1
|
Potu H, Kandarpa M, Peterson LF, Donato NJ, Talpaz M. Tumor necrosis factor related apoptosis inducing ligand (TRAIL) regulates deubiquitinase USP5 in tumor cells. Oncotarget 2019; 10:5745-5754. [PMID: 31645897 PMCID: PMC6791380 DOI: 10.18632/oncotarget.27196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/22/2019] [Indexed: 01/08/2023] Open
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway has emerged as a cancer therapeutic target. However, clinical trials have proven that most human cancers are resistant to TRAIL. We show that exposure to recombinant TRAIL resulted in the accumulation of ubiquitinated proteins and free ubiquitin polymers, suggesting a link between TRAIL and the ubiquitin (Ub)-proteasome pathway. TRAIL treatment in cancer cells reduced the activity and cleavage of USP5, a deubiquitinase (DUB) previously shown to target unanchored Ub polymers and regulate p53-mediated transcription. TRAIL was effective in suppressing USP5 activity and cleavage in TRAIL-sensitive cells but not resistant cells. Knockdown of USP5 in TRAIL-resistant cells demonstrated that USP5 controls apoptotic responsiveness to TRAIL. USP5 cleavage and ubiquitination were blocked by caspase-8 specific inhibitors. A small-molecule USP5/9× inhibitor (G9) combined with TRAIL enhanced apoptosis and blocked colony growth in highly TRAIL-resistant cell lines. Finally, USP5 protein levels and activity were found to be frequently deregulated in TRAIL-resistant cells. Together, we conclude that activated TRAIL enhances USP5 activity and induces apoptosis in TRAIL-sensitive and -resistant cells. We also suggest that USP5 inhibition may be effective in inducing apoptotic thresholds to enhance responsiveness to TRAIL.
Collapse
Affiliation(s)
- Harish Potu
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Malathi Kandarpa
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Luke F Peterson
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Nicholas J Donato
- Center for Scientific Review, National Institutes of Health, Bethesda, MD 20892, USA
| | - Moshe Talpaz
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Lin H, Wang Y, Lai H, Li X, Chen T. Iron(II)-Polypyridyl Complexes Inhibit the Growth of Glioblastoma Tumor and Enhance TRAIL-Induced Cell Apoptosis. Chem Asian J 2018; 13:2730-2738. [PMID: 29963768 DOI: 10.1002/asia.201800862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Indexed: 12/14/2022]
Abstract
A promising cancer-targeting agent for the induction of apoptosis in tumor necrosis factor (TNF) proteins, the TNF-related apoptosis-inducing ligand (TRAIL) ligand, has found limited applications in the treatment of cancer cells, owing to its resistance by cancer cell lines. Therefore, the rational design of anticancer agents that could sensitize cancer cells towards TRAIL is of great significance. Herein, we report that synthetic iron(II)-polypyridyl complexes are capable of inhibiting the proliferation of glioblastoma cancer cells and efficiently enhancing TRAIL-induced cell apoptosis. Mechanistic studies demonstrated that the synthesized complexes induced cancer-cell apoptosis through triggering the activation of p38 and p53 and inhibiting the activation of ERK. Moreover, uPA and MMP-2/MMP-9, among the most important metastatic regulatory proteins, were also found to be significantly alerted after the treatment. Furthermore, we also found that tumor growth in nude mice was significantly inhibited by iron complex Fe2 through the induction of apoptosis without clear systematic toxicity, as indicated by histological analysis. Taken together, this study provides evidence for the further development of metal-based anticancer agents and chemosensitizers of TRAIL for the treatment of human glioblastoma cancer cells.
