1
|
Carnero Contentti E, Okuda DT, Rojas JI, Chien C, Paul F, Alonso R. MRI to differentiate multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. J Neuroimaging 2023; 33:688-702. [PMID: 37322542 DOI: 10.1111/jon.13137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Differentiating multiple sclerosis (MS) from other relapsing inflammatory autoimmune diseases of the central nervous system such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is crucial in clinical practice. The differential diagnosis may be challenging but making the correct ultimate diagnosis is critical, since prognosis and treatments differ, and inappropriate therapy may promote disability. In the last two decades, significant advances have been made in MS, NMOSD, and MOGAD including new diagnostic criteria with better characterization of typical clinical symptoms and suggestive imaging (magnetic resonance imaging [MRI]) lesions. MRI is invaluable in making the ultimate diagnosis. An increasing amount of new evidence with respect to the specificity of observed lesions as well as the associated dynamic changes in the acute and follow-up phase in each condition has been reported in distinct studies recently published. Additionally, differences in brain (including the optic nerve) and spinal cord lesion patterns between MS, aquaporin4-antibody-positive NMOSD, and MOGAD have been described. We therefore present a narrative review on the most relevant findings in brain, spinal cord, and optic nerve lesions on conventional MRI for distinguishing adult patients with MS from NMOSD and MOGAD in clinical practice. In this context, cortical and central vein sign lesions, brain and spinal cord lesions characteristic of MS, NMOSD, and MOGAD, optic nerve involvement, role of MRI at follow-up, and new proposed diagnostic criteria to differentiate MS from NMOSD and MOGAD were discussed.
Collapse
Affiliation(s)
| | - Darin T Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juan I Rojas
- Centro de esclerosis múltiple de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemman Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ricardo Alonso
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital Ramos Mejía, Buenos Aires, Argentina
| |
Collapse
|
2
|
Tsagkas C, Huck-Horvath A, Cagol A, Haas T, Barakovic M, Amann M, Ruberte E, Melie-Garcia L, Weigel M, Pezold S, Schlaeger R, Kuhle J, Sprenger T, Kappos L, Bieri O, Cattin P, Granziera C, Parmar K. Anterior horn atrophy in the cervical spinal cord: A new biomarker in progressive multiple sclerosis. Mult Scler 2022; 29:702-718. [PMID: 36550626 DOI: 10.1177/13524585221139152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spinal cord (SC) gray and white matter pathology plays a central role in multiple sclerosis (MS). OBJECTIVE We aimed to investigate the extent, pattern, and clinical relevance of SC gray and white matter atrophy in vivo. METHODS 39 relapsing-remitting patients (RRMS), 40 progressive MS patients (PMS), and 24 healthy controls (HC) were imaged at 3T using the averaged magnetization inversion recovery acquisitions sequence. Total and lesional cervical gray and white matter, and posterior (SCPH) and anterior horn (SCAH) areas were automatically quantified. Clinical assessment included the expanded disability status scale, timed 25-foot walk test, nine-hole peg test, and the 12-item MS walking scale. RESULTS PMS patients had significantly reduced cervical SCAH - but not SCPH - areas compared with HC and RRMS (both p < 0.001). In RRMS and PMS, the cervical SCAH areas increased significantly less in the region of cervical SC enlargement compared with HC (all p < 0.001). This reduction was more pronounced in PMS compared with RRMS (both p < 0.001). In PMS, a lower cervical SCAH area was the most important magnetic resonance imaging (MRI)-variable for higher disability scores. CONCLUSION MS patients show clinically relevant cervical SCAH atrophy, which is more pronounced in PMS and at the level of cervical SC enlargement.
Collapse
Affiliation(s)
- Charidimos Tsagkas
- Neurologic Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Translational Imaging in Neurology (ThINk) Basel, Departments of Head, Spine and Neuromedicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Antal Huck-Horvath
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Departments of Head, Spine and Neuromedicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Tanja Haas
- Division of Radiological Physics, Department of Radiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Departments of Head, Spine and Neuromedicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Michael Amann
- Neurologic Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Medical Image Analysis Center AG, Basel, Switzerland
| | - Esther Ruberte
- Translational Imaging in Neurology (ThINk) Basel, Departments of Head, Spine and Neuromedicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Medical Image Analysis Center AG, Basel, Switzerland
| | - Lester Melie-Garcia
- Neurologic Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Translational Imaging in Neurology (ThINk) Basel, Departments of Head, Spine and Neuromedicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Neurologic Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Translational Imaging in Neurology (ThINk) Basel, Departments of Head, Spine and Neuromedicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Department of Biomedical Engineering, University of Basel, Basel, Switzerland/Division of Radiological Physics, Department of Radiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Simon Pezold
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Regina Schlaeger
- Neurologic Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Translational Imaging in Neurology (ThINk) Basel, Departments of Head, Spine and Neuromedicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Till Sprenger
- Neurologic Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Department of Neurology, DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland/Division of Radiological Physics, Department of Radiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Philippe Cattin
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Translational Imaging in Neurology (ThINk) Basel, Departments of Head, Spine and Neuromedicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Katrin Parmar
- Neurologic Clinic and Policlinic, Departments of Head, Spine and Neuromedicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland/Translational Imaging in Neurology (ThINk) Basel, Departments of Head, Spine and Neuromedicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Reha Rheinfelden, Rheinfelden, Switzerland
| |
Collapse
|
3
|
Combes AJE, Clarke MA, O'Grady KP, Schilling KG, Smith SA. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin 2022; 36:103244. [PMID: 36306717 PMCID: PMC9668663 DOI: 10.1016/j.nicl.2022.103244] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS. We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those making significant technical steps, noting the challenges that remain to be addressed and what stands to be gained from such advances. Throughout we also refer to other works that presend more in-depth review on specific themes. In the second part, we present several topics that, in our view, hold particular potential. The need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for future research, from study design to newer developments in analysis, and the need for harmonization of sequences and methods within the field. This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.
