1
|
Zaib S, Hayat A, Khan I. Probiotics and their Beneficial Health Effects. Mini Rev Med Chem 2024; 24:110-125. [PMID: 37291788 DOI: 10.2174/1389557523666230608163823] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Probiotics are living microorganisms that are present in cultured milk and fermented food. Fermented foods are a rich source for the isolation of probiotics. They are known as good bacteria. They have various beneficial effects on human health including antihypertensive effects, antihypercholesterolemic effects, prevention of bowel disease, and improving the immune system. Microorganisms including bacteria, yeast, and mold are used as probiotics but the major microorganisms that are used as probiotics are bacteria from the genus Lactobacillus, Lactococcus, Streptococcus, and Bifidobacterium. Probiotics are beneficial in the prevention of harmful effects. Recently, the use of probiotics for the treatment of various oral and skin diseases has also gained significant attention. Clinical studies indicate that the usage of probiotics can alter gut microbiota composition and provoke immune modulation in a host. Due to their various health benefits, probiotics are attaining more interest as a substitute for antibiotics or anti-inflammatory drugs leading to the growth of the probiotic market.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Aqsa Hayat
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
2
|
Bubnov R, Spivak M. Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:133-196. [DOI: 10.1007/978-3-031-19564-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Liu P, Hu T, Kang C, Liu J, Zhang J, Ran H, Zeng X, Qiu S. Research Advances in the Treatment of Allergic Rhinitis by Probiotics. J Asthma Allergy 2022; 15:1413-1428. [PMID: 36238950 PMCID: PMC9552798 DOI: 10.2147/jaa.s382978] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Allergic rhinitis (AR) impairs the quality of life of patients and reduces the efficiency of social work, it is an increasingly serious public medical and economic problem in the world. Conventional anti-allergic drugs for the treatment of allergic rhinitis (AR) can cause certain side effects, which limit the quality of life of patients. Therefore, it makes sense to look for other forms of treatment. Several studies in recent years have shown that probiotics have shown anti-allergic effects in various mouse and human studies. For example, the application of certain probiotic strains can effectively relieve the typical nasal and ocular symptoms of allergic rhinitis in children and adults, thereby improving the quality of life and work efficiency. At the same time, previous studies in humans and mice have found that probiotics can produce multiple effects, such as reduction of Th2 cell inflammatory factors and/or increase of Th1 cell inflammatory factors, changes in allergy-related immunoglobulins and cell migration, regulate Th1/Th2 balance or restore intestinal microbiota disturbance. For patients with limited activity or allergic rhinitis with more attacks and longer attack duration, oral probiotics have positive effects. The efficacy of probiotics in the prevention and treatment of allergic rhinitis is remarkable, but its specific mechanism needs further study. This review summarizes the research progress of probiotics in the treatment of allergic rhinitis in recent years.
Collapse
Affiliation(s)
- Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zunyi, People’s Republic of China
| | - Tianyong Hu
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, People’s Republic of China
| | - Chenglin Kang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zunyi, People’s Republic of China
| | - Jiangqi Liu
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, People’s Republic of China
| | - Jin Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zunyi, People’s Republic of China
| | - Hong Ran
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zunyi, People’s Republic of China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, People’s Republic of China
| | - Shuqi Qiu
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, People’s Republic of China
| |
Collapse
|
4
|
Beneficial effects of probiotics on the pig production cycle: an overview of clinical impacts and performance. Vet Microbiol 2022; 269:109431. [DOI: 10.1016/j.vetmic.2022.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 11/20/2022]
|
5
|