Collapse
Affiliation(s)
- Hao Lin
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Yifan Wang
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Haoqiang Lai
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, P. R. China
| | - Tianfeng Chen
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
3
|
Pronin S, Koh CH, Hughes M. Effects of Ultraviolet Radiation on Glioma: Systematic Review. J Cell Biochem 2017; 118:4063-4071. [PMID: 28407299 DOI: 10.1002/jcb.26061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/12/2017] [Indexed: 01/05/2023]
Abstract
Glioblastoma multiforme is the most aggressive primary brain tumor. Treatment is largely palliative, with current strategies unable to prevent inevitable tumor recurrence. Implantable micro-electromechanical systems are becoming more feasible for the management of several human diseases. These systems may have a role in detecting tumor recurrence and delivering localized therapies. One potential therapeutic tool is ultraviolet (UV) light. This systematic review assesses the effects of UV light on glioma cells. A total of 47 publications are included. The large majority were in vitro experiments conducted on human glioblastoma cell lines in monolayer. In these cells, UV light was shown to induce apoptosis and the expression of genes or activation of proteins that modulate cell death, repair, and proliferation. The nature and magnitude of cellular response varied by UV wavelength, dose, cell line, and time after irradiation. UVC (wavelength 100-280 nm) was most effective at inducing apoptosis, and this effect was dose dependent. The included studies had varied methodologies, complicating reconciliation of results. Further work will be required to determine the best regime of UV irradiation for therapeutic use. J. Cell. Biochem. 118: 4063-4071, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Savva Pronin
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Chan Hee Koh
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Mark Hughes
- Translational Neurosurgery Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Combinatorial treatment with anacardic acid followed by TRAIL augments induction of apoptosis in TRAIL resistant cancer cells by the regulation of p53, MAPK and NFκβ pathways. Apoptosis 2016; 21:578-93. [PMID: 26921178 DOI: 10.1007/s10495-016-1223-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TRAIL, an apoptosis inducing cytokine currently in phase II clinical trial, was investigated for its capability to induce apoptosis in six different human tumor cell lines out of which three cell lines showed resistance to TRAIL induced apoptosis. To investigate whether Anacardic acid (A1) an active component of Anacardium occidentale can sensitize the resistant cell lines to TRAIL induced apoptosis, we treated the resistant cells with suboptimal concentration of A1 and showed that it is a potent enhancer of TRAIL induced apoptosis which up-regulates the expression of both DR4 and DR5 receptors, which has been observed in the cellular, protein and mRNA levels. The death receptors upregulation consequent to A1 treatment was corroborated by the activation of p53 as well as phosphorylation of p38 and JNK MAP kinases and concomitant inactivation of NFκβ and ERK signaling cascades. Also, A1 modulated the expression of key apoptotic players like Bax, Bcl-2 and CAD along with the abatement of tumor angiogenesis in vivo in EAT mouse model. Thus, post A1 treatment the TRAIL resistant cells turned into TRAIL sensitive cells. Hence our results demonstrate that A1 can synergize TRAIL induced apoptosis through the upregulation of death receptors and downregulation of anti-apoptotic proteins in cancer context.
Collapse
|
5
|
Vy Tran AH, Hahm SH, Han SH, Chung JH, Park GT, Han YS. Functional interaction between hMYH and hTRADD in the TNF-α-mediated survival and death pathways of HeLa cells. Mutat Res 2015; 777:11-19. [PMID: 25912078 DOI: 10.1016/j.mrfmmm.2015.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED The tumor necrosis factor (TNF) signaling pathway is a classical immune system pathway that plays a key role in regulating cell survival and apoptosis. The TNF receptor-associated death domain (TRADD) protein is recruited to the death domain of TNF receptor 1 (TNFR1), where it interacts with TNF receptor-associated factor 2 (TRAF2) and receptor-interacting protein (RIP) for the induction of apoptosis, necrosis, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and mitogen-activated protein (MAP) kinase activation. In this study, we found that the human MutY homolog (hMYH) interacted with human TRADD (hTRADD) via the C-terminal domain of hMYH. Moreover, under conditions promoting TNF-α-induced cell death or survival in HeLa cells, this interaction was weakened or enhanced, respectively. The interaction between hMYH and hTRADD was important for signaling pathways mediated by TNF-α. Our results also suggested that the hTRADD-hMYH association was involved in the nuclear translocation of NFκB and formation of the TNFR1-TRADD complex. Thus, this study identified a novel mechanism through which the hMYH-hTRADD interaction may affect the TNF-α signaling pathway. IMPLICATIONS In HeLa cells, the hTRADD-hMYH interaction functioned in both cell survival and apoptosis pathways following TNF-α stimulation.
