1
|
Qian H, Yang N, Jiang H, Li Y, Shen A, Hu Y. Effects of Artificial Vegetation Restoration Pattern on Soil Phosphorus Fractions in Alpine Desertification Grassland. PLANTS (BASEL, SWITZERLAND) 2025; 14:1429. [PMID: 40430994 PMCID: PMC12115014 DOI: 10.3390/plants14101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
Phosphorus (P) is essential for plant growth, but its soil availability depends on the characteristics of P fractions. However, few studies have examined soil P fractions under ecological restoration in alpine and semi-humid regions. This study investigated three restoration methods on the eastern Tibetan Plateau: planting mixed grasses (MG), planting Salix cupularis alone (SA), and planting Salix cupularis in combination with grasses (SG), restored for 14 years, with untreated sandy land (CK) as control. Through field sampling and laboratory analysis, soil P fractions and physicochemical properties were analyzed. The findings demonstrate that the three ecological restoration modes could increase total P and total organic P content and reduce inorganic P content. Ecological restoration can improve the content of soil labile P (resin-Pi, NaHCO3-Pi, and NaHCO3-Po) by activating NaOH-Pi and HCl-P, thus improving the availability of soil P and increasing the potential P (residual-P) source. Soil P fractions content positively correlated with SWC, SOC, and TN (p < 0.05) but negatively with BD and pH (p < 0.05). The experimental outcomes of this study will help to understand the P availability and its potential sources during ecological restoration while providing a scientific foundation for selecting optimal restoration strategies in alpine sandy land.
Collapse
Affiliation(s)
| | | | | | | | | | - Yufu Hu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (H.Q.)
| |
Collapse
|
2
|
Li Q, Liu X, Liu K, Ren H, Jian S, Lu H, Cheng Y, Zou Q, Huang Y. The invasion of Cassytha filiformis accelerated the litter decomposition of native plant communities in small tropical coral islands. BMC PLANT BIOLOGY 2025; 25:504. [PMID: 40259227 PMCID: PMC12010556 DOI: 10.1186/s12870-025-06556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/15/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Plant invasion affects plant community composition, biodiversity, and nutrient cycling in terrestrial ecosystems, particularly in vulnerable ecosystems. As an invasive parasitic plant, Cassytha filiformis has caused extensive damage to the native vegetation of the Paracel Islands. However, the effects of C. filiformis invasion on litter decomposition and nutrient release in native plant communities remain unclear. We conducted an in-situ decomposition experiment in native plant communities on a coral island to explore the litter decomposition dynamics varying across enzyme activities, soil properties and C. filiformis invasive degrees. RESULTS The mass loss of litter was determined during the decomposition process. The data showed that litter mass loss under severe invasion was significantly lower than in uninvaded sites after nine months of decomposition. The invasion of C. filiformis accelerated the nitrogen release and lignin decomposition with increased litter quality and polyphenol oxidase activity. Besides, soil phosphorus availability and potassium content also induced the oxidase activity. Meanwhile, the decomposition of litter organic carbon was delayed because β-1, 4-glucosidase activity was low in the first six months. Besides, peroxidase activity maintained a high level in invasive plots, indicating that the residues of C. filiformis may have allelopathy. CONCLUSION Our results suggested that the invasion of C. filiformis accelerated litter mass loss and element release on coral islands by regulating litter quality and enzyme activity. However, the short-term rapid litter decomposition may result in nutrient loss, which is not conducive to the growth of native plants.
Collapse
Affiliation(s)
- Qiang Li
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Xiao Liu
- School of Geography and Tourism, Qilu Normal University, Jinan, 250200, China
| | - Ke Liu
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration On Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hai Ren
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration On Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuguang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration On Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hongfang Lu
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration On Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yuanhao Cheng
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration On Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qingchi Zou
- Liaoning Natural Forest Protection Center, Shenyang, 110036, China
| | - Yao Huang
- Ministry of Education Key Laboratory for Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, School of Ecology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
McDowell RW, Luo D, Pletnyakov P, Upsdell M, Dodds WK. Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world's population. Nat Commun 2025; 16:1830. [PMID: 39979373 PMCID: PMC11842711 DOI: 10.1038/s41467-025-57054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Reference conditions pertain to conditions without anthropogenic influence and serve to gauge the degree of river pollution and identify the best attainable water quality. Here we show estimates of the global human footprint of nitrogen and phosphorus concentrations and potential for related nuisance or harmful algal growth in rivers. We use statistical models based on 1.2 million stream nutrient measurements (from 2005 to 2013) and find global human enrichment of river total nitrogen and total phosphorus is 35% and 14% respectively. The greatest enrichment is in Europe (86 and 30% respectively) and the least in Oceania (9 and 2% respectively). The levels of enrichment translated into an almost doubling of the catchment areas with rivers predicted to have anthropogenically elevated levels of potentially harmful or nuisance algae, affecting ~40% of the world's population. Focusing management on the difference between current and reference conditions can help protect good water quality while avoiding unrealistic goals where nitrogen and phosphorus are naturally high.
Collapse
Affiliation(s)
- Richard W McDowell
- AgResearch, Lincoln Science Centre, Christchurch, New Zealand.
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch, New Zealand.
| | - Dongwen Luo
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | | | - Martin Upsdell
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Walter K Dodds
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
4
|
Deslippe JR, Bentley SB. The role of wetland restoration in mediating phosphorus ecosystem services in agricultural landscapes. Curr Opin Biotechnol 2025; 91:103227. [PMID: 39631212 DOI: 10.1016/j.copbio.2024.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024]
Abstract
Phosphorus (P) is an essential plant nutrient that often limits agricultural productivity. Human activities, especially fertiliser use, have significantly altered the P cycle, causing eutrophication of aquatic systems. Restoring wetlands to agricultural landscapes can retain P, improving water quality and other ecosystem services. The effectiveness of P retention in restored wetlands varies with hydrology, soil properties, vegetation, and other factors. Challenges such as wetland P saturation, legacy P release, and plant invasions can limit P retention capacity. Furthermore, climate-related changes in temperature and hydrology have the potential to undermine long-term P retention. New methods such as Integrated Constructed Wetlands and new technologies that provide high-resolution temporal and spatial data enable managers to optimise multifunctionality in agricultural landscapes.