Liu C, Han F, Cong L, Sun T, Menghe B, Liu W. Evaluation of tolerance to artificial gastroenteric juice and fermentation characteristics of Lactobacillus strains isolated from human. Food Sci Nutr 2022; 10:227-238. [PMID: 35035924 PMCID: PMC8751432 DOI: 10.1002/fsn3.2662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Fifty-seven strains of Lactobacillus were isolated from fecal samples of healthy young people in Tibet, Xinjiang, and Inner Mongolia using pure culture methods. Lactobacillus ruminis and Lactobacillus gasseri were the dominant Lactobacillus species isolated from the intestinal microflora, accounting for 54.4% and 14.0% of the total isolates, respectively. Isolated strains were identified by 16S rRNA sequencing, and their tolerance to gastric acid and bile salt, and fermentation characteristics were evaluated. The results of experiments in vitro showed that nine of the isolated strains of Lactobacillus grew well at pH 3.0. After 11 h of incubation in artificial digestive juices, the isolated L. plantarum and the control strain L. plantarum P8 still had high survival rates. Most of the isolates and control isolates have strong tolerance to bile salts. The evaluation of fermentation characteristics indicated that the ability of the intestinal Lactobacillus to ferment skimmed milk was lower than that of the reference L. plantarum P8. In the process of storage, the viable count of screened isolates of human origin in fermented milk decreased to some extent, but remained above 7.01 ± 0.22 log CFU/ml, showing good storage characteristics.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Dairy Biotechnology and EngineeringMinistry of Education of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Dairy Products ProcessingMinistry of Agriculture and Rural Affairs of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Key Laboratory of Dairy Biotechnology and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Fei Han
- Key Laboratory of Dairy Biotechnology and EngineeringMinistry of Education of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Dairy Products ProcessingMinistry of Agriculture and Rural Affairs of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Key Laboratory of Dairy Biotechnology and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Lin Cong
- Key Laboratory of Dairy Biotechnology and EngineeringMinistry of Education of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Dairy Products ProcessingMinistry of Agriculture and Rural Affairs of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Key Laboratory of Dairy Biotechnology and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Ting Sun
- Key Laboratory of Dairy Biotechnology and EngineeringMinistry of Education of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Dairy Products ProcessingMinistry of Agriculture and Rural Affairs of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Key Laboratory of Dairy Biotechnology and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Bilege Menghe
- Key Laboratory of Dairy Biotechnology and EngineeringMinistry of Education of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Dairy Products ProcessingMinistry of Agriculture and Rural Affairs of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Key Laboratory of Dairy Biotechnology and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and EngineeringMinistry of Education of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Dairy Products ProcessingMinistry of Agriculture and Rural Affairs of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Key Laboratory of Dairy Biotechnology and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
6
|
Singh RP, Shadan A, Ma Y. Biotechnological Applications of Probiotics: A Multifarious Weapon to Disease and Metabolic Abnormality. Probiotics Antimicrob Proteins 2022; 14:1184-1210. [PMID: 36121610 PMCID: PMC9483357 DOI: 10.1007/s12602-022-09992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 12/25/2022]
Abstract
Consumption of live microorganisms "Probiotics" for health benefits and well-being is increasing worldwide. Their use as a therapeutic approach to confer health benefits has fascinated humans for centuries; however, its conceptuality gradually evolved with methodological advancement, thereby improving our understanding of probiotics-host interaction. However, the emerging concern regarding safety aspects of live microbial is enhancing the interest in non-viable or microbial cell extracts, as they could reduce the risks of microbial translocation and infection. Due to technical limitations in the production and formulation of traditionally used probiotics, the scientific community has been focusing on discovering new microbes to be used as probiotics. In many scientific studies, probiotics have been shown as potential tools to treat metabolic disorders such as obesity, type-2 diabetes, non-alcoholic fatty liver disease, digestive disorders (e.g., acute and antibiotic-associated diarrhea), and allergic disorders (e.g., eczema) in infants. However, the mechanistic insight of strain-specific probiotic action is still unknown. In the present review, we analyzed the scientific state-of-the-art regarding the mechanisms of probiotic action, its physiological and immuno-modulation on the host, and new direction regarding the development of next-generation probiotics. We discuss the use of recently discovered genetic tools and their applications for engineering the probiotic bacteria for various applications including food, biomedical applications, and other health benefits. Finally, the review addresses the future development of biological techniques in combination with clinical and preclinical studies to explain the molecular mechanism of action, and discover an ideal multifunctional probiotic bacterium.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand India
