (LT2). These were used to demarcate moderate (<LT1), heavy (>LT1, < LT2) and severe (>LT2) exercise intensity domains. RESULTS Associations between percentage of peak V̇O2 (%V̇O2peak) and HR (%HRpeak) with RPE differed between PARA and TETRA. At LT1 and LT2, %V̇O2peak and %HRpeak were significantly greater in TETRA compared to PARA and NON-SCI (P < 0.05). The variation in %V̇O2peak and %HRpeak at lactate thresholds resulted in large variability in the domain distribution at fixed %V̇O2peak and %HRpeak. CONCLUSIONS Fixed %V̇O2peak and %HRpeak should not be used for aerobic exercise intensity prescription in adults with SCI as the method does not lead to uniform exercise intensity domain distribution.
Collapse
Affiliation(s)
- Michael J. Hutchinson
- grid.6571.50000 0004 1936 8542Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Victoria L. Goosey-Tolfrey
- grid.6571.50000 0004 1936 8542Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
18
|
Figoni SF, Dolbow DR, Crawford EC, White ML, Pattanaik S. Does aerobic exercise benefit persons with tetraplegia from spinal cord injury? A systematic review. J Spinal Cord Med 2021; 44:690-703. [PMID: 32043944 PMCID: PMC8477928 DOI: 10.1080/10790268.2020.1722935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CONTEXT This review synthesizes the findings of previous research studies on the cardiovascular and metabolic benefits of aerobic exercise for individuals with tetraplegia secondary to spinal cord injury. They are often less active due to muscular paralysis, sensory loss, and sympathetic nervous system dysfunction that result from injury. Consequently, these persons are at higher risk for exercise intolerance and secondary health conditions. OBJECTIVE To evaluate the evidence concerning efficacy of aerobic exercise training for improving health and exercise performance in persons with tetraplegia from cervical injury. METHODS The search engines PubMed and Google Scholar were used to locate published research. The final 75 papers were selected on the basis of inclusion criteria. The studies were then rank-ordered using Physiotherapy Evidence Database. RESULTS Studies combining individuals with tetraplegia and paraplegia show that voluntary arm-crank training can increase mean peak power output by 33%. Functional electrical stimulation leg cycling was shown to induce higher peak cardiac output and stroke volume than arm-crank exercise. A range of peak oxygen uptake (VO2peak) values have been reported (0.57-1.32 L/min). Both VO2peak and cardiac output may be enhanced via increased muscle pump in the legs and venous return to the heart. Hybrid exercise (arm-crank and functional electrical stimulation leg cycling) can result in greater peak oxygen uptake and cardiovascular responses. CONCLUSION Evidence gathered from this systematic review of literature is inconclusive due to the lack of research focusing on those with tetraplegia. Higher power studies (level 1-3) are needed with the focus on those with tetraplegia.
Collapse
Affiliation(s)
- Stephen F Figoni
- Spinal Cord Injury/Disorders Healthcare Group (128), Tibor Rubin VA Medical Center, Long Beach, California, USA
| | - David R Dolbow
- Physical Therapy Program, William Carey University, Hattiesburg, Mississippi, USA
| | - Edwin C Crawford
- Physical Therapy Program, William Carey University, Hattiesburg, Mississippi, USA
| | - Margaret L White
- Physical Therapy Program, William Carey University, Hattiesburg, Mississippi, USA
| | - Sambit Pattanaik
- College of Osteopathic Medicine, William Carey University, Hattiesburg, Mississippi, USA
| |
Collapse
|
19
|
Botzheim L, Laczko J, Torricelli D, Mravcsik M, Pons JL, Oliveira Barroso F. Effects of gravity and kinematic constraints on muscle synergies in arm cycling. J Neurophysiol 2021; 125:1367-1381. [PMID: 33534650 DOI: 10.1152/jn.00415.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Arm cycling is a bimanual motor task used in medical rehabilitation and in sports training. Understanding how muscle coordination changes across different biomechanical constraints in arm cycling is a step toward improved rehabilitation approaches. This exploratory study aims to get new insights on motor control during arm cycling. To achieve our main goal, we used the muscle synergies analysis to test three hypotheses: 1) body position with respect to gravity (sitting and supine) has an effect on muscle synergies; 2) the movement size (crank length) has an effect on the synergistic behavior; 3) the bimanual cranking mode (asynchronous and synchronous) requires different synergistic control. Thirteen able-bodied volunteers performed arm cranking on a custom-made device with unconnected cranks, which allowed testing three different conditions: body position (sitting vs. supine), crank length (10 cm vs. 15 cm), and cranking mode (synchronous vs. asynchronous). For each of the eight possible combinations, subjects cycled for 30 s while electromyography of eight muscles (four from each arm) were recorded: biceps brachii, triceps brachii, anterior deltoid, and posterior deltoid. Muscle synergies in this eight-dimensional muscle space were extracted by nonnegative matrix factorization. Four synergies accounted for over 90% of muscle activation variances in all conditions. Results showed that synergies were affected by body position and cranking mode but practically unaffected by movement size. These results suggest that the central nervous system may employ different motor control strategies in response to external constraints such as cranking mode and body position during arm cycling.NEW & NOTEWORTHY Recent studies analyzed muscle synergies in lower limb cycling. Here, we examine upper limb cycling and specifically the effect of body position with respect to gravity, movement size, and cranking mode on muscle coordination during arm cranking tasks. We show that altered body position and cranking mode affects modular organization of muscle activities. To our knowledge, this is the first study assessing motor control through muscle synergies framework during upper limb cycling with different constraints.