Collapse
Affiliation(s)
- An Hue Vy Tran
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Soo-Hyun Hahm
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Se Hee Han
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, College of Life Science, CHA University, Gyeonggi-do 463-836, Republic of Korea
| | | | - Ye Sun Han
- College of Global Integrated Studies, Division of Interdisciplinary Studies, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
6
|
Loi M, Becherini P, Emionite L, Giacomini A, Cossu I, Destefanis E, Brignole C, Di Paolo D, Piaggio F, Perri P, Cilli M, Pastorino F, Ponzoni M. sTRAIL coupled to liposomes improves its pharmacokinetic profile and overcomes neuroblastoma tumour resistance in combination with Bortezomib. J Control Release 2014; 192:157-66. [PMID: 25041999 DOI: 10.1016/j.jconrel.2014.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 01/26/2023]
Abstract
Neuroblastoma (NB), the most common and deadly extracranial solid tumour of childhood, represents a challenging in paediatric oncology. Soluble tumour necrosis factor (TNF)-related apoptosis-inducing ligand (sTRAIL) is a cancer cell-specific molecule exerting remarkable anti-tumour activities against paediatric malignancies both in vitro and in preclinical settings. However, due to its too fast elimination and to the undesired related side effects, the improvement of sTRAIL in vivo bioavailability and the specific delivery to the tumour is mandatory for increasing its therapeutic efficacy. In this manuscript, we developed an innovative pegylated liposomal formulation carrying the sTRAIL at the outer surface (sTRAIL-SL) with the intent to improve its serum half-life and increase its efficacy in vivo, while reducing side effects. Furthermore, the possibility to combine sTRAIL-SL with the proteasome inhibitor Bortezomib (BTZ) was investigated, being BTZ able to sensitize tumour cells toward TRAIL-induced apoptosis. We demonstrated that sTRAIL preserved and improved its anti-tumour activity when coupled to nanocarriers. Moreover, sTRAIL-SL ameliorated its PK profile in blood allowing sTRAIL to exert a more potent anti-tumour activity, which led, upon BTZ priming, to a statistically significant enhanced life spans in two models of sTRAIL-resistant NB-bearing mice. Finally, mechanistic studies indicated that the combination of sTRAIL with BTZ sensitized sTRAIL-resistant NB tumour cells to sTRAIL-induced cell death, both in vitro and in vivo, through the Akt/GSK3/β-catenin axis-dependent mechanism. In conclusion, our results suggest that sTRAIL-SL might be an efficient vehicle for sTRAIL delivery and that its use in clinic, in combination with BTZ, might represent an adjuvant strategy for the treatment of stage IV, sTRAIL-resistant, NB patients.
Collapse
Affiliation(s)
- M Loi
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - P Becherini
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - L Emionite
- Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - A Giacomini
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - I Cossu
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - E Destefanis
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - C Brignole
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - D Di Paolo
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - F Piaggio
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - P Perri
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy
| | - M Cilli
- Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - F Pastorino
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy.
| | - M Ponzoni
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova 16148, Italy.
| |
Collapse
|
7
|
McCray AN, Desai S, Acevedo-Duncan M. The interruption of PKC-ι signaling and TRAIL combination therapy against glioblastoma cells. Neurochem Res 2014; 39:1691-701. [PMID: 24965532 DOI: 10.1007/s11064-014-1361-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 05/09/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022]
Abstract
Glioblastoma is a highly aggressive type of brain cancer which currently has limited options for treatment. It is imperative to develop combination therapies that could cause apoptosis in glioblastoma. The aim of this study was to characterize the affect of modified ICA-1, a PKC-iota inhibitor, on the growth pattern of various glioblastoma cell lines. T98G and U87 glioblastoma cells were treated with ICA-1 alone and the absolute cell numbers of each group were determined for cell growth expansion analysis, cell viability analysis, and cell death analysis. Low dose ICA-1 treatment alone significantly inhibited cell growth expansion of high density glioblastoma cells without inducing cell death. However, the high dose ICA-1 treatment regimen provided significant apoptosis for glioblastoma cells. Furthermore, this study was conducted to use a two layer molecular level approach for treating glioblastoma cells with ICA-1 plus an apoptosis agent, tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL), to induce apoptosis in such chemo-refractory cancer cells. Following ICA-1 plus TRAIL treatment, apoptosis was detected in glioblastoma cells via the TUNEL assay and via flow cytometric analysis using Annexin-V FITC/PI. This study offers the first evidence for ICA-1 alone to inhibit glioblastoma cell proliferation as well as the novel combination of ICA-1 with TRAIL to cause robust apoptosis in a caspase-3 mediated mechanism. Furthermore, ICA-1 plus TRAIL simultaneously modulates down-regulation of PKC-iota and c-Jun.