| | - Afreen Shadan
- Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand India
| | - Ying Ma
- College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Pistone D, Meroni G, Panelli S, D’Auria E, Acunzo M, Pasala AR, Zuccotti GV, Bandi C, Drago L. A Journey on the Skin Microbiome: Pitfalls and Opportunities. Int J Mol Sci 2021; 22:9846. [PMID: 34576010 PMCID: PMC8469928 DOI: 10.3390/ijms22189846] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
The human skin microbiota is essential for maintaining homeostasis and ensuring barrier functions. Over the years, the characterization of its composition and taxonomic diversity has reached outstanding goals, with more than 10 million bacterial genes collected and cataloged. Nevertheless, the study of the skin microbiota presents specific challenges that need to be addressed in study design. Benchmarking procedures and reproducible and robust analysis workflows for increasing comparability among studies are required. For various reasons and because of specific technical problems, these issues have been investigated in gut microbiota studies, but they have been largely overlooked for skin microbiota. After a short description of the skin microbiota, the review tackles methodological aspects and their pitfalls, covering NGS approaches and high throughput culture-based techniques. Recent insights into the "core" and "transient" types of skin microbiota and how the manipulation of these communities can prevent or combat skin diseases are also covered. Finally, this review includes an overview of the main dermatological diseases, the changes in the microbiota composition associated with them, and the recommended skin sampling procedures. The last section focuses on topical and oral probiotics to improve and maintain skin health, considering their possible applications for skin diseases.
Collapse
Affiliation(s)
- Dario Pistone
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Gabriele Meroni
- Department of Biomedical Surgical and Dental Sciences-One Health Unit, University of Milan, 20133 Milan, Italy;
| | - Simona Panelli
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
| | - Enza D’Auria
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, University of Milan, 20154 Milan, Italy; (E.D.); (M.A.)
| | - Miriam Acunzo
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, University of Milan, 20154 Milan, Italy; (E.D.); (M.A.)
| | - Ajay Ratan Pasala
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
| | - Gian Vincenzo Zuccotti
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, University of Milan, 20154 Milan, Italy; (E.D.); (M.A.)
| | - Claudio Bandi
- Pediatric Clinical Research Center “Invernizzi”, Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Lorenzo Drago
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| |
Collapse
|
8
|
Promotive effects of sesamin on proliferation and adhesion of intestinal probiotics and its mechanism of action. Food Chem Toxicol 2021; 149:112049. [DOI: 10.1016/j.fct.2021.112049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
|
9
|
Monteros MJM, Galdeano CM, Balcells MF, Weill R, De Paula JA, Perdigón G, Cazorla SI. Probiotic lactobacilli as a promising strategy to ameliorate disorders associated with intestinal inflammation induced by a non-steroidal anti-inflammatory drug. Sci Rep 2021; 11:571. [PMID: 33436961 PMCID: PMC7803994 DOI: 10.1038/s41598-020-80482-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Damage to the small intestine caused by non-steroidal anti-inflammatory drugs (NSAIDs) occurs more frequently than in the upper gastrointestinal tract, is more difficult to diagnose and no effective treatments exist. Hence, we investigated whether probiotics can control the onset of this severe condition in a murine model of intestinal inflammation induced by the NSAID, indomethacin. Probiotic supplementation to mice reduce the body weight loss, anemia, shortening of the small intestine, cell infiltration into the intestinal tissue and the loss of Paneth and Goblet cells associated with intestinal inflammation. Furthermore, a high antimicrobial activity in the intestinal fluids of mice fed with probiotics compared to animals on a conventional diet was elicited against several pathogens. Interestingly, probiotics dampened the oxidative stress and several local and systemic markers of an inflammatory process, as well as increased the secretion of IL-10 by regulatory T cells. Even more importantly, probiotics induced important changes in the large intestine microbiota characterized by an increase in anaerobes and lactobacilli, and a significant decrease in total enterobacteria. We conclude that oral probiotic supplementation in NSAID-induced inflammation increases intestinal antimicrobial activity and reinforces the intestinal epithelial barrier in order to avoid pathogens and commensal invasion and maintain intestinal homeostasis.