Collapse
Affiliation(s)
- Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States.
| | - Margareta A Clarke
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| |
Collapse
|
4
|
Andelova M, Vodehnalova K, Krasensky J, Hardubejova E, Hrnciarova T, Srpova B, Uher T, Menkyova I, Stastna D, Friedova L, Motyl J, Lizrova Preiningerova J, Kubala Havrdova E, Maréchal B, Fartaria MJ, Kober T, Horakova D, Vaneckova M. Brainstem lesions are associated with diffuse spinal cord involvement in early multiple sclerosis. BMC Neurol 2022; 22:270. [PMID: 35854235 PMCID: PMC9297663 DOI: 10.1186/s12883-022-02778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Early infratentorial and focal spinal cord lesions on magnetic resonance imaging (MRI) are associated with a higher risk of long-term disability in patients with multiple sclerosis (MS). The role of diffuse spinal cord lesions remains less understood. The purpose of this study was to evaluate focal and especially diffuse spinal cord lesions in patients with early relapsing-remitting MS and their association with intracranial lesion topography, global and regional brain volume, and spinal cord volume. Methods We investigated 58 MS patients with short disease duration (< 5 years) from a large academic MS center and 58 healthy controls matched for age and sex. Brain, spinal cord, and intracranial lesion volumes were compared among patients with- and without diffuse spinal cord lesions and controls. Binary logistic regression models were used to analyse the association between the volume and topology of intracranial lesions and the presence of focal and diffuse spinal cord lesions. Results We found spinal cord involvement in 75% of the patients (43/58), including diffuse changes in 41.4% (24/58). Patients with diffuse spinal cord changes exhibited higher volumes of brainstem lesion volume (p = 0.008). The presence of at least one brainstem lesion was associated with a higher probability of the presence of diffuse spinal cord lesions (odds ratio 47.1; 95% confidence interval 6.9–321.6 p < 0.001) as opposed to focal spinal cord lesions (odds ratio 0.22; p = 0.320). Patients with diffuse spinal cord lesions had a lower thalamus volume compared to patients without diffuse spinal cord lesions (p = 0.007) or healthy controls (p = 0.002). Conclusions Diffuse spinal cord lesions are associated with the presence of brainstem lesions and with a lower volume of the thalamus. This association was not found in patients with focal spinal cord lesions. If confirmed, thalamic atrophy in patients with diffuse lesions could increase our knowledge on the worse prognosis in patients with infratentorial and SC lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02778-z.
Collapse
Affiliation(s)
- Michaela Andelova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, Praha 2, Prague, Czech Republic.
| | - Karolina Vodehnalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, Praha 2, Prague, Czech Republic
| | - Jan Krasensky
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Eliska Hardubejova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tereza Hrnciarova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, Praha 2, Prague, Czech Republic
| | - Barbora Srpova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, Praha 2, Prague, Czech Republic
| | - Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, Praha 2, Prague, Czech Republic
| | - Ingrid Menkyova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, Praha 2, Prague, Czech Republic.,2nd Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Dominika Stastna
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, Praha 2, Prague, Czech Republic
| | - Lucie Friedova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, Praha 2, Prague, Czech Republic
| | - Jiri Motyl
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, Praha 2, Prague, Czech Republic
| | - Jana Lizrova Preiningerova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, Praha 2, Prague, Czech Republic
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, Praha 2, Prague, Czech Republic
| | - Bénédicte Maréchal
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mário João Fartaria
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Signal Processing Laboratory (LTS 5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Katerinska 30, Praha 2, Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
5
|
3-Dimensional Fluid and White Matter Suppression Magnetic Resonance Imaging Sequence Accelerated With Compressed Sensing Improves Multiple Sclerosis Cervical Spinal Cord Lesion Detection Compared With Standard 2-Dimensional Imaging. Invest Radiol 2022; 57:575-584. [PMID: 35318971 DOI: 10.1097/rli.0000000000000874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Fluid and white matter suppression (FLAWS) is a recently proposed magnetic resonance sequence derived from magnetization-prepared 2 rapid acquisition gradient-echo providing 2 coregistered datasets with white matter- and cerebrospinal fluid-suppressed signal, enabling synthetic imaging with amplified contrast. Although these features are high potential for brain multiple sclerosis (MS) imaging, spinal cord has never been evaluated with this sequence to date. The objective of this work was therefore to assess diagnostic performance and self-confidence provided by compressed-sensing (CS) 3-dimensional (3D) FLAWS for cervical MS lesion detection on a head scan that includes the cervical cord without changing standard procedures. MATERIALS AND METHODS Prospective 3 T scans (MS first diagnosis or follow-up) acquired between 2019 and 2020 were retrospectively analyzed. All patients underwent 3D CS-FLAWS (duration: 5 minutes 40 seconds), axial T2 turbo spin echo covering cervical spine from cervicomedullary junction to the same inferior level as FLAWS, and sagittal cervical T2/short tau inversion recovery imaging. Two readers performed a 2-stage double-blind reading, followed by consensus reading. Wilcoxon tests were used to compare the number of detected spinal cord lesions and the reader's diagnostic self-confidence when using FLAWS versus the reference 2D T2-weighted imaging. RESULTS Fifty-eight patients were included (mean age, 40 ± 13 years, 46 women, 7 ± 6 years mean disease duration). The CS-FLAWS detected significantly more lesions than the reference T2-weighted imaging (197 vs 152 detected lesions, P < 0.001), with a sensitivity of 98% (T2-weighted imaging sensitivity: 90%) after consensual reading. Considering the subgroup of patients who underwent sagittal T2 + short tau inversion recovery imaging (Magnetic Resonance Imaging for Multiple Sclerosis subgroup), +250% lesions were detected with FLAWS (63 vs 25 lesions detected, P < 0.001). Mean reading self-confidence was significantly better with CS-FLAWS (median, 5 [interquartile range, 1] [no doubt for diagnosis] vs 4 [interquartile range, 1] [high confidence]; P < 0.001). CONCLUSIONS Imaging with CS-FLAWS provides an improved cervical spinal cord exploration for MS with increased self-confidence compared with conventional T2-weighted imaging, in a clinically acceptable time.