Collapse
Affiliation(s)
- Julie R Deslippe
- School of Biological Sciences, and Centre for Biodiversity and Restoration Ecology, Te Herenga Waka - Victoria University of Wellington, New Zealand.
| | - Shannon B Bentley
- School of Biological Sciences, and Centre for Biodiversity and Restoration Ecology, Te Herenga Waka - Victoria University of Wellington, New Zealand
| |
Collapse
|
5
|
McDowell RW, Haygarth PM. Soil phosphorus stocks could prolong global reserves and improve water quality. NATURE FOOD 2025; 6:31-35. [PMID: 39748028 PMCID: PMC11772246 DOI: 10.1038/s43016-024-01086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Combining existing databases, we estimated global phosphorus stocks in croplands and grasslands that are not readily available to plants as 32-41% of the 2020 estimated geologic phosphorus reserves, representing 146-186 years of the 2020 mass of phosphorus fertilizer applied annually. Especially if accessed by more efficient crops, this stock could reduce the need for additional fertilizer, improve water quality and contribute to all-round phosphorus sustainability.
Collapse
Affiliation(s)
- R W McDowell
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.
- Environmental Sciences, AgResearch, Christchurch, New Zealand.
| | - P M Haygarth
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
6
|
Pan F, Yang Q, Liang Y, Yu X, Hu P, Zhang W, Pang Y. Lithology and elevated temperature impact phoD-harboring bacteria on soil available P enhancing in subtropical forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174815. [PMID: 39019286 DOI: 10.1016/j.scitotenv.2024.174815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Plants are generally limited by soil phosphorus (P) deficiency in forest ecosystems. Soil available P is influenced by lithology, temperature, and soil microbes. However, the interactive effects of these factors on soil P availability in subtropical forests remain unclear. To assess their impacts, we measured soil inorganic and available P fractions and the diversity, composition, and co-occurrence network of phoD-harboring bacteria in two contrasting forest soils (lithosols in karst forests and ferralsols in non-karst forests) in the subtropical regions of southwestern China across six temperature gradients. The present results showed that the complexities in composition and network and the diversity indices of phoD-harboring bacteria were higher in the karst forest soils than those in the non-karst forest soils, with marked differences in composition. In both types of forest soils, the complexities of composition and networks and the diversity indices were higher in the high-temperature regions (mean annual temperature (MAT) > 16 °C) compared to the low-temperature regions (MAT <16 °C). Soil total inorganic and available P contents were lower in the karst forest soils compared to the non-karst forest soils. Soil total available P contents were lower in the high temperature regions than those in the low temperature regions in both forest soils, whereas soil total inorganic P contents were contrary. Variance partitioning analysis showed that soil inorganic and available P fractions were predominantly explained by lithology and its interaction with soil microbes and climate. The present findings demonstrate that soil P availability in subtropical forests of southwestern China is influenced by lithology and temperature, which regulate the diversity, composition, and network connectivity of phoD-harboring bacteria. Furthermore, this study highlights the significance of controlling the composition of phoD-harboring bacteria for mitigating plant P deficiency in karst ecosystems.
Collapse
Affiliation(s)
- Fujing Pan
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541006, Guangxi, China
| | - Qian Yang
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541006, Guangxi, China
| | - Yueming Liang
- Karst Dynamics Laboratory, Ministry of natural Resources, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, Guangxi, China.
| | - Xuan Yu
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541006, Guangxi, China
| | - Peilei Hu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Process and Services, Huanjiang Observation and Research of karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China
| | - Wei Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Process and Services, Huanjiang Observation and Research of karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China.
| | - Yuelan Pang
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Institute of Tea Science Research, Guangxi Zhuang Autonomous Region, Guilin 541000, Guangxi, China
| |
Collapse
|
7
|
Yang J, Lu Y, Liu B, Eltohamy KM, Liang X. Performance of an integrated sediment interceptor in removing phosphorus from agricultural drainage water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172458. [PMID: 38641117 DOI: 10.1016/j.scitotenv.2024.172458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Reducing phosphorus (P) loss from agricultural drainage water is challenging. In this study, we aimed to remove P from agricultural drainage water by developing an integrated sediment interceptor with adsorbent modules filled with Zr/Zn nanocomposite-modified ceramsite (ZMC-interceptor). The results of sequential chemical extraction and 31P NMR showed that the contents of H2O-P (1.15 % of total P), NaHCO3-Pi (10.48 % of total P), and ortho-P (orthophosphate, 90.6 % of total P) in the sediments of the ZMC-interceptors were higher than those in nearby field soils. The average enrichment ratios of particulate P (PP, >450 nm), medium-colloidal P (MCP, 220-450 nm), fine-colloidal P (FCP, 1-220 nm), and truly dissolved P (Truly DP, <1 nm) in the sediment over the field soil were 1.37, 1.21, 1.70, and 3.01, respectively. No significant differences were found in the sediment P-trapping function with and without ZMC integrated sediment interceptors. However, the ZMC-interceptors remarkably reduced total P (39.7 % for influent concentrations of 0.19-0.68 mg L-1) from agricultural drainage water compared to those unmodified ceramsite-interceptors (21.7 % for influent concentrations of 0.17-0.66 mg L-1) during the drainage 'window period' (June-August 2022). This was mainly due to the higher removal efficacies of MCP (19.7 %), FCP (23.3 %), and Truly DP (34.8 %) of the ZMC-interceptors. This study highlighted that the ZMC-interceptor not only trapped P in the sediment but also facilitated the removal of different-sized P fractionated from agricultural drainage water.
Collapse
Affiliation(s)
- Jiao Yang
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Lu
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Boyi Liu
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kamel Mohamed Eltohamy
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Water Relations & Field Irrigation, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Xinqiang Liang
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Guo T, Zhang S, Song C, Zhao R, Jia L, Wei Z. Response of phosphorus fractions transformation and microbial community to carbon-to-phosphorus ratios during sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121145. [PMID: 38788406 DOI: 10.1016/j.jenvman.2024.121145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Phosphorus (P) is one of the essential nutrient elements for plant growth and development. Sludge compost products can be used as an important source of soil P to solve the shortage of soil P. The difference in the initial carbon-to-phosphorus ratio (C/P) will lead to difference in the bacterial community, which would affect the biological pathway of P conversion in composting. However, few studies have been reported on adjusting the initial C/P of composting to explore P conversion. Therefore, this study investigated the response of P component transformations, bacterial community and P availability to C/P during sludge composting by adjusting initial C/P. The results showed that increasing C/P promoted the mineralization of organic P and significantly increased the content of the labile P. High C/P also increased the relative content of available P, especially when the C/P was at 45 and 60, it reached 60.51% and 60.47%. High C/P caused differences in the community structure, and improved the binding ability of microbial network modules and the competitiveness of microbial communities. Additionally, high C/P strengthened the effect of microbial communities on the transformation of P components. Finally, the study showed that C/P was the main contributor to P content variation (64.7%) and indirectly affected P component conversion by affecting the microbial community. Therefore, adjusting the C/P is crucial to improve the P utilization rate of composting products.