Collapse
Affiliation(s)
- María José Martínez Monteros
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
| | - Carolina Maldonado Galdeano
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - María Florencia Balcells
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
| | | | | | - Gabriela Perdigón
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
| | - Silvia Inés Cazorla
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina.
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina.
| |
Collapse
|
10
|
Poupet C, Chassard C, Nivoliez A, Bornes S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Front Nutr 2020; 7:135. [PMID: 33425969 PMCID: PMC7786404 DOI: 10.3389/fnut.2020.00135] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Caenorhabditis elegans, a non-parasitic nematode emerges as a relevant and powerful candidate as an in vivo model for microorganisms-microorganisms and microorganisms-host interactions studies. Experiments have demonstrated the probiotic potential of bacteria since they can provide to the worm a longer lifespan, an increased resistance to pathogens and to oxidative or heat stresses. Probiotics are used to prevent or treat microbiota dysbiosis and associated pathologies but the molecular mechanisms underlying their capacities are still unknown. Beyond safety and healthy aspects of probiotics, C. elegans represents a powerful way to design large-scale studies to explore transkingdom interactions and to solve questioning about the molecular aspect of these interactions. Future challenges and opportunities would be to validate C. elegans as an in vivo tool for high-throughput screening of microorganisms for their potential probiotic use on human health and to enlarge the panels of microorganisms studied as well as the human diseases investigated.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
11
|
Comprehensive analysis of transcriptional profiles in oral epithelial-like cells stimulated with oral probiotic Lactobacillus spp. Arch Oral Biol 2020; 118:104832. [PMID: 32739629 DOI: 10.1016/j.archoralbio.2020.104832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The mechanisms of action of probiotics can vary among species and among strains of a single species; thus, they can affect host cells in a complex manner. In the present study, Lactobacillus spp. were evaluated for their ability to adhere to gingival epithelial-like cells. Comprehensive analyses of transcriptional profiles of mouse gingival epithelial GE1 cells treated with L. rhamnosus L8020 were performed to assess the putative in vivo probiotic potential of this strain. METHODS Five Lactobacillus spp., isolated from the oral cavity, traditional Bulgarian yoghurt, and the feces of a healthy human, were each co-cultured with GE1 cells. Adhesion assays with serial dilution plating and DNA microarray analysis were performed to identify differentially expressed genes (DEGs) in GE1 cells grown in co-culture with L. rhamnosus L8020. RESULTS The oral isolates L. rhamnosus L8020, L. casei YU3, and L. paracasei YU4 demonstrated significantly greater adhesion compared with the non-oral isolates. In total, 536 genes in GE1 cells exhibited more than twofold upregulation or downregulation, compared with the 0 h timepoint, during co-culture with L. rhamnosus L8020. Gene ontology enrichment analysis revealed that DEGs were differentially enriched in a time-dependent manner. Early responses involved widespread changes in gene expression. CONCLUSIONS This study reveals changes in expression of genes involved in the epithelial physical barrier and immune response in gingival epithelial-like cells co-cultured with L. rhamnosus L8020. Further investigations regarding the molecular mechanisms by which L. rhamnosus L8020 serves as a probiotic may provide evidence to support clinical use.