Collapse
Affiliation(s)
- Andrea N McCray
- James A. Haley Veterans' Hospital, 13000 Bruce B. Downs Blvd., VAR 151, Tampa, FL, 33612, USA,
| | | | | |
Collapse
|
8
|
Wei W, Xu C, Wu H. Magnetic iron oxide nanoparticles mediated gene therapy for breast cancer--an in vitro study. ACTA ACUST UNITED AC 2014; 26:728-30. [PMID: 17357502 DOI: 10.1007/s11596-006-0628-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to evaluate the feasibility and efficacy of using TRAIL gene to treat breast cancer mediated with a novel carrier - magnetic iron oxide nanoparticles (poly-MAG-1000) coated with PEI. The magnetic iron oxide nanoparticles were used as gene carrier to transfect TRAIL gene into MCF-7 cells. The polyMAG-1000 without TRAIL gene was transfected into the tumor cells as negative control. TRAIL gene transfection with liposome as carrier served as positive control. The apoptosis of cells was detected with TUNEL method. The apoptosis ratio of tumor cells was measured with flow cytometry (FCM). It was found that the apoptosis occurred in the tumor cells after transfection of TRAIL gene mediated by both polyMAG-1000 and liposome. The apoptosis ratio in the group with polyMAG-1000 as gene carrier was (25.11+/-2.85) %, whereas it was (5.06+/- 1.05) % in the control group with polyMAG-1000 (P<0.01). The apoptosis ratio was as low as (18.31+/-2.44) % in the group with liposome as gene carrier (P<0.05, as compared with the group with polyMAG-1000 as gene carrier). It is suggested that TRAIL gene may induce apoptosis in MCF-7 breast cancer cells. The magnetic iron oxide nanoparticles coated with PEI may be a potential gene carrier with high transfection efficacy for cancer gene therapy..
Collapse
Affiliation(s)
- Weizhong Wei
- Wuhan Medical and Health Care center for Woman and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China
| | | | | |
Collapse
|
9
|
Wheatley MA, Cochran MC, Eisenbrey JR, Oum KL. Cellular signal transduction can be induced by TRAIL conjugated to microcapsules. J Biomed Mater Res A 2012; 100:2602-11. [PMID: 22539118 DOI: 10.1002/jbm.a.34189] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/09/2012] [Accepted: 03/15/2012] [Indexed: 12/31/2022]
Abstract
The extracellular agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in tumor cells but spare normal cells. Ligation of TRAIL to a nanoparticle would serve to facilitate targeting to an extravascular site. Polymeric ultrasound contrast agents (UCA) (microencapsulated gas bubbles) can be tracked by ultrasound imaging, and fragmented into nanoparticles by focused ultrasound. This tumor-targeted delivery system has been shown to deliver more efficiently than solid nanoparticles. Additionally, small molecule inhibitors such as bortezomib, shown to sensitize TRAIL-resistant cells, could be co-administered within these UCA. In this pilot study, TRAIL was conjugated to UCA while preserving the agent's sensitivity to ultrasound. Human cancer cell lines, OVCAR-3 and A2058, were bathed with the TRAIL-UCA with and without the addition of bortezomib. Apoptosis was quantified using flow cytometry. OVCAR-3 treated with TRAIL-UCA exhibit significant (p < 0.05) apoptotosis compared to unmodified UCA, equal to positive controls, but no synergistic effect when combined with bortezomib. A2058 cells treated with TRAIL-UCA also exhibited significant apoptosis (p < 0.01) compared to unmodified UCA, similar to positive controls and bortezomib significantly increased apoptosis in combination with TRAIL-UCA. We conclude that TRAIL-ligated UCA show exciting potential as a new therapy.
Collapse
Affiliation(s)
- Margaret A Wheatley
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
10
|
Wang S, Ren W, Liu J, Lahat G, Torres K, Lopez G, Lazar AJ, Hayes-Jordan A, Liu K, Bankson J, Hazle JD, Lev D. TRAIL and doxorubicin combination induces proapoptotic and antiangiogenic effects in soft tissue sarcoma in vivo. Clin Cancer Res 2010; 16:2591-604. [PMID: 20406839 DOI: 10.1158/1078-0432.ccr-09-2443] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Novel therapeutic approaches for complex karyotype soft tissue sarcoma (STS) are crucially needed. Consequently, we assessed the efficacy of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in combination with chemotherapy, on local and metastatic growth of human STS xenografts in vivo. EXPERIMENTAL DESIGN TRAIL was evaluated alone and combined with low-dose doxorubicin in two human STS severe combined immunodeficient mouse xenograft models using fibrosarcoma (HT1080; wild-type p53) and leiomyosarcoma (SKLMS1; mutated p53), testing for effects on local growth, metastasis, and overall survival. Magnetic resonance imaging was used to evaluate local growth and bioluminescence was used to longitudinally assess lung metastases. Tissues were evaluated through immunohistocemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining for treatment effects on tumor cell proliferation, apoptosis, angiogenesis, angiogenic factors, and TRAIL receptor expression. Quantitative real-time polymerase chain reaction (QRTPCR) angiogenesis array was used to assess therapy-induced gene expression changes. RESULTS TRAIL/doxorubicin combination induced marked STS local and metastatic growth inhibition in a p53-independent manner. Significantly increased (P < 0.001) host survival was also demonstrable. Combined therapy induced significant apoptosis, decreased tumor cell proliferation, and increased TRAIL receptor (DR4 and DR5) expression in all treated tumors. Moreover, decreased microvessel density was observed, possibly secondary to increased expression of the antiangiogenic factor CXCL10 and decreased proangiogenic interleukin-8 cytokine in response to TRAIL/doxorubicin combination, as was also observed in vitro. CONCLUSIONS Given the urgent need for better systemic approaches to STS, clinical trials evaluating TRAIL in combination with low-dose chemotherapy are potentially warranted.