Collapse
Affiliation(s)
- Tong Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shubo Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Ran Zhao
- Heilongjiang Province Environment Monitoring Centre, Harbin, 150056, China
| | - Liming Jia
- Heilongjiang Province Environment Monitoring Centre, Harbin, 150056, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
9
|
McDowell RW, Pletnyakov P, Haygarth PM. Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves. NATURE FOOD 2024; 5:332-339. [PMID: 38528194 PMCID: PMC11045449 DOI: 10.1038/s43016-024-00952-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
With the longevity of phosphorus reserves uncertain, distributing phosphorus to meet food production needs is a global challenge. Here we match plant-available soil Olsen phosphorus concentrations to thresholds for optimal productivity of improved grassland and 28 of the world's most widely grown and valuable crops. We find more land (73%) below optimal production thresholds than above. We calculate that an initial capital application of 56,954 kt could boost soil Olsen phosphorus to their threshold concentrations and that 28,067 kt yr-1 (17,500 kt yr-1 to cropland) could maintain these thresholds. Without additional reserves becoming available, it would take 454 years at the current rate of application (20,500 kt yr-1) to exhaust estimated reserves (2020 value), compared with 531 years at our estimated maintenance rate and 469 years if phosphorus deficits were alleviated. More judicious use of phosphorus fertilizers to account for soil Olsen phosphorus can help achieve optimal production without accelerating the depletion of phosphorus reserves.
Collapse
Affiliation(s)
- R W McDowell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand.
- AgResearch, Lincoln Science Centre, Christchurch, New Zealand.
| | - P Pletnyakov
- AgResearch, Lincoln Science Centre, Christchurch, New Zealand
| | - P M Haygarth
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
10
|
Qin D, Li S, Wang J, Wang D, Liao P, Wang Y, Zhu Z, Dai Z, Jin Z, Hu X, Qiu S, Ma Y, Chen J. Spatial variation of soil phosphorus in the water level fluctuation zone of the Three Gorges Reservoir: Coupling effects of elevation and artificial restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167000. [PMID: 37722429 DOI: 10.1016/j.scitotenv.2023.167000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
The water level fluctuation zone (WLFZ) is a distinctive and important component of the reservoir ecosystem. Due to periodic inundation, the fraction, spatial distribution, and chemical reactivity of soil phosphorus (P) within the WLFZ can potentially impact the loading of P into reservoir waters. However, a detailed study of this subject is lacking. In this study, the soil P in the WLFZ of the Three Gorges Reservoir, China, was examined using a combination of chemical sequential extraction, 31P NMR, and adsorption experiments. The results of chemical sequential extraction showed that HCl-Pi constituted the largest P pool among all P forms, with a mean concentration of 338 mg/kg. The content of HCl-Pi decreased significantly toward the dam, while the content of Res-P decreased in the opposite direction. The highest contents of most P forms and total P were observed at an elevation of 160 m. 31P NMR measurements showed that NaOH-EDTA Pi detectable in WLFZ soils at 145 m, 160 m, and 175 m elevation consisted mainly of orthophosphate and pyrophosphate, while NaOH-EDTA Po contained phosphate monoesters and phosphate diesters, accounting for 1.4 % to 46.2 % of NaOH-EDTA TP. Adsorption experiments showed that soil P in the WLFZ was a potential P source for reservoir waters, with chemisorption being the dominant mechanism of P sequestration. The adsorption equilibrium concentration of WLFZ soil was lower at higher elevations (>170 m) compared to lower elevations (<150 m), exhibiting a decrease in the average maximum adsorption from 271 mg/kg to 192 mg/kg. Statistical analysis suggested that Ca and Fe content, particle size, elevation, and artificial restoration were key factors affecting the fraction and content of soil P in the WLFZ. Our findings contribute to an improved understanding of the behavior of soil P in the WLFZ of large reservoirs and its potential contribution to the reservoir waters.
Collapse
Affiliation(s)
- Dongming Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Tropical Crop College of Hainan University, Haikou 570228, China
| | - Shanze Li
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Zhiqiang Zhu
- Tropical Crop College of Hainan University, Haikou 570228, China.
| | - Zhihui Dai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zuxue Jin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinping Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuoru Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Jiang Y, Yan Q, Liu T, Xu Y, Han X, Ma X, Wang Y. Phosphorus adsorption characteristics and release risk in saline soils: a case study of Songnen Plain, China. FRONTIERS IN PLANT SCIENCE 2023; 14:1302763. [PMID: 38126021 PMCID: PMC10731378 DOI: 10.3389/fpls.2023.1302763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Introduction The Songnen Plain is one of the three major saline-alkali areas in China, covering a vast area, where drought and overgrazing have exacerbated the salinization trend, and will have great potential for development if utilized rationally. Phosphorus, as one of important soil nutrients, plays a crucial role in plant growth. How to minimize its loss and migration has become a current research hotspot. The objective of the present study was to elucidate the adsorption properties of phosphorus in soils affected by salinization and to establish the correlation between the potential for phosphorus release and soil properties. Methods A batch treatment test was conducted in this study using three soils with the various salinization degrees to examine the impact of environmental factors on the adsorption properties and potential release of phosphorus. Results and discussion It was found that the maximum phosphorus adsorption by the three salinization soils in 0-360 minutes accounted for 86.8%-90.5% of the total adsorption capacity; the equilibrium adsorption capacity was: HS> MS> LS. In cases where the phosphorus level in the surrounding liquid is low, the three levels of salinized soils exhibited varying levels of phosphorus discharge, with the adsorbent acting as the origin of contaminants. The Pseudo-second-order model kinetics and Langmuir equation can well describe the adsorption process, and the adsorption process is spontaneous heat absorption with entropy increase. Increasing the pH led to an increase in the adsorption of phosphorus from the three salinized soils. Additionally, the adsorption was enhanced by introducing varying concentrations of Na+, Ca2+, and Al3+ to the background solution. The phosphorus eutrophication release risk (ERI) demonstrated a gradual decline as temperature increased. Correlation analysis revealed a noteworthy positive correlation between TN, TP, and ERI, as well as a significant negative correlation between CEC, K+, and ERI. Furthermore, there was a highly significant negative correlation between coarse silt and fine silt. Considering local climatic and environmental factors is crucial for controlling the adsorption capacity of phosphorus in various salinized soils, as it can unveil the mechanism of phosphorus adsorption and impact its migration and release risk.