Collapse
|
12
|
Yang G, Shi C, Zhang S, Liu Y, Li Z, Gao F, Cui Y, Yan Y, Li M. Characterization of the bacterial microbiota composition and evolution at different intestinal tract in wild pigs ( Sus scrofa ussuricus). PeerJ 2020; 8:e9124. [PMID: 32518722 PMCID: PMC7258971 DOI: 10.7717/peerj.9124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Commensal microorganisms are essential to the normal development and function of many aspects of animal biology, including digestion, nutrient absorption, immunological development, behaviors, and evolution. The specific microbial composition and evolution of the intestinal tracts of wild pigs remain poorly characterized. This study therefore sought to assess the composition, distribution, and evolution of the intestinal microbiome of wild pigs. For these analyses, 16S rRNA V3-V4 regions from five gut sections prepared from each of three wild sows were sequenced to detect the microbiome composition. These analyses revealed the presence of 6,513 operational taxonomic units (OTUs) mostly distributed across 17 phyla and 163 genera in these samples, with Firmicutes and Actinobacteria being the most prevalent phyla of microbes present in cecum and jejunum samples, respectively. Moreover, the abundance of Actinobacteria in wild pigs was higher than that in domestic pigs. At the genus level the Bifidobacterium and Allobaculum species of microbes were most abundant in all tested gut sections, with higher relative abundance in wild pigs relative to domestic pigs, indicating that in the process of pig evolution, the intestinal microbes also evolved, and changes in the intestinal microbial diversity could have been one of the evolutionary forces of pigs. Intestinal microbial functional analyses also revealed the microbes present in the small intestine (duodenum, jejunum, and ileum) and large intestine (cecum and colon) of wild pigs to engage distinct metabolic spatial structures and pathways relative to one another. Overall, these results offer unique insights that would help to advance the current understanding of how the intestinal microbes interact with the host and affect the evolution of pigs.
Collapse
Affiliation(s)
- Guangli Yang
- Department of Biology and Food Sciences, Shangqiu Normal University, Shangqiu City, Henan Province, China
| | - Chuanxin Shi
- Department of Biology and Food Sciences, Shangqiu Normal University, Shangqiu City, Henan Province, China
| | - Shuhong Zhang
- Department of Biology and Food Sciences, Shangqiu Normal University, Shangqiu City, Henan Province, China
| | - Yan Liu
- College of Animal Husbandry Engineering, Henan Vocational College of Agricultural, Zhengzhou City, Henan Province, China
| | - Zhiqiang Li
- Department of Biology and Food Sciences, Shangqiu Normal University, Shangqiu City, Henan Province, China
| | - Fengyi Gao
- Department of Biology and Food Sciences, Shangqiu Normal University, Shangqiu City, Henan Province, China
| | - Yanyan Cui
- Department of Biology and Food Sciences, Shangqiu Normal University, Shangqiu City, Henan Province, China
| | - Yongfeng Yan
- Department of Biology and Food Sciences, Shangqiu Normal University, Shangqiu City, Henan Province, China
| | - Ming Li
- Engineering College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou City, Henan Province, China
| |
Collapse
|
13
|
Hoffman S, Aviv Cohen N, Carroll IM, Tulchinsky H, Borovok I, Dotan I, Maharshak N. Faecal Proteases from Pouchitis Patients Activate Protease Activating Receptor-2 to Disrupt the Epithelial Barrier. J Crohns Colitis 2019; 13:1558-1568. [PMID: 31056700 DOI: 10.1093/ecco-jcc/jjz086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS The pathogenesis of pouch inflammation may involve epithelial barrier disruption. We investigated whether faecal proteolytic activity is increased during pouchitis and results in epithelial barrier dysfunction through protease activating receptor [PAR] activation, and assessed whether the intestinal microbiome may be the source of the proteases. METHODS Faecal samples were measured for protease activity using a fluorescein isothiocyanate [FITC]-casein florescence assay. Caco-2 cell monolayers were exposed to faecal supernatants to assess permeability to FITC-dextran. Tight junction protein integrity and PAR activation were assessed by immunoblot and immunofluorescence. A truncated PAR2 protein in Caco-2 cells was achieved by stable transfection using CRISPR/Cas9 plasmid. PAR2 activation in pouch biopsies was examined using antibodies directed to the N-terminus of the protein. Microbial composition was analysed based on 16S rRNA gene sequence analysis. RESULTS Ten pouchitis patients, six normal pouch [NP] patients and nine healthy controls [HC] were recruited. The pouchitis patients exhibited a 5.19- and 5.35-fold higher faecal protease [FP] activity [p ≤ 0.05] compared to the NP and HC participants, respectively. The genus Haemophilus was positively associated with FP activity [R = 0.718, false discovery rate < 0.1]. Faecal supernatants from pouchitis patients activated PAR2 on Caco-2 monolayers, disrupted tight junction proteins and increased epithelial permeability. PAR2 truncation in Caco-2 abrogated faecal protease-mediated permeability. Pouch biopsies obtained from pouchitis patients, but not from NP patients, displayed PAR2 activation. CONCLUSIONS Protease-producing bacteria may increase faecal proteolytic activity that results in pouch inflammation through disruption of tight junction proteins and increased epithelial permeability in a PAR2-dependent manner. This mechanism may initiate or propagate pouch inflammation.