Collapse
Affiliation(s)
- Suizhao Wang
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Verheij M, Vens C, van Triest B. Novel therapeutics in combination with radiotherapy to improve cancer treatment: Rationale, mechanisms of action and clinical perspective. Drug Resist Updat 2010; 13:29-43. [DOI: 10.1016/j.drup.2010.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 12/27/2022]
|
12
|
Stenner F, Liewen H, Zweifel M, Weber A, Tchinda J, Bode B, Samaras P, Bauer S, Knuth A, Renner C. Targeted therapeutic approach for an anaplastic thyroid cancer in vitro and in vivo. Cancer Sci 2008; 99:1847-52. [PMID: 18616678 PMCID: PMC11158382 DOI: 10.1111/j.1349-7006.2008.00882.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is among the most aggressive human malignancies, being responsible for the majority of thyroid cancer-related deaths. Despite multimodal therapy including surgery, chemotherapy, and radiotherapy, the outcome of ATC is poor. The human ATC cell line MB1, derived from tumor tissue of a 57-year-old man with thyroid cancer and pronounced neutrophilia, was established from surgically excised tumor tissue. The karyotype of the cell line shows many chromosomal abnormalities. Preclinical investigations have shown antitumor activity and effectiveness of the BRAF kinase inhibitor Sorafenib and the proteasome inhibitor Bortezomib. After establishment of the MB1 cell line these agents were applied in vitro and, showing activity in a cell culture model, were also used for in vivo treatment. Sorafenib had some clinical effect, namely normalization of leucocytosis, but had no sustained impact on subsequent tumor growth and development of distant metastasis. Molecular diagnostics of the tumor demonstrated no BRAF mutations in exons 11 and 15 concordant with a rather modest effect of Sorafenib on MB1 cell growth. Clinical benefit was seen with subsequent bortezomib therapy inducing a temporary halt to lymph node growth and a progression-free interval of 7 weeks. Our observations together with previous data from preclinical models could serve as a rationale for selecting those patients suffering from ATC most likely to benefit from targeted therapy. A prospective controlled randomized trial integrating kinase and proteasome inhibitors into a therapeutic regime for ATC is warranted.
Collapse
Affiliation(s)
- Frank Stenner
- Medical Oncology, Department of Internal Medicine, University Hospital, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
In vitro sensitivity testing of minimally passaged and uncultured gliomas with TRAIL and/or chemotherapy drugs. Br J Cancer 2008; 99:294-304. [PMID: 18594532 PMCID: PMC2480982 DOI: 10.1038/sj.bjc.6604459] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
TRAIL/Apo-2L has shown promise as an anti-glioma drug, based on investigations of TRAIL sensitivity in established glioma cell lines, but it is not known how accurately TRAIL signalling pathways of glioma cells in vivo are reproduced in these cell lines in vitro. To replicate as closely as possible the in vivo behaviour of malignant glioma cells, 17 early passage glioma cell lines and 5 freshly resected gliomas were exposed to TRAIL-based agents and/or chemotherapeutic drugs. Normal human hepatocytes and astrocytes and established glioma cell lines were also tested. Cross-linked TRAIL, but not soluble TRAIL, killed both normal cell types and cells from three tumours. Cells from only one glioma were killed by soluble TRAIL, although only inefficiently. High concentrations of cisplatin were lethal to glioma cells, hepatocytes and astrocytes. Isolated combinations of TRAIL and chemotherapy drugs were more toxic to particular gliomas than normal cells, but no combination was generally selective for glioma cells. This study highlights the widespread resistance of glioma cells to TRAIL-based agents, but suggests that a minority of high-grade glioma patients may benefit from particular combinations of TRAIL and chemotherapy drugs. In vitro sensitivity assays may help identify effective drug combinations for individual glioma patients.