Collapse
|
6
|
MRI of the Entire Spinal Cord-Worth the While or Waste of Time? A Retrospective Study of 74 Patients with Multiple Sclerosis. Diagnostics (Basel) 2021; 11:diagnostics11081424. [PMID: 34441358 PMCID: PMC8392750 DOI: 10.3390/diagnostics11081424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
Spinal cord lesions are included in the diagnosis of multiple sclerosis (MS), yet spinal cord MRI is not mandatory for diagnosis according to the latest revisions of the McDonald Criteria. We investigated the distribution of spinal cord lesions in MS patients and examined how it influences the fulfillment of the 2017 McDonald Criteria. Seventy-four patients with relapsing-remitting MS were examined with brain and entire spinal cord MRI. Sixty-five patients received contrast. The number and anatomical location of MS lesions were assessed along with the Expanded Disability Status Scale (EDSS). A Chi-square test, Fischer’s exact test, and one-sided McNemar’s test were used to test distributions. MS lesions were distributed throughout the spinal cord. Diagnosis of dissemination in space (DIS) was increased from 58/74 (78.4%) to 67/74 (90.5%) when adding cervical spinal cord MRI to brain MRI alone (p = 0.004). Diagnosis of dissemination in time (DIT) was not significantly increased when adding entire spinal cord MRI to brain MRI alone (p = 0.04). There was no association between the number of spinal cord lesions and the EDSS score (p = 0.71). MS lesions are present throughout the spinal cord, and spinal cord MRI may play an important role in the diagnosis and follow-up of MS patients.
Collapse
|
7
|
Moog TM, McCreary M, Stanley T, Wilson A, Santoyo J, Wright K, Winkler MD, Wang Y, Yu F, Newton BD, Zeydan B, Kantarci O, Guo X, Okuda DT. African Americans experience disproportionate neurodegenerative changes in the medulla and upper cervical spinal cord in early multiple sclerosis. Mult Scler Relat Disord 2020; 45:102429. [PMID: 32805478 DOI: 10.1016/j.msard.2020.102429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To compare the temporal changes in the 3-dimensional (3D) structure of the medulla-upper cervical spinal cord region in African American (AA) and white multiple sclerosis (MS) patients to identify early patterns of anatomical change prior to progressive symptom development. METHODS Standardized 3-Tesla 3D brain MRI studies were performed at two time points on AA and white MS patients along with controls. Longitudinal changes in volume, surface area, tissue compliance, and surface texture measured in total and within ventral and dorsal compartments were studied. Independent regression models were constructed to evaluate differences between groups. RESULTS Thirty-five individuals were studied, 10 AA with MS (female (F): 8; median age [IQR]=33.8 years (y) [10.9], median disease duration: 11.8y [11.3]), 20 white MS patients (F: 10; 35.6y [17.4], 7.23y [8.83], and 5 controls (F: 2, 51.8y [10.2]). Expanded Disability Status Scale scores were 0.0 at baseline and at the second MRI time point. Within the medulla-upper cervical spinal cord, AA versus white MS patients exhibited greater rates of atrophy in total (p<0.0001) and within the ventral (p<0.0001) and dorsal (p<0.0001) compartments, reduced surface area (p<0.0001), and reduced tissue compliance in the ventral (p=0.002) and dorsal (p=0.0005) compartments. The rate of change at the dorsal surface, but not the ventral surface, between MRI time points was also greater in AA relative to white MS patients (p<0.0001). CONCLUSION Structural changes in distinct anatomical regions of the medulla-upper cervical spinal cord may be reflective of early and disproportionate neurodegeneration in AA MS as compared to whites.
Collapse
Affiliation(s)
- Tatum M Moog
- UT Southwestern Medical Center, Department of Neurology & Neurotherapeutics Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Dallas, Texas, U.S.A
| | - Morgan McCreary
- UT Southwestern Medical Center, Department of Neurology & Neurotherapeutics Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Dallas, Texas, U.S.A
| | - Thomas Stanley
- University of Texas at Dallas, Department of Computer Science, Dallas, Texas, U.S.A
| | - Andrew Wilson
- University of Texas at Dallas, Department of Computer Science, Dallas, Texas, U.S.A
| | - Jose Santoyo
- UT Southwestern Medical Center, Department of Neurology & Neurotherapeutics Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Dallas, Texas, U.S.A
| | - Katy Wright
- UT Southwestern Medical Center, Department of Neurology & Neurotherapeutics Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Dallas, Texas, U.S.A
| | - Mandy D Winkler
- UT Southwestern Medical Center, Department of Neurology & Neurotherapeutics Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Dallas, Texas, U.S.A
| | - Yeqi Wang
- University of Texas at Dallas, Department of Computer Science, Dallas, Texas, U.S.A
| | - Frank Yu
- UT Southwestern Medical Center, Department of Radiology, Dallas, Texas, U.S.A
| | - Braeden D Newton
- University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | | | | | - Xiaohu Guo
- University of Texas at Dallas, Department of Computer Science, Dallas, Texas, U.S.A
| | - Darin T Okuda
- UT Southwestern Medical Center, Department of Neurology & Neurotherapeutics Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Dallas, Texas, U.S.A.