Collapse
Affiliation(s)
- Yan Jiang
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
| | - Qiuliang Yan
- Institute of Animal Nutrition and Feed Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Tonglinxi Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
| | - Yifan Xu
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
- Jilin Huan Zhi Technology Co., LTD., Changchun, China
| | - Xing Han
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
| | - Xiulan Ma
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
| | - Yujun Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
| |
Collapse
|
12
|
McDowell RW, Noble A, Pletnyakov P, Haygarth PM. A Global Database of Soil Plant Available Phosphorus. Sci Data 2023; 10:125. [PMID: 36882412 PMCID: PMC9992394 DOI: 10.1038/s41597-023-02022-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Soil phosphorus drives food production that is needed to feed a growing global population. However, knowledge of plant available phosphorus stocks at a global scale is poor but needed to better match phosphorus fertiliser supply to crop demand. We collated, checked, converted, and filtered a database of c. 575,000 soil samples to c. 33,000 soil samples of soil Olsen phosphorus concentrations. These data represent the most up-to-date repository of freely available data for plant available phosphorus at a global scale. We used these data to derive a model (R2 = 0.54) of topsoil Olsen phosphorus concentrations that when combined with data on bulk density predicted the distribution and global stock of soil Olsen phosphorus. We expect that these data can be used to not only show where plant available P should be boosted, but also where it can be drawn down to make more efficient use of fertiliser phosphorus and to minimise likely phosphorus loss and degradation of water quality.
Collapse
Affiliation(s)
- R W McDowell
- AgResearch, Lincoln Science Centre, Private Bag 4749, Christchurch, 8140, New Zealand.
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, P O Box 84, 7647, Christchurch, New Zealand.
| | - A Noble
- AgResearch, Lincoln Science Centre, Private Bag 4749, Christchurch, 8140, New Zealand
| | - P Pletnyakov
- AgResearch, Lincoln Science Centre, Private Bag 4749, Christchurch, 8140, New Zealand
| | - P M Haygarth
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
13
|
Jin J, Fang Y, He S, Liu Y, Liu C, Li F, Khan S, Eltohamy KM, Liu B, Liang X. Improved phosphorus availability and reduced degree of phosphorus saturation by biochar-blended organic fertilizer addition to agricultural field soils. CHEMOSPHERE 2023; 317:137809. [PMID: 36638925 DOI: 10.1016/j.chemosphere.2023.137809] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Phosphorus (P) availability and loss risk are linked to P species; however, their alternations in the soil amended with biochar-blended organic fertilizer is not well known, particularly under contrasting soil properties and land management. In this study, the variance of soil P species extracted by sequential chemical extraction (SCE) and 31P NMR techniques, as well as the degree of P saturation (DPS), were investigated throughout three paddy and three vegetable fields. These fields were amended with three different fertilizers at the same P application rate: chemical fertilizer (CF), organic fertilizer substitution (sheep manure/biogas slurry, SM/BS), and biochar-blended organic fertilizer substitution (BSM/BBS). Results showed that the BSM/BBS and SM increased the total P contents by 7.5% and 5.9% (TP) and available P contents by 30.1% and 19.2% (AP), but decreased the DPS values by 19.4% and 11.7%, compared to the CF treatment. Yet, the BS decreased the TP and AP contents but increased the DPS values across the experimental sites. In the BSM/BBS amended soils, high AP contents were due to the increased inorganic P (NaHCO3-Pi), while the increased organic P (monoester and DNA) induced low DPS values and reduced soil P loss risk. Our study highlights that biochar-blended organic fertilizer is an effective agronomic way for improving P availability and decreasing P loss risk via the alteration of soil P species.
Collapse
Affiliation(s)
- Junwei Jin
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yunying Fang
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle 2568, Australia
| | - Shuang He
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chunlong Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 130102, PR China
| | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, PR China
| | - Sangar Khan
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Kamel Mohamed Eltohamy
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, PR China; Department of Water Relations & Field Irrigation, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Boyi Liu
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xinqiang Liang
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 130102, PR China.
| |
Collapse
|
14
|
Bai J, Chen R, Men X, Cheng X. Divergent linkages of soil phosphorus fractions to edaphic properties following afforestation in the riparian zone of the upper Yangtze river, China. CHEMOSPHERE 2023; 313:137452. [PMID: 36481173 DOI: 10.1016/j.chemosphere.2022.137452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Soil phosphorus (P) is an essential nutrient element for plant growth but it is also one of the elements of agricultural-dominated watershed pollution. While the vegetation in the riparian zone usually plays an important role in regulating P pollutants. However, how afforestation affects soil P dynamics and fractions in the riparian zone remains largely unclear. Here, we investigated soil P fractions, and associated drivers including edaphic properties, microbial attributes, and soil enzyme activities under conversion from cropland to different afforested lands in order to better understand the dynamics of soil P fractions in the riparian zone of the upper Yangtze River. We found that afforestation significantly decreased the concentrations of available phosphorus, microbial biomass P, and labile P fractions, but the moderately labile P and Stable P did not significantly differ among afforestation types. Particularly, the lowest concentration of labile P was observed in Morus alba (M.a.) forests followed by the Salix babylonica (S.b.) forests, whereas croplands generally exhibited an inverse trend with a higher labile P concentration compared to woodlands, especially in croplands nearby Morus alba forests. Generally, P fractions were negatively associated with soil pH and C:N ratio, while positively related to microbial attributes, N:P ratio, and alkaline phosphatase activities. The labile P and moderately labile P fractions were predominantly regulated by biotic factors (i.e., microbial biomass P, microbial biomass N, leucine amino peptidase), whereas the stable P was strongly related to abiotic factors (i.e., total C concentration, pH, C:N ratio). These findings indicate afforestation is conducive to intercept more labile P, resulting in reduced P leaching to rivers. Collectively, our results not only offer direct experimental insight into predicting the effects of afforestation on soil P fractions but also have important implications for agricultural pollution management and reforestation strategies in the riparian zone.