Collapse
|
14
|
Abstract
Tumor necrosis factor receptor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis primarily in cancer cells with little or no effect on normal cells; therefore, it has the potential for use in cancer therapy. TRAIL binding to death receptors DR4 and DR5 triggers the death-inducing signal complex formation and activation of procaspase-8, which in turn activates caspase-3, leading to cell death. Like FasL, TRAIL can trigger type 1 (caspase-8 --> caspase-3) or type 2 (caspase-8 --> Bid cleavage --> capsase-9 --> caspase-3) apoptotic pathways depending on the cell type. Some cancers are resistant to TRAIL treatment because most molecules in the TRAIL signaling pathway, including FLIPs and IAPs, can contribute to resistance. In addition, we have identified an essential role for splice variants of the IG20 gene in TRAIL resistance.
Collapse
Affiliation(s)
- Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
15
|
Cisplatin enhances the antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand gene therapy via recruitment of the mitochondria-dependent death signaling pathway. Cancer Gene Ther 2008; 15:356-70. [DOI: 10.1038/sj.cgt.7701120] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2008; 21:2683-710. [PMID: 17974913 DOI: 10.1101/gad.1596707] [Citation(s) in RCA: 1722] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malignant astrocytic gliomas such as glioblastoma are the most common and lethal intracranial tumors. These cancers exhibit a relentless malignant progression characterized by widespread invasion throughout the brain, resistance to traditional and newer targeted therapeutic approaches, destruction of normal brain tissue, and certain death. The recent confluence of advances in stem cell biology, cell signaling, genome and computational science and genetic model systems have revolutionized our understanding of the mechanisms underlying the genetics, biology and clinical behavior of glioblastoma. This progress is fueling new opportunities for understanding the fundamental basis for development of this devastating disease and also novel therapies that, for the first time, portend meaningful clinical responses.
Collapse
Affiliation(s)
- Frank B Furnari
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tsai WS, Yeow WS, Chua A, Reddy RM, Nguyen DM, Schrump DS, Nguyen DM. Enhancement of Apo2L/TRAIL-mediated cytotoxicity in esophageal cancer cells by cisplatin. Mol Cancer Ther 2007; 5:2977-90. [PMID: 17172403 DOI: 10.1158/1535-7163.mct-05-0514] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although expressing adequate levels of functional tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors DR4/DR5, significant proportion of cancer cells exhibit resistance to the cytotoxic effect of this ligand. Exposure of Apo2L/TRAIL-refractory cancer cells to cytotoxic chemotherapeutic agents enhances their sensitivity to Apo2L/TRAIL cytotoxicity. This study aims to elucidate the molecular mechanism responsible for the cisplatin-mediated enhancement of Apo2L/TRAIL sensitivity in cultured esophageal cancer cells. Exposure of cancer cells to sublethal concentrations of cisplatin resulted in profound potentiation of their susceptibility to Apo2L/TRAIL cytotoxicity as indicated by 2- to >20-fold reduction in Apo2L/TRAIL IC50 values. Significant activation of caspase-8, caspase-9, and caspase-3 was observed only in cells treated with cisplatin/Apo2L/TRAIL combination and not in those exposed to either agent alone. More importantly, activation of these key caspases was significantly abrogated by overexpression of Bcl2 or by the selective caspase-9 inhibitor. This observation strongly suggested that caspase-8 activation in cells treated with the cisplatin/Apo2L/TRAIL combination was secondary to the mitochondria-mediated amplification feedback loop and activation of the executioner caspase-3 was dependent on the recruitment of the intrinsic pathway characteristic of the type II cell. Profound combination-mediated cytotoxicity and induction of apoptosis was completely suppressed either by Bcl2 overexpression or by inhibition of caspase-9 activity, which conclusively pointed to the essential role of the mitochondria-dependent death signaling cascade in this process. Cisplatin sensitizes esophageal cancer cells to Apo2L/TRAIL cytotoxicity by potentiation of the mitochondria-dependent death signaling pathway that leads to amplification of caspase activation, particularly caspase-8, by the feedback loop to efficiently induce apoptosis.