Collapse
Affiliation(s)
- Lilla Botzheim
- Department of Information Technology and Biorobotics, Institute of Mathematics and Informatics, Faculty of Sciences, University of Pecs, Pecs, Hungary.,Neurorehabilitation and Motor Control Research Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Jozsef Laczko
- Department of Information Technology and Biorobotics, Institute of Mathematics and Informatics, Faculty of Sciences, University of Pecs, Pecs, Hungary.,Neurorehabilitation and Motor Control Research Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | - Mariann Mravcsik
- Department of Information Technology and Biorobotics, Institute of Mathematics and Informatics, Faculty of Sciences, University of Pecs, Pecs, Hungary.,Neurorehabilitation and Motor Control Research Group, Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Jose L Pons
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain.,Legs & Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, Illinois.,Department of Biomedical Engineering and Mechanical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Filipe Oliveira Barroso
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
20
|
Vivodtzev I, Taylor JA. Cardiac, Autonomic, and Cardiometabolic Impact of Exercise Training in Spinal Cord Injury: A QUALITATIVE REVIEW. J Cardiopulm Rehabil Prev 2021; 41:6-12. [PMID: 33351539 PMCID: PMC7768813 DOI: 10.1097/hcr.0000000000000564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Direct and indirect effects of spinal cord injury lead to important cardiovascular (CV) complications that are further increased by years of injury and the process of "accelerated aging." The present review examines the current evidence in the literature for the potential cardioprotective effect of exercise training in spinal cord injury. REVIEW METHODS PubMed and Web of Science databases were screened for original studies investigating the effect of exercise-based interventions on aerobic capacity, cardiac structure/function, autonomic function, CV function, and/or cardiometabolic markers. We compared the effects in individuals <40 yr with time since injury <10 yr with those in older individuals (≥40 yr) with longer time since injury (≥10 yr), reasoning that the two can be considered individuals with low versus high CV risk factors. SUMMARY Studies showed similar exercise effects in both groups (n = 31 in low CV risk factors vs n = 15 in high CV risk factors). The evidence does not support any effect of exercise training on autonomic function but does support an increased peripheral blood flow, improved left ventricular mass, higher peak cardiac output, greater lean body mass, better antioxidant capacity, and improved endothelial function. In addition, some evidence suggests that it can result in lower blood lipids, systemic inflammation (interleukin-6, tumor necrosis factor α, and C-reactive protein), and arterial stiffness. Training intensity, volume, and frequency were key factors determining CV gains. Future studies with larger sample sizes, well-matched groups of subjects, and randomized controlled designs will be needed to determine whether high-intensity hybrid forms of training result in greater CV gains.