Collapse
Affiliation(s)
- Sarit Hoffman
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine Tel-Aviv University, Tel Aviv, Israel
| | - Nathaniel Aviv Cohen
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel.,IBD Center, Tel Aviv Medical Center, Tel Aviv, Israel.,Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine Tel-Aviv University, Tel Aviv, Israel
| | - Ian M Carroll
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hagit Tulchinsky
- Division of Surgery Colorectal Unit, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine Tel-Aviv University, Tel Aviv, Israel
| | - Ilya Borovok
- Department of Molecular and Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine Tel-Aviv University, Tel Aviv, Israel
| | - Nitsan Maharshak
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel.,IBD Center, Tel Aviv Medical Center, Tel Aviv, Israel.,Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Wang W, Sun M, Zheng YL, Sun LY, Qu SQ. Effects of Bifidobacterium infantis on cytokine-induced neutrophil chemoattractant and insulin-like growth factor-1 in the ileum of rats with endotoxin injury. World J Gastroenterol 2019; 25:2924-2934. [PMID: 31249450 PMCID: PMC6589735 DOI: 10.3748/wjg.v25.i23.2924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/12/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The digestive tract is the maximal immunizing tissue in the body, and mucosal integrity and functional status of the gut is very important to maintain a healthy organism. Severe infection is one of the most common causes of gastrointestinal dysfunction, and the pathogenesis is closely related to endotoxemia and intestinal barrier injury. Bifidobacterium is one of the main probiotics in the human body that is involved in digestion, absorption, metabolism, nutrition, and immunity. Bifidobacterium plays an important role in maintaining the intestinal mucosal barrier integrity. This study investigated the protective mechanism of Bifidobacterium during ileal injury in rats.
AIM To investigate the effects of Bifidobacterium on cytokine-induced neutrophil chemoattractant (CINC) and insulin-like growth factor 1 (IGF-1) in the ileum of rats with endotoxin injury.
METHODS Preweaning rats were randomly divided into three groups: Control (group C), model (group E) and treatment (group T). Group E was intraperitoneally injected with lipopolysaccharide (LPS) to create an animal model of intestinal injury. Group T was intragastrically administered Bifidobacterium suspension 7 d before LPS. Group C was intraperitoneally injected with normal saline. The rats were killed at 2, 6 or 12 h after LPS or physiological saline injection to collect ileal tissue samples. The expression of ileal CINC mRNA was evaluated by reverse transcription-polymerase chain reaction (RT-PCR), and expression of ileal IGF-1 protein and mRNA was detected by immunohistochemistry and RT-PCR, respectively.
RESULTS The ileum of rats in Group C did not express CINC mRNA, ileums from Group E expressed high levels, which was then significantly decreased in Group T (F = 23.947, P < 0.05). There was no significant difference in CINC mRNA expression at different times (F = 0.665, P > 0.05). There was a high level of IGF-1 brown granules in ileal crypts and epithelial cells in Group C, sparse staining in Group E, and dark, dense brown staining in Group T. There was a significant difference between Groups C and E and Groups E and T (P < 0.05). There was no significant difference in IGF-1 protein expression at different times (F = 1.269, P > 0.05). IGF-1 mRNA expression was significantly different among the three groups (P < 0.05), though not at different times (F = 0.086, P > 0.05).