Collapse
Affiliation(s)
- Jiankun Bai
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, PR China
| | - Rui Chen
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, PR China
| | - Xiuxian Men
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, PR China
| | - Xiaoli Cheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, PR China.
| |
Collapse
|
15
|
He Z, Dong L, Zhang K, Zhang D, Pan X. Lactic acid bacteria induce phosphate recrystallization for the in situ remediation of uranium-contaminated topsoil: Principle and application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120277. [PMID: 36167164 DOI: 10.1016/j.envpol.2022.120277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Uranium (U) contamination often occurs in the topsoil (arable layer), and is a serious threat to crop growth. However, conventional microbial reduction methods are sensitive to oxygen and cannot be used to treat aerobic topsoils. In this study, phosphate-solubilizing microorganisms (PSM) were isolated from U-contaminated topsoil and used for soil remediation. Microbial metabolites and products were analyzed, and the pathways and mechanisms of PSM immobilization were revealed. The results showed that strain PSM8 had the highest phosphate-solubilizing capacity (dissolved P was 208 ± 5 mg/L) and the highest U removal rate (97.3 ± 0.1%). Multi-technical analyses indicated that bacterial surface functional groups adsorbed (UO2)2+ ions on the cell surface, glycolysis produced 3-10 mg/L of lactic acid (pH 4.7-6.0), and lactic acid solubilized Ca3(PO4)2 to form stable chernikovite (a type of uranyl phosphate) on the cell surface. The coupled application of Ca3(PO4)2 and strain PSM8 significantly reduced the bioavailability of soil U (62 ± 11%), converting U from the exchangeable to the residual phase and P from the steady to the available form. In addition, pot experiments showed that soil remediation promoted crop growth and significantly reduced U uptake and toxicity to photosynthetic systems. These findings demonstrate that PSM and Ca3(PO4)2 are good coupled fertilizers for U-contaminated agricultural soil.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lingfeng Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Keqing Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
16
|
García‐Velázquez L, Gallardo A, Ochoa V, Gozalo B, Lázaro R, Maestre FT. Biocrusts increase the resistance to warming-induced increases in topsoil P pools. THE JOURNAL OF ECOLOGY 2022; 110:2074-2087. [PMID: 36250131 PMCID: PMC9541718 DOI: 10.1111/1365-2745.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/30/2022] [Indexed: 06/16/2023]
Abstract
Ongoing global warming and alterations in rainfall patterns driven by climate change are known to have large impacts on biogeochemical cycles, particularly on drylands. In addition, the global increase in atmospheric nitrogen (N) deposition can destabilize primary productivity in terrestrial ecosystems, and phosphorus (P) may become the most limiting nutrient in many terrestrial ecosystems. However, the impacts of climate change on soil P pools in drylands remain poorly understood. Furthermore, it is unknown whether biocrusts, a major biotic component of drylands worldwide, modulate such impacts.Here we used two long-term (8-10 years) experiments conducted in Central (Aranjuez) and SE (Sorbas) Spain to test how a ~2.5°C warming, a ~30% rainfall reduction and biocrust cover affected topsoil (0-1 cm) P pools (non-occluded P, organic P, calcium bound P, occluded P and total P).Warming significantly increased most P pools-except occluded P-in Aranjuez, whereas only augmented non-occluded P in Sorbas. The rainfall reduction treatment had no effect on the soil P pools at any experimental site. Biocrusts increased most soil P pools and conferred resistance to simulated warming for major P pools at both sites, and to rainfall reduction for non-occluded and occluded P in Aranjuez. Synthesis. Our findings provide novel insights on the responses of soil P pools to warming and rainfall reduction, and highlight the importance of biocrusts as modulators of these responses in dryland ecosystems. Our results suggest that the observed negative impacts of warming on dryland biocrust communities will decrease their capacity to buffer changes in topsoil P driven by climate change.
Collapse
Affiliation(s)
- Laura García‐Velázquez
- Departamento de Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”Universidad de AlicanteAlicanteSpain
| | - Antonio Gallardo
- Departamento de Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
- Unidad Asociada CSIC‐UPO (BioFun), Universidad Pablo de OlavideSevillaSpain
| | - Victoria Ochoa
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”Universidad de AlicanteAlicanteSpain
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”Universidad de AlicanteAlicanteSpain
| | - Roberto Lázaro
- Estación Experimental de Zonas Áridas (CSIC), Carretera de SacramentoAlmeríaSpain
| | - Fernando T. Maestre
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”Universidad de AlicanteAlicanteSpain
- Departamento de EcologíaUniversidad de AlicanteAlicanteSpain
| |
Collapse
|
17
|
Contribution of Incorporating the Phosphorus Cycle into TRIPLEX-CNP to Improve the Quantification of Land Carbon Cycle. LAND 2022. [DOI: 10.3390/land11060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Phosphorus (P) is a key and a limiting nutrient in ecosystems and plays an important role in many physiological and biochemical processes, affecting both terrestrial ecosystem productivity and soil carbon storage. However, only a few global land surface models have incorporated P cycle and used to investigate the interactions of C-N-P and its limitation on terrestrial ecosystems. The overall objective of this study was to integrate the P cycle and its interaction with carbon (C) and nitrogen (N) into new processes model of TRIPLEX-CNP. In this study, key processes of the P cycle, including P pool sizes and fluxes in plant, litter, and soil were integrated into a new model framework, TRIPLEX-CNP. We also added dynamic P:C ratios for different ecosystems. Based on sensitivity analysis results, we identified the phosphorus resorption coefficient of leaf (rpleaf) as the most influential parameter to gross primary productivity (GPP) and biomass, and determined optimal coefficients for different plant functional types (PFTs). TRIPLEX-CNP was calibrated with 49 sites and validated against 116 sites across eight biomes globally. The results suggested that TRIPLEX-CNP performed well on simulating the global GPP and soil organic carbon (SOC) with respective R2 values of 0.85 and 0.78 (both p < 0.01) between simulated and observed values. The R2 of simulation and observation of total biomass are 0.67 (p < 0.01) by TRIPLEX-CNP. The overall model performance had been improved in global GPP, total biomass and SOC after adding the P cycle comparing with the earlier version. Our work represents the promising step toward new coupled ecosystem process models for improving the quantifications of land carbon cycle and reducing uncertainty.