| |
Collapse
|
8
|
Barraza G, Deiva K, Husson B, Adamsbaum C. Imaging in Pediatric Multiple Sclerosis : An Iconographic Review. Clin Neuroradiol 2020; 31:61-71. [PMID: 32676699 DOI: 10.1007/s00062-020-00929-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/20/2020] [Indexed: 11/29/2022]
Abstract
Pediatric-onset multiple sclerosis (POMS) is defined by a first multiple sclerosis (MS) attack occurring before 18 years old and is diagnosed by demonstration of dissemination in time (DIT) and space (DIS). Although guidelines evolved over the years, they always recognized the importance of magnetic resonance imaging (MRI) for diagnosis. The 2017 McDonald criteria are increasingly used and have been validated in several cohorts. The use of MRI is the most important tool for the early diagnosis, monitoring, and assessment of treatment response of MS and standard protocols include precontrast and postcontrast T1, T2, fluid attenuation inversion recovery (FLAIR) and diffusion sequences. A distinctive MS lesion compromises white matter and it is well-demarcated and confluent, showing demyelination, inflammation, gliosis, and relative axonal preservation. Considering the growing recognition of pediatric MS as a differential diagnosis for children presenting with a clinical central nervous system event, we present a POMS lesions guide (periventricular, juxtacortical, infratentorial, spinal cord, cortical, tumefactive, black hole, contrast-enhanced). Owing to its rareness, POMS is a diagnosis by exclusion and MRI plays a fundamental role in distinguishing POMS from other demyelinating and non-demyelinating conditions. Three main groups of disorders can mimic POMS: inflammatory, metabolic and tumoral; however, imaging patterns earlier described lower the possibilities of alternative diagnoses and strongly suggest POMS when likely.
Collapse
Affiliation(s)
- Gonzalo Barraza
- Pediatric Radiology Department, Hôpitaux Universitaires Paris-Sud, Bicêtre AP-HP, 94270, Le Kremlin-Bicêtre, France.
| | - Kumaran Deiva
- Pediatric Neurology Department, Hôpitaux Universitaires Paris-Sud, Bicêtre AP-HP, 94270, Le Kremlin-Bicêtre, France.,Inserm UMR1184 "Immunology of viral infections and autoimmune diseases", CEA, IDMIT, Faculty of Medicine, Paris-Sud University, 94270, Le Kremlin-Bicêtre, France
| | - Béatrice Husson
- Pediatric Radiology Department, Hôpitaux Universitaires Paris-Sud, Bicêtre AP-HP, 94270, Le Kremlin-Bicêtre, France.,Pediatric stroke National Reference Center, Hôpitaux Universitaires Paris-Sud, Bicêtre AP-HP, 94270, Le Kremlin-Bicêtre, France
| | - Catherine Adamsbaum
- Pediatric Radiology Department, Hôpitaux Universitaires Paris-Sud, Bicêtre AP-HP, 94270, Le Kremlin-Bicêtre, France.,Faculty of Medicine, Paris-Sud University, 94270, Le Kremlin-Bicêtre, France
| |
Collapse
|
9
|
Eden D, Gros C, Badji A, Dupont SM, De Leener B, Maranzano J, Zhuoquiong R, Liu Y, Granberg T, Ouellette R, Stawiarz L, Hillert J, Talbott J, Bannier E, Kerbrat A, Edan G, Labauge P, Callot V, Pelletier J, Audoin B, Rasoanandrianina H, Brisset JC, Valsasina P, Rocca MA, Filippi M, Bakshi R, Tauhid S, Prados F, Yiannakas M, Kearney H, Ciccarelli O, Smith SA, Andrada Treaba C, Mainero C, Lefeuvre J, Reich DS, Nair G, Shepherd TM, Charlson E, Tachibana Y, Hori M, Kamiya K, Chougar L, Narayanan S, Cohen-Adad J. Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain 2020; 142:633-646. [PMID: 30715195 DOI: 10.1093/brain/awy352] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Spinal cord lesions detected on MRI hold important diagnostic and prognostic value for multiple sclerosis. Previous attempts to correlate lesion burden with clinical status have had limited success, however, suggesting that lesion location may be a contributor. Our aim was to explore the spatial distribution of multiple sclerosis lesions in the cervical spinal cord, with respect to clinical status. We included 642 suspected or confirmed multiple sclerosis patients (31 clinically isolated syndrome, and 416 relapsing-remitting, 84 secondary progressive, and 73 primary progressive multiple sclerosis) from 13 clinical sites. Cervical spine lesions were manually delineated on T2- and T2*-weighted axial and sagittal MRI scans acquired at 3 or 7 T. With an automatic publicly-available analysis pipeline we produced voxelwise lesion frequency maps to identify predilection sites in various patient groups characterized by clinical subtype, Expanded Disability Status Scale score and disease duration. We also measured absolute and normalized lesion volumes in several regions of interest using an atlas-based approach, and evaluated differences within and between groups. The lateral funiculi were more frequently affected by lesions in progressive subtypes than in relapsing in voxelwise analysis (P < 0.001), which was further confirmed by absolute and normalized lesion volumes (P < 0.01). The central cord area was more often affected by lesions in primary progressive than relapse-remitting patients (P < 0.001). Between white and grey matter, the absolute lesion volume in the white matter was greater than in the grey matter in all phenotypes (P < 0.001); however when normalizing by each region, normalized lesion volumes were comparable between white and grey matter in primary progressive patients. Lesions appearing in the lateral funiculi and central cord area were significantly correlated with Expanded Disability Status Scale score (P < 0.001). High lesion frequencies were observed in patients with a more aggressive disease course, rather than long disease duration. Lesions located in the lateral funiculi and central cord area of the cervical spine may influence clinical status in multiple sclerosis. This work shows the added value of cervical spine lesions, and provides an avenue for evaluating the distribution of spinal cord lesions in various patient groups.