Collapse
Affiliation(s)
- Wilson S Tsai
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Room 4-4W-3940, 10 Center Drive, Bethesda, MD 20892-1502, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Reddy RM, Yeow WS, Chua A, Nguyen DM, Baras A, Ziauddin MF, Shamimi-Noori SM, Maxhimer JB, Schrump DS, Nguyen DM. Rapid and profound potentiation of Apo2L/TRAIL-mediated cytotoxicity and apoptosis in thoracic cancer cells by the histone deacetylase inhibitor Trichostatin A: the essential role of the mitochondria-mediated caspase activation cascade. Apoptosis 2007; 12:55-71. [PMID: 17136498 DOI: 10.1007/s10495-006-0484-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Apo2L/TRAIL is actively investigated as a novel targeted agent to directly induce apoptosis of susceptible cancer cells. Apo2L/TRAIL-refractory cells can be sensitized to the cytotoxic effect of this ligand by cytotoxic chemotherapeutics. The aim of this study was to evaluate the in vitro tumoricidal activity of the Apo2L/TRAIL + Trichostatin A in cultured thoracic cancer cells and to elucidate the molecular basis of the synergistic cytotoxicity of this combination. Concurrent exposure of cultured cancer cells to sublethal concentrations of Apo2L/TRAIL and Trichostatin A resulted in profound enhancement of Apo2L/TRAIL-mediated cytotoxicity in all cell lines regardless of their intrinsic susceptibility to this ligand. This combination was not toxic to primary normal cells. While Apo2L/TRAIL alone or Trichostatin A alone mediated < 20% cell death, 60 to 90% of cancer cells were apoptotic following treatment with TSA + Apo2L/TRAIL combinations. Complete translocation of Bax from the cytosol to the mitochondria compartment was mainly observed in combination-treated cells and this was correlated with robust elevation of caspase 9 proteolytic activity indicative of activation of the mitochondria apoptogenic effect. Profound TSA + Apo2L/TRAIL-mediated cytotoxicity and apoptosis were completely abrogated by either Bcl2 over-expression or by the selective caspase 9 inhibitor, highlighting the essential role of mitochondria-dependent apoptosis signaling cascade in this process. Moreover, increased caspase 8 activity observed in cells treated with the TSA + Apo2L/TRAIL combination was completely suppressed by Bcl-2 over-expression or by the selective caspase 9 inhibitor indicating that the elevated caspase 8 activity in combination-treated cells was secondary to a mitochondria-mediated amplification feedback loop of caspase activation. These finding form the basis for further development of HDAC inhibitors + Apo2L/TRAIL combination as novel targeted therapy for thoracic malignancies.
Collapse
Affiliation(s)
- Rishindra M Reddy
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Clemons NJ, Anderson RL. TRAIL-induced apoptosis is enhanced by heat shock protein 70 expression. Cell Stress Chaperones 2007; 11:343-55. [PMID: 17278883 PMCID: PMC1712682 DOI: 10.1379/csc-206.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Heat shock protein 70 (Hsp70) is a well-known inhibitor of apoptotic pathways; however, a role for Hsp70 in the modulation of death receptor-mediated apoptosis remains largely unexplored. In this study, the ability of Hsp70 to modulate tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis was examined in SW480 and CCRF-CEM cells. These lines exhibit the characteristics of type I cells (SW480, human colon adenocarcinoma), with no requirement for mitochondrial involvement to exhibit apoptosis following death receptor engagement and type II cells (CCRF-CEM, human leukemic T cell), which do require amplification of the signal through the mitochondria. Unexpectedly, expression of Hsp70 in the type II CCRF-CEM cells enhanced the extent of TRAIL-induced apoptosis, but in SW480, Hsp70 had no impact on TRAIL-induced apoptosis. The enhanced TRAIL-induced apoptosis was accompanied by an up-regulation of TRAIL receptors, R1 and R2, at the cell surface as determined by flow cytometry and at the transcriptional level as assessed by real-time polymerase chain reaction (PCR). Increased expression of Hsp70 led to up-regulated expression of p53, and chromatin immunoprecipitation combined with real-time PCR revealed increased binding of p53 to its consensus sequence in the TRAIL-R2 gene. In contrast, expression of Hsp70 in SW480 cells did not increase p53 or TRAIL-R1 or TRAIL-R2 surface expression. This result is in marked contrast to most apoptotic stresses, including TNFalpha and Fas ligand, where Hsp70 has been shown to inhibit apoptosis in type II cells. These findings suggest that in tumors retaining functional p53 and expressing high levels of Hsp70, TRAIL may be an effective therapy.
Collapse
Affiliation(s)
- N J Clemons
- Cancer Biology Laboratory, Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne, Victoria 3002, Australia.
| | | |
Collapse
|
20
|
Nguyen DM, Hussain M. The role of the mitochondria in mediating cytotoxicity of anti-cancer therapies. J Bioenerg Biomembr 2007; 39:13-21. [PMID: 17294132 DOI: 10.1007/s10863-006-9055-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Optimal cytotoxic anticancer therapy, at the cellular level, requires effective and selective induction of cell death to achieve a net reduction of biomass of malignant tissues. Standard cytotoxic chemotherapeutics have been developed based on the observations that mitotically active cancer cells are more susceptible than quiescent normal cells to chromosomal, microtubular or metabolic poisons. More recent development of molecularly targeted drugs for cancer focuses on exploiting biological differentials between normal and transformed cells for selective eradication of cancers. The common thread of "standard" and "novel" cytotoxic drugs is their ability to activate the apoptosis-inducing machinery mediated by mitochondria, also known as the intrinsic death signaling cascade. The aim of this article is to provide an overview of the role of the mitochondria, an energy-generating organelle essential for life, in mediating death when properly activated by cytotoxic stresses.