Collapse
|
18
|
Ducousso-Détrez A, Fontaine J, Lounès-Hadj Sahraoui A, Hijri M. Diversity of Phosphate Chemical Forms in Soils and Their Contributions on Soil Microbial Community Structure Changes. Microorganisms 2022; 10:microorganisms10030609. [PMID: 35336184 PMCID: PMC8950675 DOI: 10.3390/microorganisms10030609] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
In many soils, the bioavailability of Phosphorus (P), an essential macronutrient is a limiting factor for crop production. Among the mechanisms developed to facilitate the absorption of phosphorus, the plant, as a holobiont, can rely on its rhizospheric microbial partners. Therefore, microbial P-solubilizing inoculants are proposed to improve soil P fertility in agriculture. However, a better understanding of the interactions of the soil-plant-microorganism continuum with the phosphorus cycle is needed to propose efficient inoculants. Before proposing further methods of research, we carried out a critical review of the literature in two parts. First, we focused on the diversity of P-chemical forms. After a review of P forms in soils, we describe multiple factors that shape these forms in soil and their turnover. Second, we provide an analysis of P as a driver of microbial community diversity in soil. Even if no rule enabling to explain the changes in the composition of microbial communities according to phosphorus has been shown, this element has been perfectly targeted as linked to the presence/absence and/or abundance of particular bacterial taxa. In conclusion, we point out the need to link soil phosphorus chemistry with soil microbiology in order to understand the variations in the composition of microbial communities as a function of P bioavailability. This knowledge will make it possible to propose advanced microbial-based inoculant engineering for the improvement of bioavailable P for plants in sustainable agriculture.
Collapse
Affiliation(s)
- Amandine Ducousso-Détrez
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d’Opale, UR4492, SFR Condorcet FR CNRS 3417, 62228 Calais, France; (A.D.-D.); (J.F.); (A.L.-H.S.)
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, QC H1X 2B2, Canada
| | - Joël Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d’Opale, UR4492, SFR Condorcet FR CNRS 3417, 62228 Calais, France; (A.D.-D.); (J.F.); (A.L.-H.S.)
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d’Opale, UR4492, SFR Condorcet FR CNRS 3417, 62228 Calais, France; (A.D.-D.); (J.F.); (A.L.-H.S.)
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, QC H1X 2B2, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
- Correspondence:
| |
Collapse
|
19
|
Griffiths RR, A Aldrick A, Garcia-Ortegon M, Lalchand V, Lee AA. Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac298c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Bayesian optimisation is a sample-efficient search methodology that holds great promise for accelerating drug and materials discovery programs. A frequently-overlooked modelling consideration in Bayesian optimisation strategies however, is the representation of heteroscedastic aleatoric uncertainty. In many practical applications it is desirable to identify inputs with low aleatoric noise, an example of which might be a material composition which displays robust properties in response to a noisy fabrication process. In this paper, we propose a heteroscedastic Bayesian optimisation scheme capable of representing and minimising aleatoric noise across the input space. Our scheme employs a heteroscedastic Gaussian process surrogate model in conjunction with two straightforward adaptations of existing acquisition functions. First, we extend the augmented expected improvement heuristic to the heteroscedastic setting and second, we introduce the aleatoric noise-penalised expected improvement (ANPEI) heuristic. Both methodologies are capable of penalising aleatoric noise in the suggestions. In particular, the ANPEI acquisition yields improved performance relative to homoscedastic Bayesian optimisation and random sampling on toy problems as well as on two real-world scientific datasets. Code is available at: https://github.com/Ryan-Rhys/Heteroscedastic-BO
Collapse
|
20
|
Wang Y, Huang Y, Augusto L, Goll DS, Helfenstein J, Hou E. Toward a Global Model for Soil Inorganic Phosphorus Dynamics: Dependence of Exchange Kinetics and Soil Bioavailability on Soil Physicochemical Properties. GLOBAL BIOGEOCHEMICAL CYCLES 2022; 36:e2021GB007061. [PMID: 35865755 PMCID: PMC9286372 DOI: 10.1029/2021gb007061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r 2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models.
Collapse
Affiliation(s)
| | | | - Laurent Augusto
- INRAEBordeaux Sciences AgroUMR 1391 ISPAVillenave d'OrnonFrance
| | - Daniel S. Goll
- Université Paris SaclayCEA‐CNRS‐UVSQLSCE/IPSLGif sur YvetteFrance
| | | | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded EcosystemsSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
21
|
Hibbert L, Taylor G. Improving phosphate use efficiency in the aquatic crop watercress (Nasturtium officinale). HORTICULTURE RESEARCH 2022; 9:uhac011. [PMID: 35147194 PMCID: PMC8969064 DOI: 10.1093/hr/uhac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Watercress is a nutrient-dense leafy green crop, traditionally grown in aquatic outdoor systems and increasingly seen as well-suited for indoor hydroponic systems. However, there is concern that this crop has a detrimental impact on the environment through direct phosphate additions causing environmental pollution. Phosphate-based fertilisers are supplied to enhanced crop yield, but their use may contribute to eutrophication of waterways downstream of traditional watercress farms. One option is to develop a more phosphate use efficient (PUE) crop. This review identifies the key traits for this aquatic crop (the ideotype), for future selection, marker development and breeding. Traits identified as important for PUE are (i) increased root surface area through prolific root branching and adventitious root formation, (ii) aerenchyma formation and root hair growth. Functional genomic traits for improved PUE are (iii) efficacious phosphate remobilisation and scavenging strategies and (iv) the use of alternative metabolic pathways. Key genomic targets for this aquatic crop are identified as: PHT phosphate transporter genes, global transcriptional regulators such as those of the SPX family and genes involved in galactolipid and sulfolipid biosynthesis such as MGD2/3, PECP1, PSR2, PLDζ1/2 and SQD2. Breeding for enhanced PUE in watercress will be accelerated by improved molecular genetic resources such as a full reference genome sequence that is currently in development.