Collapse
Affiliation(s)
- Dominique Eden
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Sara M Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Josefina Maranzano
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada.,Department of Anatomy, Université de Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Ren Zhuoquiong
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P. R. China
| | - Yaou Liu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, P. R. China.,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Massachusetts General Hospital, Boston, USA
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Massachusetts General Hospital, Boston, USA
| | - Leszek Stawiarz
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jason Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Elise Bannier
- CHU Rennes, Radiology Department, Rennes, France.,Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, EMPENN - ERL U 1228, Rennes, France
| | - Anne Kerbrat
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, EMPENN - ERL U 1228, Rennes, France.,CHU Rennes, Neurology Department, Rennes, France
| | - Gilles Edan
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, EMPENN - ERL U 1228, Rennes, France.,CHU Rennes, Neurology Department, Rennes, France
| | - Pierre Labauge
- MS Unit, Department of Neurology, University Hospital of Montpellier, Montpellier, France
| | - Virginie Callot
- Aix Marseille University, CNRS, CRMBM, Marseille, France.,APHM, CHU Timone, CEMEREM, Marseille, France
| | - Jean Pelletier
- APHM, CHU Timone, CEMEREM, Marseille, France.,APHM, Department of Neurology, CHU Timone, APHM, Marseille
| | - Bertrand Audoin
- APHM, CHU Timone, CEMEREM, Marseille, France.,APHM, Department of Neurology, CHU Timone, APHM, Marseille
| | - Henitsoa Rasoanandrianina
- Aix Marseille University, CNRS, CRMBM, Marseille, France.,APHM, CHU Timone, CEMEREM, Marseille, France
| | - Jean-Christophe Brisset
- Observatoire Français de la Sclérose en Plaques (OFSEP) ; Université de Lyon, Université Claude Bernard Lyon 1; Hospices Civils de Lyon; CREATIS-LRMN, UMR 5220 CNRS and U 1044 INSERM; Lyon, France
| | - Paola Valsasina
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Rohit Bakshi
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Shahamat Tauhid
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Ferran Prados
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London,UK.,Center for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Marios Yiannakas
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London,UK
| | - Hugh Kearney
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London,UK
| | - Olga Ciccarelli
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London,UK
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Jennifer Lefeuvre
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | | | - Erik Charlson
- Department of Radiology, NYU Langone Medical Center, New York, USA
| | | | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kouhei Kamiya
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Lydia Chougar
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Hospital Cochin, Paris, France
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.,Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
10
|
Moccia M, Ruggieri S, Ianniello A, Toosy A, Pozzilli C, Ciccarelli O. Advances in spinal cord imaging in multiple sclerosis. Ther Adv Neurol Disord 2019; 12:1756286419840593. [PMID: 31040881 PMCID: PMC6477770 DOI: 10.1177/1756286419840593] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/03/2019] [Indexed: 11/18/2022] Open
Abstract
The spinal cord is frequently affected in multiple sclerosis (MS), causing motor, sensory and autonomic dysfunction. A number of pathological abnormalities, including demyelination and neuroaxonal loss, occur in the MS spinal cord and are studied in vivo with magnetic resonance imaging (MRI). The aim of this review is to summarise and discuss recent advances in spinal cord MRI. Advances in conventional spinal cord MRI include improved identification of MS lesions, recommended spinal cord MRI protocols, enhanced recognition of MRI lesion characteristics that allow MS to be distinguished from other myelopathies, evidence for the role of spinal cord lesions in predicting prognosis and monitoring disease course, and novel post-processing methods to obtain lesion probability maps. The rate of spinal cord atrophy is greater than that of brain atrophy (-1.78% versus -0.5% per year), and reflects neuroaxonal loss in an eloquent site of the central nervous system, suggesting that it can become an important outcome measure in clinical trials, especially in progressive MS. Recent developments allow the calculation of spinal cord atrophy from brain volumetric scans and evaluation of its progression over time with registration-based techniques. Fully automated analysis methods, including segmentation of grey matter and intramedullary lesions, will facilitate the use of spinal cord atrophy in trial designs and observational studies. Advances in quantitative imaging techniques to evaluate neuroaxonal integrity, myelin content, metabolic changes, and functional connectivity, have provided new insights into the mechanisms of damage in MS. Future directions of research and the possible impact of 7T scanners on spinal cord imaging will be discussed.