Collapse
Affiliation(s)
- Isabelle Vivodtzev
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts (Drs Vivodtzev and Taylor); Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Cambridge, Massachusetts (Drs Vivodtzev and Taylor); and Sorbonne Université, INSERM, UMRS1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France (Dr Vivodtzev)
| | | |
Collapse
|
21
|
Mravcsik M, Botzheim L, Zentai N, Piovesan D, Laczko J. The Effect of Crank Resistance on Arm Configuration and Muscle Activation Variances in Arm Cycling Movements. J Hum Kinet 2021; 76:175-189. [PMID: 33603933 PMCID: PMC7877280 DOI: 10.2478/hukin-2021-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arm cycling on an ergometer is common in sports training and rehabilitation protocols. The hand movement is constrained along a circular path, and the user is working against a resistance, maintaining a cadence. Even if the desired hand trajectory is given, there is the flexibility to choose patterns of joint coordination and muscle activation, given the kinematic redundancy of the upper limb. With changing external load, motor noise and changing joint stiffness may affect the pose of the arm even though the endpoint trajectory is unchanged. The objective of this study was to examine how the crank resistance influences the variances of joint configuration and muscle activation. Fifteen healthy participants performed arm cranking on an arm-cycle ergometer both unimanually and bimanually with a cadence of 60 rpm against three crank resistances. Joint configuration was represented in a 3-dimensional joint space defined by inter-segmental joint angles, while muscle activation in a 4-dimensional "muscle activation space" defined by EMGs of 4 arm muscles. Joint configuration variance in the course of arm cranking was not affected by crank resistance, whereas muscle activation variance was proportional to the square of muscle activation. The shape of the variance time profiles for both joint configuration and muscle activation was not affected by crank resistance. Contrary to the prevailing assumption that an increased motor noise would affect the variance of auxiliary movements, the influence of noise doesn't appear at the joint configuration level even when the system is redundant. Our results suggest the separation of kinematic- and force-control, via mechanisms that are compensating for dynamic nonlinearities. Arm cranking may be suitable when the aim is to perform training under different load conditions, preserving stable and secure control of joint movements and muscle activations.
Collapse
Affiliation(s)
- Mariann Mravcsik
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, H-1121Hungary
- Department of Information Technology and Biorobotics, Faculty of Sciences, University of Pécs, H-7624Hungary
| | - Lilla Botzheim
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, H-1121Hungary
- Department of Information Technology and Biorobotics, Faculty of Sciences, University of Pécs, H-7624Hungary
| | - Norbert Zentai
- Department of Information Technology and Biorobotics, Faculty of Sciences, University of Pécs, H-7624Hungary
| | - Davide Piovesan
- Gannon University, Department of Biomedical, Industrial and Systems Engineering, EriePA16501. USA
| | - Jozsef Laczko
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, H-1121Hungary
- Department of Information Technology and Biorobotics, Faculty of Sciences, University of Pécs, H-7624Hungary
- Department of Physiology, Feinberg School of Medicine Northwestern University, ChicagoIL6061. USA
| |
Collapse
|
22
|
Farkas GJ, Gorgey AS, Dolbow DR, Berg AS, Gater DR. Energy Expenditure, Cardiorespiratory Fitness, and Body Composition Following Arm Cycling or Functional Electrical Stimulation Exercises in Spinal Cord Injury: A 16-Week Randomized Controlled Trial. Top Spinal Cord Inj Rehabil 2021; 27:121-134. [PMID: 33814890 PMCID: PMC7983642 DOI: 10.46292/sci20-00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Physical deconditioning and inactivity following spinal cord injury (SCI) are associated with multiple cardiometabolic risks. To mitigate cardiometabolic risk, exercise is recommended, but it is poorly established whether arm cycling exercise (ACE) or functional electrical stimulation (FES) leg cycling yields superior benefits. Objectives: To determine the adaptations of 16 weeks of FES cycling and ACE on exercise energy expenditure (EEE), cardiorespiratory fitness (CRF), and obesity after SCI. Methods: Thirteen physically untrained individuals were randomly assigned to FES (n = 6) or ACE (n = 7) exercise 5 days/week for 16 weeks. Pre- and post-intervention EEE, peak oxygen consumption (absolute and relative VO2Peak), and work were assessed using indirect calorimetry, while body composition was measured by dual-energy x-ray absorptiometry. Results: Main effects were found for peak power (p < .001), absolute (p = .046) and relative (p = .042) VO2Peak, and peak work (p = .013). Compared to baseline, the ACE group increased in EEE (+85%, p = .002), peak power (+307%, p < .001), VO2Peak (absolute +21%, relative +22%, p ≤ .024), peak work (19% increase, p = .003), and total body fat decreased (-6%, p = .05). The FES group showed a decrease in percentage body fat mass (-5%, p = .008). The ACE group had higher EEE (p = .008), peak power (p < .001), and relative VO2Peak (p = .025) compared to postintervention values in the FES group. Conclusion: In the current study, ACE induced greater increases in EEE and CRF, whereas ACE and FES showed similar results on body fat. Exercise promotional efforts targeting persons with SCI should use both FES and ACE to reduce sedentary behavior and to optimize different health parameters after SCI.