Collapse
Affiliation(s)
- Lauren Hibbert
- School of Biological Sciences, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
- Department of Plant Sciences, UC Davis, Davis, CA, 95616, USA
| | - Gail Taylor
- School of Biological Sciences, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
- Department of Plant Sciences, UC Davis, Davis, CA, 95616, USA
| |
Collapse
|
22
|
Lee JI, Kim JM, Yoo SC, Jho EH, Lee CG, Park SJ. Restoring phosphorus from water to soil: Using calcined eggshells for P adsorption and subsequent application of the adsorbent as a P fertilizer. CHEMOSPHERE 2022; 287:132267. [PMID: 34537455 DOI: 10.1016/j.chemosphere.2021.132267] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the solution for two environmental issues: excess of P in water and its deficiency in soil, which is restored by transferring the adsorbed P from water into the soil using eggshell as an adsorbent. The eggshells were calcined at different temperatures to improve their adsorption capacity, and evaluated for their physical/chemical properties and P adsorption capacity. The eggshells calcined at 800 °C (CES-800) had the highest P adsorption; CaCO3 decomposed into 23.6% of CaO and 40.8% of Ca(OH)2, eluting more Ca that reacted with soluble P in water. X-ray diffraction analysis confirmed that CES-800 removed P as hydroxylapatite by reacting with Ca. Pseudo-first-order and Langmuir models suitably described the kinetic and equilibrium of P adsorption by CES-800, respectively. The maximum adsorption capacity of CES-800 was 108.2 mg g-1. As the solution pH increased from 3 to 11, the adsorption amount decreased from 99.8 mg g-1 to 62.3 mg g-1. The feasibility of CES-800 as a filter medium was assessed using real lake water under dynamic flow conditions; > 90% of P removal was achieved at 158 h, and the P adsorbed was 11.5 mg g-1. When CES-800 and P adsorbed CES-800 (P-CES-800) were applied to the soil at the studied rates, the earthworms were unaffected by toxicity, suggesting the use of both adsorbents in soil without adverse effects. The shoot fresh weight, tiller number, and total dry weight significantly increased in P-CES-800 applied rice plants compared to the control plants, indicating that P-CES-800 can be a good alternative to conventional P-fertilizer in rice cultivation.
Collapse
Affiliation(s)
- Jae-In Lee
- Department of Integrated System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jeong-Man Kim
- Department of Plant Life & Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Soo-Cheul Yoo
- Department of Plant Life & Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea.
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Seong-Jik Park
- Department of Integrated System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea; Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| |
Collapse
|
23
|
Abstract
While widespread imitation of the productivity of the land biosphere by nutrients, like nitrogen and phosphorus, was demonstrated many decades ago, representation of nutrient cycles in global land models has been relatively recent. Over the last three years, significant progress has been made in understanding some of the key processes and their representation in global land models. They include the significance of plant–microbial interaction in affecting nutrient cycles, inorganic soil phosphorus transformation, and nitrogen release from rocks. As a result, our understanding of the linkages among geology, biology, and climate controlling nutrient cycles is improving. However, progress in modelling nutrient cycles at a global scale is still confronted with large uncertainties in representing key processes owing to lack of data at the relevant scales for evaluating coupled carbon and nutrient cycles. Here we recommend two approaches to advance modelling of land nutrient cycles: the application of machine learning techniques to bridge the gap between global modelling and scattered site-level information and the use of optimality principles to identify key mechanisms driving spatial and temporal patterns of nutrients.
Collapse
Affiliation(s)
- Ying-Ping Wang
- CSIRO Oceans and Atmosphere, PMB 1, Aspendale Victoria 3195, Australia
| | - Daniel S Goll
- Université Paris Saclay, CEA-CNRS-UVSQ, LSCE/IPSL, Gif sur Yvette, France
| |
Collapse
|
24
|
Abstract
Repeated applications of phosphorus (P) fertilizers result in the buildup of P in soil (commonly known as legacy P), a large fraction of which is not immediately available for plant use. Long-term applications and accumulations of soil P is an inefficient use of dwindling P supplies and can result in nutrient runoff, often leading to eutrophication of water bodies. Although soil legacy P is problematic in some regards, it conversely may serve as a source of P for crop use and could potentially decrease dependence on external P fertilizer inputs. This paper reviews the (1) current knowledge on the occurrence and bioaccessibility of different chemical forms of P in soil, (2) legacy P transformations with mineral and organic fertilizer applications in relation to their potential bioaccessibility, and (3) approaches and associated challenges for accessing native soil P that could be used to harness soil legacy P for crop production. We highlight how the occurrence and potential bioaccessibility of different forms of soil inorganic and organic P vary depending on soil properties, such as soil pH and organic matter content. We also found that accumulation of inorganic legacy P forms changes more than organic P species with fertilizer applications and cessations. We also discuss progress and challenges with current approaches for accessing native soil P that could be used for accessing legacy P, including natural and genetically modified plant-based strategies, the use of P-solubilizing microorganisms, and immobilized organic P-hydrolyzing enzymes. It is foreseeable that accessing legacy P will require multidisciplinary approaches to address these limitations.
Collapse
|
25
|
Zhang H, Shi L, Lu H, Shao Y, Liu S, Fu S. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139295. [PMID: 32438146 DOI: 10.1016/j.scitotenv.2020.139295] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Drought can substantially alter ecosystem functions, especially biogeochemical cycles of key nutrients. As an essential but often limiting nutrient, P plays a central role in critical ecosystem processes (i.e. primary productivity). However, little is known about how drought can affect the soil phosphorus (P) cycle and its bioavailability in forest ecosystems. Here, we conducted a four-year field drought experiment using throughfall reduction approach to examine how drought can alter soil P dynamics and bioavailability in a warm temperate forest. We found that the P held in calcium phosphate was significantly decreased under drought, which was accompanied by the increases of inorganic and organic P bound with secondary minerals (Fe/Al oxides). These drought-induced P transformations can be well explained by the soil pH. The significant decline in soil pH under drought can drive the solubilization of P held in calcium phosphate. Our study further showed that drought directly decreased soil P bioavailability and altered the potential mechanisms of the replenishment of inorganic P into the soil solution. The potential of the inorganic P release driven by protons was reduced, while inorganic P release potentials driven by enzyme and organic acid were increased under drought. Therefore, our results strongly suggested that drought can significantly alter the soil P biogeochemical cycles and change the biological mechanisms underlying P bioavailability.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng, Jinming Avenue, Henan 475004, China
| | - Leilei Shi
- Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng, Jinming Avenue, Henan 475004, China
| | - Haibo Lu
- School of Atmospheric Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; Key Laboratory of Forest Ecology and Environment, China's State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian District, Beijing 100091, China.
| | - Yuanhu Shao
- Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng, Jinming Avenue, Henan 475004, China.