Collapse
Affiliation(s)
- Marcello Moccia
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Federico II University of Naples, via Sergio Pansini, 5, Edificio 17 - piano terra, Napoli, 80131 Naples, Italy
| | - Serena Ruggieri
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Antonio Ianniello
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Ahmed Toosy
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Carlo Pozzilli
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Olga Ciccarelli
- Queen Square MS Centre, NMR Research Unit, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
11
|
Gros C, De Leener B, Badji A, Maranzano J, Eden D, Dupont SM, Talbott J, Zhuoquiong R, Liu Y, Granberg T, Ouellette R, Tachibana Y, Hori M, Kamiya K, Chougar L, Stawiarz L, Hillert J, Bannier E, Kerbrat A, Edan G, Labauge P, Callot V, Pelletier J, Audoin B, Rasoanandrianina H, Brisset JC, Valsasina P, Rocca MA, Filippi M, Bakshi R, Tauhid S, Prados F, Yiannakas M, Kearney H, Ciccarelli O, Smith S, Treaba CA, Mainero C, Lefeuvre J, Reich DS, Nair G, Auclair V, McLaren DG, Martin AR, Fehlings MG, Vahdat S, Khatibi A, Doyon J, Shepherd T, Charlson E, Narayanan S, Cohen-Adad J. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage 2019; 184:901-915. [PMID: 30300751 PMCID: PMC6759925 DOI: 10.1016/j.neuroimage.2018.09.081] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/05/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS) patients. Segmentation of the spinal cord and lesions from MRI data provides measures of damage, which are key criteria for the diagnosis, prognosis, and longitudinal monitoring in MS. Automating this operation eliminates inter-rater variability and increases the efficiency of large-throughput analysis pipelines. Robust and reliable segmentation across multi-site spinal cord data is challenging because of the large variability related to acquisition parameters and image artifacts. In particular, a precise delineation of lesions is hindered by a broad heterogeneity of lesion contrast, size, location, and shape. The goal of this study was to develop a fully-automatic framework - robust to variability in both image parameters and clinical condition - for segmentation of the spinal cord and intramedullary MS lesions from conventional MRI data of MS and non-MS cases. Scans of 1042 subjects (459 healthy controls, 471 MS patients, and 112 with other spinal pathologies) were included in this multi-site study (n = 30). Data spanned three contrasts (T1-, T2-, and T2∗-weighted) for a total of 1943 vol and featured large heterogeneity in terms of resolution, orientation, coverage, and clinical conditions. The proposed cord and lesion automatic segmentation approach is based on a sequence of two Convolutional Neural Networks (CNNs). To deal with the very small proportion of spinal cord and/or lesion voxels compared to the rest of the volume, a first CNN with 2D dilated convolutions detects the spinal cord centerline, followed by a second CNN with 3D convolutions that segments the spinal cord and/or lesions. CNNs were trained independently with the Dice loss. When compared against manual segmentation, our CNN-based approach showed a median Dice of 95% vs. 88% for PropSeg (p ≤ 0.05), a state-of-the-art spinal cord segmentation method. Regarding lesion segmentation on MS data, our framework provided a Dice of 60%, a relative volume difference of -15%, and a lesion-wise detection sensitivity and precision of 83% and 77%, respectively. In this study, we introduce a robust method to segment the spinal cord and intramedullary MS lesions on a variety of MRI contrasts. The proposed framework is open-source and readily available in the Spinal Cord Toolbox.
Collapse
Affiliation(s)
- Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Josefina Maranzano
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Dominique Eden
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Sara M. Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Jason Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Ren Zhuoquiong
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Yaou Liu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA
| | | | | | | | - Lydia Chougar
- Juntendo University Hospital, Tokyo, Japan
- Hospital Cochin, Paris, France
| | - Leszek Stawiarz
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elise Bannier
- CHU Rennes, Radiology Department
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Visages U1128, France
| | - Anne Kerbrat
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Visages U1128, France
- CHU Rennes, Neurology Department
| | - Gilles Edan
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Visages U1128, France
- CHU Rennes, Neurology Department
| | - Pierre Labauge
- MS Unit. DPT of Neurology. University Hospital of Montpellier
| | - Virginie Callot
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, CHU Timone, CEMEREM, Marseille, France
| | - Jean Pelletier
- APHM, CHU Timone, CEMEREM, Marseille, France
- APHM, Department of Neurology, CHU Timone, APHM, Marseille
| | - Bertrand Audoin
- APHM, CHU Timone, CEMEREM, Marseille, France
- APHM, Department of Neurology, CHU Timone, APHM, Marseille
| | | | - Jean-Christophe Brisset
- Observatoire Français de la Sclérose en Plaques (OFSEP) ; Univ Lyon, Université Claude Bernard Lyon 1 ; Hospices Civils de Lyon ; CREATIS-LRMN, UMR 5220 CNRS & U 1044 INSERM ; Lyon, France
| | - Paola Valsasina
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A. Rocca
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Rohit Bakshi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Shahamat Tauhid
- Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Ferran Prados
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London (UK)
- Center for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Marios Yiannakas
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London (UK)
| | - Hugh Kearney
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London (UK)
| | - Olga Ciccarelli
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London (UK)
| | | | | | - Caterina Mainero
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA
| | - Jennifer Lefeuvre
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Daniel S. Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | | | | | - Allan R. Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Shahabeddin Vahdat
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Neurology Department, Stanford University, US
| | - Ali Khatibi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | | | | | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
12
|
Christogianni A, Bibb R, Davis SL, Jay O, Barnett M, Evangelou N, Filingeri D. Temperature sensitivity in multiple sclerosis: An overview of its impact on sensory and cognitive symptoms. Temperature (Austin) 2018; 5:208-223. [PMID: 30377640 DOI: 10.1080/23328940.2018.1475831] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 10/28/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease characterized by demyelination of the central nervous system (CNS). The exact cause of MS is still unknown; yet its incidence and prevalence rates are growing worldwide, making MS a significant public health challenge. The heterogeneous distribution of demyelination within and between MS patients translates in a complex and varied array of autonomic, motor, sensory and cognitive symptoms. Yet a unique aspect of MS is the highly prevalent (60-80%) temperature sensitivity of its sufferers, where neurological symptoms are temporarily exacerbated by environmental- or exercise-induced increases (or decreases) in body temperature. MS temperature sensitivity is primarily driven by temperature-dependent slowing or blocking of neural conduction within the CNS due to changes in internal (core) temperature; yet changes in skin temperature could also contribute to symptom exacerbation (e.g. during sunlight and warm ambient exposure). The impact of temperature sensitivity, and particularly of increases in core temperature, on autonomic (e.g. thermoregulatory/cardiovascular function) and motor symptoms (e.g. fatigue) is well described. However, less attention has been given to how increases (and decreases) in core and skin temperature affect sensory and cognitive symptoms. Furthermore, it remains uncertain whether changes in skin temperature alone could also trigger worsening of symptoms. Here we review the impact of temperature sensitivity on MS sensory and cognitive function and discuss additional factors (e.g. changes in skin temperature) that potentially contribute to temperature-induced worsening of symptoms in the absence of alteration in core temperature.