Collapse
Affiliation(s)
- Gary J. Farkas
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - David R. Dolbow
- Department of Physical Therapy, William Carey University, Hattiesburg, Mississippi
| | - Arthur S. Berg
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
23
|
Fischer G, Figueiredo P, Ardigò LP. Bioenergetics and Biomechanics of Handcycling at Submaximal Speeds in Athletes with a Spinal Cord Injury. Sports (Basel) 2020; 8:sports8020016. [PMID: 32013128 PMCID: PMC7077182 DOI: 10.3390/sports8020016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A study aimed at comparing bioenergetics and biomechanical parameters between athletes with tetraplegia and paraplegia riding race handbikes at submaximal speeds in ecological conditions. METHODS Five athletes with tetraplegia (C6-T1, 43 ± 6 yrs, 63 ± 14 kg) and 12 athletes with paraplegia (T4-S5, 44 ± 7 yrs, 72 ± 12 kg) rode their handbikes at submaximal speeds under metabolic measurements. A deceleration method (coasting down) was applied to calculate the rolling resistance and frontal picture of each participant was taken to calculate air resistance. The net overall Mechanical Efficiency (Eff) was calculated by dividing external mechanical work to the corresponding Metabolic Power. RESULTS Athletes with tetraplegia reached a lower aerobic speed (4.7 ± 0.6 m s-1 vs. 7.1 ± 0.9 m s-1, P = 0.001) and Mechanical Power (54 ± 15 W vs. 111 ± 25 W, P = 0.001) compared with athletes with paraplegia. The metabolic cost was around 1 J kg-1 m-1 for both groups. The Eff values (17 ± 2% vs. 19 ± 3%, P = 0.262) suggested that the handbike is an efficient assisted locomotion device. CONCLUSION Handbikers with tetraplegia showed lower aerobic performances but a similar metabolic cost compared with handbikers with paraplegia at submaximal speeds in ecological conditions.
Collapse
Affiliation(s)
- Gabriela Fischer
- School of Exercise and Sport Science, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona 37131, Italy;
- Laboratory of Biomechanics, Department of Physical Education, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
- Correspondence: ; Tel.: +55-48-3721-8558
| | - Pedro Figueiredo
- Portugal Football School, Portuguese Football Federation, Oeiras 1495-433, Portugal;
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Maia 4475-690, Portugal
| | - Luca Paolo Ardigò
- School of Exercise and Sport Science, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona 37131, Italy;
| |
Collapse
|
24
|
A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury. Neuromolecular Med 2020; 22:447-463. [DOI: 10.1007/s12017-019-08589-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
25
|
Mcleod JC, Diana H, Hicks AL. Sprint interval training versus moderate-intensity continuous training during inpatient rehabilitation after spinal cord injury: a randomized trial. Spinal Cord 2019; 58:106-115. [DOI: 10.1038/s41393-019-0345-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 11/09/2022]
|
26
|
Hutchinson MJ, Valentino SE, Totosy de Zepetnek J, MacDonald MJ, Goosey-Tolfrey VL. Perceptually regulated training does not influence the differentiated RPE response following 16-weeks of aerobic exercise in adults with spinal cord injury. Appl Physiol Nutr Metab 2019; 45:129-134. [PMID: 31251892 DOI: 10.1139/apnm-2019-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effect of prolonged familiarisation with ratings of perceived exertion (RPE) on the peripheral (RPEP) and central (RPEC) RPE responses to moderate-vigorous exercise in adults with spinal cord injury (SCI). RPEP and RPEC characterise the exertion of the working musculature and cardiorespiratory systems, respectively. Nineteen participants (age, 41.4 ± 11.4 years; peak oxygen uptake, 19.2 ± 7.2 mL·kg-1·min-1) with chronic SCI were randomly assigned to RPE-guided (n = 11; EXP) or active control (n = 8; CON) groups. EXP performed 16-weeks of RPE-guided, supervised aerobic training for 20 min, twice weekly, at RPE 3-6 (Category-Ratio 10 scale). CON had access to the same exercise equipment but received no specific advice on their exercise-training regime. Participants completed a graded exercise test, using an arm crank ergometer at pre- and post-training to determine peak oxygen uptake, with RPEP and RPEC recorded every minute throughout tests. Sixteen weeks training did not improve peak oxygen uptake. RPE decreased post-training at 50% (p = 0.02) and 70% peak oxygen uptake (p = 0.03), though there was no effect of group at either intensity (p = 0.54, 0.42, respectively). At 70% peak oxygen uptake, RPEP was greater than RPEC (4.2 ± 1.7 vs 3.4 ± 1.8, p < 0.005). Training with RPE-guidance for 16 weeks had no additional effect on the differentiated RPE responses to moderate-vigorous exercise in adults with SCI. Novelty In adults with SCI, differentiated RPE responses were not different between those who did, and did not, perform 16 weeks of RPE-guided training. This challenges whether familiarisation with RPE is necessary to be an effective regulator of exercise intensity in this population.