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment, China's State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian District, Beijing 100091, China.
| | - Shenglei Fu
- Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng, Jinming Avenue, Henan 475004, China.
| |
Collapse
|
26
|
Gu C, Dam T, Hart SC, Turner BL, Chadwick OA, Berhe AA, Hu Y, Zhu M. Quantifying Uncertainties in Sequential Chemical Extraction of Soil Phosphorus Using XANES Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2257-2267. [PMID: 31922406 DOI: 10.1021/acs.est.9b05278] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sequential chemical extraction has been widely used to study soil phosphorus (P) dynamics and inform nutrient management, but its efficacy for assigning P into biologically meaningful pools remains unknown. Here, we evaluated the accuracy of the modified Hedley extraction scheme using P K-edge X-ray absorption near-edge structure (XANES) spectroscopy for nine carbonate-free soil samples with diverse chemical and mineralogical properties resulting from different degrees of soil development. For most samples, the extraction markedly overestimated the pool size of calcium-bound P (Ca-P, extracted by 1 M HCl) due to (1) P redistribution during the alkaline extractions (0.5 M NaHCO3 and then 0.1 M NaOH), creating new Ca-P via formation of Ca phosphates between NaOH-desorbed phosphate and exchangeable Ca2+ and/or (2) dissolution of poorly crystalline Fe and Al oxides by 1 M HCl, releasing P occluded by these oxides into solution. The first mechanism may occur in soils rich in well-crystallized minerals and exchangeable Ca2+ regardless of the presence or absence of CaCO3, whereas the second mechanism likely operates in soils rich in poorly crystalline Fe and Al minerals. The overestimation of Ca-P simultaneously caused underestimation of the pools extracted by the alkaline solutions. Our findings identify key edaphic parameters that remarkably influenced the extractions, which will strengthen our understanding of soil P dynamics using this widely accepted procedure.
Collapse
Affiliation(s)
- Chunhao Gu
- Department of Ecosystem Science and Management , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Than Dam
- Department of Ecosystem Science and Management , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Stephen C Hart
- Department of Life & Environmental Sciences and Sierra Nevada Research Institute , University of California , Merced , California 95343 , United States
| | - Benjamin L Turner
- Smithsonian Tropical Research Institute , Apartado 0843-03092 Balboa , Ancon , Panama
| | - Oliver A Chadwick
- Department of Geography , University of California , Santa Barbara , California 93106 , United States
| | - Asmeret Asefaw Berhe
- Department of Life & Environmental Sciences and Sierra Nevada Research Institute , University of California , Merced , California 95343 , United States
| | - Yongfeng Hu
- Canadian Light Source , University of Saskatchewan , Saskatoon , Canada S7N 0X4
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management , University of Wyoming , Laramie , Wyoming 82071 , United States
| |
Collapse
|
27
|
Revealing Tropical Technosols as an Alternative for Mine Reclamation and Waste Management. MINERALS 2020. [DOI: 10.3390/min10020110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study was based on the premise that Technosols constructed under tropical conditions are a valuable tool for inexpensive mine reclamation programs. These anthropogenic soils are still poorly studied in Brazil and are not recognized by the Brazilian Soil Classification System. Given the importance of mining to the Brazilian economy (the sector accounts for 20% of all products exported and 5% of the gross domestic product), there is an urgency to properly manage the large amount of waste produced. For this purpose, we suggest the use of Technosols as a strategy to overcome both land degradation and waste production by presenting a successful case of mine rehabilitation combining limestone wastes and tropical grasses. We show that Technosols constructed from the mine spoils can develop into soils suitable for agriculture in a few years, promoting land reclamation and producing food and energy. These soils are also valuable resources that can provide important ecosystem services, such as organic carbon storage.
Collapse
|
28
|
Zhao J, Feng X, Deng L, Yang Y, Zhao Z, Zhao P, Peng C, Fu B. Quantifying the Effects of Vegetation Restorations on the Soil Erosion Export and Nutrient Loss on the Loess Plateau. FRONTIERS IN PLANT SCIENCE 2020; 11:573126. [PMID: 33329632 PMCID: PMC7728691 DOI: 10.3389/fpls.2020.573126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/04/2020] [Indexed: 05/06/2023]
Abstract
The transport of eroded soil to rivers changes the nutrient cycles of river ecosystems and has significant impacts on the regional eco-environment and human health. The Loess Plateau, a leading vegetation restoration region in China and the world, has experienced severe soil erosion and nutrient loss, however, the extent to which vegetation restoration prevents soil erosion export (to rivers) and it caused nutrient loss is unknown. To evaluate the effects of the first stage of the Grain for Green Project (GFGP) on the Loess Plateau (started in 1999 and ended in 2013), we analyzed the vegetation change trends and quantified the effects of GFGP on soil erosion export (to rivers) and it caused nutrient loss by considering soil erosion processes. The results were as follows: (1) in the first half of study period (from 1982 to 1998), the vegetation cover changed little, but after the implementation of the first stage of the GFGP (from 1999 to 2013), the vegetation cover of 75.0% of the study area showed a significant increase; (2) The proportion of eroded areas decreased from 41.8 to 26.7% as a result of the GFGP, and the erosion intensity lessened in most regions; the implementation significantly reduce the soil nutrient loss; (3) at the county level, soil erosion export could be avoided significantly by the increasing of vegetation greenness in the study area (R = -0.49). These results illustrate the relationships among changes in vegetation cover, soil erosion and nutrient export, which could provide a reference for local government for making ecology-relative policies.
Collapse
Affiliation(s)
- Jun Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Xiaoming Feng,
| | - Lei Deng
- Institute of Soil and Water conservation, Northwest A&F University, Yangling, China
| | - Yanzheng Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhong Zhao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Pengxiang Zhao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Changhui Peng
- College of Forestry, Northwest A&F University, Yangling, China
- Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, QC, Canada
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|