Collapse
Affiliation(s)
- Aikaterini Christogianni
- THERMOSENSELAB, Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, UK
| | - Richard Bibb
- Loughborough Design School, Loughborough University, Loughborough, UK
| | - Scott L Davis
- Department of Applied Physiology & Wellness, Southern Methodist University, Dallas, TX, USA
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Michael Barnett
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Nikos Evangelou
- Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Davide Filingeri
- THERMOSENSELAB, Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, UK
| |
Collapse
|
13
|
Abstract
Spinal cord (SC) MRI in multiple sclerosis (MS) has significant usefulness in clinical and investigational settings. Conventional MRI of the SC is used in clinical practice, because it has both diagnostic and prognostic value. A number of advanced, quantitative SC MRI measures that assess the structural and functional integrity of the SC have been evaluated in investigational settings. These techniques have collectively demonstrated usefulness in providing insight into microstructural and functional changes relevant to disability in MS. With further development, these techniques may be useful in clinical trial settings as biomarkers of neurodegeneration and protection, and in day-to-day clinical practice.
Collapse
Affiliation(s)
- Alexandra Muccilli
- Division of Neurology, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario, M5B 1W8, Canada; Division of Neurology, Centre Hospitalier de L'Université de Montréal, Université de Montréal, 1058 Saint-Denis Street, Montreal, Quebec H2X 3J4, Canada
| | - Estelle Seyman
- Division of Neurology, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario, M5B 1W8, Canada
| | - Jiwon Oh
- Division of Neurology, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario, M5B 1W8, Canada; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
14
|
Lundell H, Svolgaard O, Dogonowski AM, Romme Christensen J, Selleberg F, Soelberg Sørensen P, Blinkenberg M, Siebner HR, Garde E. Spinal cord atrophy in anterior-posterior direction reflects impairment in multiple sclerosis. Acta Neurol Scand 2017; 136:330-337. [PMID: 28070886 DOI: 10.1111/ane.12729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate how atrophy is distributed over the cross section of the upper cervical spinal cord and how this relates to functional impairment in multiple sclerosis (MS). METHODS We analysed the structural brain MRI scans of 54 patients with relapsing-remitting MS (n=22), primary progressive MS (n=9), secondary progressive MS (n=23) and 23 age- and sex-matched healthy controls. We measured the cross-sectional area (CSA), left-right width (LRW) and anterior-posterior width (APW) of the spinal cord at the segmental level C2. We tested for a nonparametric linear relationship between these atrophy measures and clinical impairments as reflected by the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Impairment Scale (MSIS). RESULTS In patients with MS, CSA and APW but not LRW were reduced compared to healthy controls (P<.02) and showed significant correlations with EDSS, MSIS and specific MSIS subscores. CONCLUSION In patients with MS, atrophy of the upper cervical cord is most evident in the antero-posterior direction. As APW of the cervical cord can be readily derived from standard structural MRI of the brain, APW constitutes a clinically useful neuroimaging marker of disease-related neurodegeneration in MS.
Collapse
Affiliation(s)
- H. Lundell
- Danish Research Centre for Magnetic Resonance; Copenhagen University Hospital Hvidovre; Hvidovre Denmark
| | - O. Svolgaard
- Danish Research Centre for Magnetic Resonance; Copenhagen University Hospital Hvidovre; Hvidovre Denmark
| | - A.-M. Dogonowski
- Danish Research Centre for Magnetic Resonance; Copenhagen University Hospital Hvidovre; Hvidovre Denmark
| | - J. Romme Christensen
- Danish Multiple Sclerosis Center; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - F. Selleberg
- Danish Multiple Sclerosis Center; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - P. Soelberg Sørensen
- Danish Multiple Sclerosis Center; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - M. Blinkenberg
- Danish Multiple Sclerosis Center; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - H. R. Siebner
- Danish Research Centre for Magnetic Resonance; Copenhagen University Hospital Hvidovre; Hvidovre Denmark
- Department of Neurology; Copenhagen University Hospital Bispebjerg; Copenhagen Denmark
| | - E. Garde
- Danish Research Centre for Magnetic Resonance; Copenhagen University Hospital Hvidovre; Hvidovre Denmark
| |
Collapse
|
15
|
Mahajan KR, Ontaneda D. The Role of Advanced Magnetic Resonance Imaging Techniques in Multiple Sclerosis Clinical Trials. Neurotherapeutics 2017; 14:905-923. [PMID: 28770481 PMCID: PMC5722766 DOI: 10.1007/s13311-017-0561-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging has been crucial in the development of anti-inflammatory disease-modifying treatments. The current landscape of multiple sclerosis clinical trials is currently expanding to include testing not only of anti-inflammatory agents, but also neuroprotective, remyelinating, neuromodulating, and restorative therapies. This is especially true of therapies targeting progressive forms of the disease where neurodegeneration is a prominent feature. Imaging techniques of the brain and spinal cord have rapidly evolved in the last decade to permit in vivo characterization of tissue microstructural changes, connectivity, metabolic changes, neuronal loss, glial activity, and demyelination. Advanced magnetic resonance imaging techniques hold significant promise for accelerating the development of different treatment modalities targeting a variety of pathways in MS.
Collapse
Affiliation(s)
- Kedar R Mahajan
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA.
| |
Collapse
|
16
|
Kaunzner UW, Gauthier SA. MRI in the assessment and monitoring of multiple sclerosis: an update on best practice. Ther Adv Neurol Disord 2017; 10:247-261. [PMID: 28607577 DOI: 10.1177/1756285617708911] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/09/2017] [Indexed: 01/14/2023] Open
Abstract
Magnetic resonance imaging (MRI) has developed into the most important tool for the diagnosis and monitoring of multiple sclerosis (MS). Its high sensitivity for the evaluation of inflammatory and neurodegenerative processes in the brain and spinal cord has made it the most commonly used technique for the evaluation of patients with MS. Moreover, MRI has become a powerful tool for treatment monitoring, safety assessment as well as for the prognostication of disease progression. Clinically, the use of MRI has increased in the past couple decades as a result of improved technology and increased availability that now extends well beyond academic centers. Consequently, there are numerous studies supporting the role of MRI in the management of patients with MS. The aim of this review is to summarize the latest insights into the utility of MRI in MS.