Collapse
Affiliation(s)
- Michael John Hutchinson
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Sydney Ella Valentino
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Julia Totosy de Zepetnek
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada.,Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Maureen Jane MacDonald
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.,Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Victoria Louise Goosey-Tolfrey
- Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
27
|
Effect of electrical stimulation on muscle atrophy and spasticity in patients with spinal cord injury – a systematic review with meta-analysis. Spinal Cord 2019; 57:258-266. [DOI: 10.1038/s41393-019-0250-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 11/09/2022]
|
28
|
Abstract
Upper motor neuron disease or injury can lead to muscle spasticity or nonfunction throughout the body. Imbalance in muscle forces predisposes patients to development of functional deficiencies, contractures, pain, and poor hygiene. The approach to neuro-orthopaedic patients is by necessity multidisciplinary, because a variety of nonsurgical and surgical options are available. In evaluating each patient, surgeons must consider the extent and quality of any deformity, potential for improvement in function, the ability to alleviate pain, and potential for improvement in hygiene and cosmesis. Surgical techniques include tendon lengthenings, releases, transfers, osteotomies, and bony fusions.
Collapse
Affiliation(s)
- Matthew T Winterton
- Department of Orthopaedic Surgery, Children's Hospital of Philadelphia, 3737 Market Street, 6th Floor, Philadelphia, PA 19104, USA
| | - Keith Baldwin
- Department of Orthopaedic Surgery, Children's Hospital of Philadelphia, University of Pennsylvania, 2 Wood Center, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Hasnan N, Mohamad Saadon NS, Hamzaid NA, Teoh MXH, Ahmadi S, Davis GM. Muscle oxygenation during hybrid arm and functional electrical stimulation-evoked leg cycling after spinal cord injury. Medicine (Baltimore) 2018; 97:e12922. [PMID: 30412097 PMCID: PMC6221724 DOI: 10.1097/md.0000000000012922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study compared muscle oxygenation (StO2) during arm cranking (ACE), functional electrical stimulation-evoked leg cycling (FES-LCE), and hybrid (ACE+FES-LCE) exercise in spinal cord injury individuals. Eight subjects with C7-T12 lesions performed exercises at 3 submaximal intensities. StO2 was measured during rest and exercise at 40%, 60%, and 80% of subjects' oxygen uptake (VO2) peak using near-infrared spectroscopy. StO2 of ACE showed a decrease whereas in ACE+FES-LCE, the arm muscles demonstrated increasing StO2 from rest in all of VO2) peak respectively. StO2 of FES-LCE displayed a decrease at 40% VO2 peak and steady increase for 60% and 80%, whereas ACE+FES-LCE revealed a steady increase from rest at all VO2 peak. ACE+FES-LCE elicited greater StO2 in both limbs which suggested that during this exercise, upper- and lower-limb muscles have higher blood flow and improved oxygenation compared to ACE or FES-LCE performed alone.
Collapse
Affiliation(s)
- Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine
| | | | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mira Xiao-Hui Teoh
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Sirous Ahmadi
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sport Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | - Glen M. Davis
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sport Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
30
|
Kolman S, Spiegel D, Namdari S, Hosalkar H, Keenan MA, Baldwin K. What's New in Orthopaedic Rehabilitation. J Bone Joint Surg Am 2015; 97:1892-8. [PMID: 26582622 DOI: 10.2106/jbjs.o.00827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - David Spiegel
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Surena Namdari
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harish Hosalkar
- Center for Hip Preservation and Children's Orthopedics, Vista, California
| | - Mary Ann Keenan
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Keith Baldwin
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|