CONCLUSION Expression of CINC mRNA increased in the ileum of preweaning rats with endotoxin injury, and exogenous administration of Bifidobacterium reduced CINC mRNA expression. IGF-1 protein and mRNA expression decreased in the ileum of preweaning rats with endotoxin injury, and exogenous administration of Bifidobacterium prevented the decrease in IGF-1 expression. Bifidobacterium may increase IGF-1 expression and enhance intestinal immune barrier function in rats with endotoxin injury.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Mei Sun
- Department of Pediatric Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yu-Ling Zheng
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Liu-Yu Sun
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shu-Qiang Qu
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
15
|
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. Adv Nutr 2019; 10:S49-S66. [PMID: 30721959 PMCID: PMC6363529 DOI: 10.1093/advances/nmy063] [Citation(s) in RCA: 654] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/11/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Probiotics are living microorganisms that confer health benefits to the host when administered in adequate amounts; however, dead bacteria and their components can also exhibit probiotic properties. Bifidobacterium and strains of lactic acid bacteria are the most widely used bacteria that exhibit probiotic properties and are included in many functional foods and dietary supplements. Probiotics have been shown to prevent and ameliorate the course of digestive disorders such as acute, nosocomial, and antibiotic-associated diarrhea; allergic disorders such as atopic dermatitis (eczema) and allergic rhinitis in infants; and Clostridium difficile-associated diarrhea and some inflammatory bowel disorders in adults. In addition, probiotics may be of interest as coadjuvants in the treatment of metabolic disorders, including obesity, metabolic syndrome, nonalcoholic fatty liver disease, and type 2 diabetes. However, the mechanisms of action of probiotics, which are diverse, heterogeneous, and strain specific, have received little attention. Thus, the aim of the present work was to review the main mechanisms of action of probiotics, including colonization and normalization of perturbed intestinal microbial communities in children and adults; competitive exclusion of pathogens and bacteriocin production; modulation of fecal enzymatic activities associated with the metabolization of biliary salts and inactivation of carcinogens and other xenobiotics; production of short-chain and branched-chain fatty acids, which, in turn, have wide effects not only in the intestine but also in peripheral tissues via interactions with short-chain fatty acid receptors, modulating mainly tissue insulin sensitivity; cell adhesion and mucin production; modulation of the immune system, which results mainly in the differentiation of T-regulatory cells and upregulation of anti-inflammatory cytokines and growth factors, i.e., interleukin-10 and transforming growth factor; and interaction with the brain-gut axis by regulation of endocrine and neurologic functions. Further research to elucidate the precise molecular mechanisms of action of probiotics is warranted.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Armilla, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Armilla, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Mercedes Gil-Campos
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research and Metabolism Unit, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research, Cordoba, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Armilla, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Plaza-Díaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Immune-Mediated Mechanisms of Action of Probiotics and Synbiotics in Treating Pediatric Intestinal Diseases. Nutrients 2018; 10:42. [PMID: 29303974 PMCID: PMC5793270 DOI: 10.3390/nu10010042] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
The pediatric population is continually at risk of developing infectious and inflammatory diseases. The treatment for infections, particularly gastrointestinal conditions, focuses on oral or intravenous rehydration, nutritional support and, in certain case, antibiotics. Over the past decade, the probiotics and synbiotics administration for the prevention and treatment of different acute and chronic infectious diseases has dramatically increased. Probiotic microorganisms are primarily used as treatments because they can stimulate changes in the intestinal microbial ecosystem and improve the immunological status of the host. The beneficial impact of probiotics is mediated by different mechanisms. These mechanisms include the probiotics' capacity to increase the intestinal barrier function, to prevent bacterial transferation and to modulate inflammation through immune receptor cascade signaling, as well as their ability to regulate the expression of selected host intestinal genes. Nevertheless, with respect to pediatric intestinal diseases, information pertaining to these key mechanisms of action is scarce, particularly for immune-mediated mechanisms of action. In the present work, we review the biochemical and molecular mechanisms of action of probiotics and synbiotics that affect the immune system.
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Armilla, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Armilla, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
| | - Mercedes Gil-Campos
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition CB12/03/30028), Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Pediatric Research and Metabolism Unit, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research (IMIBIC), Av. Menendez Pidal s/n, 14010 Córdoba, Spain.
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Armilla, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition CB12/03/30028), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|