Collapse
Affiliation(s)
- Ulrike W Kaunzner
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York, NY, USA
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, 1305 York Avenue, New York, NY 10021, USA
| |
Collapse
|
17
|
Haghayegh Jahromi N, Tardent H, Enzmann G, Deutsch U, Kawakami N, Bittner S, Vestweber D, Zipp F, Stein JV, Engelhardt B. A Novel Cervical Spinal Cord Window Preparation Allows for Two-Photon Imaging of T-Cell Interactions with the Cervical Spinal Cord Microvasculature during Experimental Autoimmune Encephalomyelitis. Front Immunol 2017; 8:406. [PMID: 28443093 PMCID: PMC5387098 DOI: 10.3389/fimmu.2017.00406] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/22/2017] [Indexed: 11/13/2022] Open
Abstract
T-cell migration across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Two-photon intravital microscopy (2P-IVM) has been established as a powerful tool to study cell-cell interactions in inflammatory EAE lesions in living animals. In EAE, central nervous system inflammation is strongly pronounced in the spinal cord, an organ in which 2P-IVM imaging is technically very challenging and has been limited to the lumbar spinal cord. Here, we describe a novel spinal cord window preparation allowing to use 2P-IVM to image immune cell interactions with the cervical spinal cord microvascular endothelium during EAE. We describe differences in the angioarchitecture of the cervical spinal cord versus the lumbar spinal cord, which will entail different hemodynamic parameters in these different vascular beds. Using T cells as an example, we demonstrate the suitability of this novel methodology in imaging the post-arrest multistep T-cell extravasation across the cervical spinal cord microvessels. The novel methodology includes an outlook to the analysis of the cellular pathway of T-cell diapedesis across the BBB by establishing visualization of endothelial junctions in this vascular bed.
Collapse
Affiliation(s)
| | - Heidi Tardent
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Naoto Kawakami
- Max Planck Institute of Neurobiology, Martinsried, Germany.,Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians University of Munich, Martinsried, Germany
| | - Stefan Bittner
- Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Frauke Zipp
- Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
18
|
Tackley G, Vecchio D, Hamid S, Jurynczyk M, Kong Y, Gore R, Mutch K, Woodhall M, Waters P, Vincent A, Leite MI, Tracey I, Jacob A, Palace J. Chronic neuropathic pain severity is determined by lesion level in aquaporin 4-antibody-positive myelitis. J Neurol Neurosurg Psychiatry 2017; 88:165-169. [PMID: 27884934 DOI: 10.1136/jnnp-2016-314991] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 11/04/2022]
Abstract
IMPORTANCE Chronic, intractable neuropathic pain is a common and debilitating consequence of neuromyelitis optica spectrum disorder (NMOSD) myelitis, with no satisfactory treatment; few studies have yet to explore its aetiology. OBJECTIVE To establish if myelitis-associated chronic pain in NMOSD is related to the craniocaudal location of spinal cord lesions. METHOD (1) Retrospective cohort of 76 aquaporin 4-antibody (AQP4-Ab)-positive patients from Oxford and Liverpool's national NMOSD clinics, assessing current pain and craniocaudal location of cord lesion contemporary to pain onset. (2) Focused prospective study of 26 AQP4-Ab-positive Oxford patients, a subset of the retrospective cohort, assessing current craniocaudal lesion location and current pain. RESULTS Patients with isolated thoracic cord myelitis at the time of pain onset were significantly more disabled and suffered more pain. Cervical and thoracic lesions that persisted from pain onset to 'out of relapse' follow-up (current MRI) had highly significant (p<0.01) opposing effects on pain scores (std. β=-0.46 and 0.48, respectively). Lesion length, total lesion burden and number of transverse myelitis relapses did not correlate with pain. CONCLUSIONS Persistent, caudally located (ie, thoracic) cord lesions in AQP4-Ab-positive patients associate with high postmyelitis chronic pain scores, irrespective of number of myelitis relapses, lesion length and lesion burden. Although disability correlated with pain in isolation, it became an insignificant predictor of pain when analysed alongside craniocaudal location of lesions.
Collapse
Affiliation(s)
- George Tackley
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK
| | - Domizia Vecchio
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK.,Department of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Shahd Hamid
- Department of Neurology, Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | - Maciej Jurynczyk
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK
| | - Yazhuo Kong
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK
| | - Rosie Gore
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK
| | - Kerry Mutch
- Department of Neurology, Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | - Mark Woodhall
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK
| | - Maria Isabel Leite
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK
| | - Irene Tracey
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK
| | - Anu Jacob
- Department of Neurology, Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Neurologists are frequently asked to consult on patients with incidentally observed anomalies on brain MRI that may be suggestive of multiple sclerosis (MS). The identification of such findings has important clinical management implications. This review provides an overview and practical clinical approach options for clinicians. RECENT FINDINGS An increase in the number of brain MRI studies performed annually is expected to result in detection of a corresponding greater number of unanticipated anomalies. A disproportionate number of patients referred to neurologists for this reason have punctate subcortical T2 hyperintensities that appear nonspecific in origin rather than having imaging features concerning for MS. However, in some instances, the MRI characteristics appear to be typical for demyelination. When these features are observed, efforts should be pursued to identify an accurate explanation for the preclinical findings through rigorous clinical evaluation, paraclinical testing, and utilization of longitudinal imaging. SUMMARY The identification of subjects with incidental T2 hyperintensities highly suggestive of MS is important for patient counseling and management. Continued neurologic evaluations and reassessment of the original clinical impression are recommended to ensure accurate interpretation of the available data.
Collapse
|