Collapse
Affiliation(s)
- Dao M Nguyen
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Room 4W-4-3940, 10 Center Drive, Bethesda, MD 29892, USA.
| | | |
Collapse
|
21
|
Abstract
Chemotherapeutic drugs induce both proliferation arrest and apoptosis; however, some cancer cells escape drug toxicity and become resistant. The suppression of the immune system by chemotherapeutic agents and radiation promotes the development and propagation of various malignancies via "mimicry-induced" autoimmunity, and maintain a cytokine milieu that favors proliferation by inhibiting apoptosis. A novel, efficient approach is based on a synergistic effect of different anticancer agents with different modes of action. Recently, a redox-silent analogue of vitamin E, alpha-tocopheryl succinate (alpha-TOS), has come into focus due to its anticancer properties. alpha-TOS behaves in a very different way than its redox-active counterpart, alpha-tocopherol, since it promotes cell death. It exerts pleiotrophic responses in malignant cells leading to cell cycle arrest, differentiation, and apoptosis. Apart from its role in killing cancer cells via apoptosis, alpha-TOS affects expression of genes involved in cell proliferation and cell death in a "subapoptotic" manner. For example, it modulates the cell cycle machinery, resulting in cell cycle arrest. The ability of alpha-TOS to induce a prolonged S phase contributes to sensitization of cancer cells to drugs destabilizing DNA during replication. A cooperative antitumor effect was observed also when alpha-TOS was combined with immunological agents. alpha-TOS and TRAIL synergize to kill cancer cells either by upregulating TRAIL death receptors or by amplifying the mitochondrial apoptotic pathway without being toxic to normal cells. alpha-TOS and TRAIL in combination with dendritic cells induce INF-gamma production by CD4+ and CD8+ T lymphocytes, resulting in a significant tumor growth inhibition or in complete tumor regression. These findings are indicative of a novel strategy for cancer treatment that involves enhanced immune system surveillance.
Collapse
Affiliation(s)
- Marco Tomasetti
- Department of Molecular Pathology and Innovative Therapies, Polytechnic University of Marche, Ancona, Italy
| | | |
Collapse
|
22
|
Germano IM, Uzzaman M, Benveniste RJ, Zaurova M, Keller G. Apoptosis in human glioblastoma cells produced using embryonic stem cell–derived astrocytes expressing tumor necrosis factor–related apoptosis-inducing ligand. J Neurosurg 2006; 105:88-95. [PMID: 16871882 DOI: 10.3171/jns.2006.105.1.88] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Object
Embryonic stem (ES) cell–derived astrocytes have several theoretical and practical advantages as gene therapy vectors in the treatment of malignant gliomas. The aim of this study was to test the proapoptotic effects of ES cell–derived astrocytes expressing transgenic tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) in human malignant glioma cells.
Methods
Mouse ES cells containing a doxycycline-inducible transgene were engineered with human TRAIL (hTRAIL) and then directed to differentiate into astrocytes. The ES cell-derived–TRAIL-expressing astrocytes were cocultured with human malignant glioma cells. Reverse transcriptase polymerase chain reaction, immunocytochemistry, terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling, and flow cytometry were used to quantify results.
In vitro coculture of ES cell–derived astrocytes expressing hTRAIL with A172 human malignant glioma cells after doxycycline induction caused a significant decrease in cell viability from 85 ± 2% at baseline to 8 ± 2% posttreatment (p < 0.001). Labeling with apoptotic markers showed that cell death occurred by means of apoptosis. A significant increase in apoptotic rate (88 ± 3%) from baseline (4 ± 2%) was found in A172 cells after doxycycline induction (p < 0.005). This effect was superior to the apoptotic rate seen after treatment with recombinant TRAIL (57 ± 2%). A decrease in cell viability and an increase in the apoptotic rate were not found in TRAIL-expressing–ES cell-derived astrocytes after induction with doxycycline or in A172 cells exposed to doxycycline alone.
Conclusions
Engineering of transgenic hTRAIL by using ES cell–derived astrocytes induced apoptosis in human malignant glioma cells while sparing nontumor astrocytes. The apoptotic effects of transgenic hTRAIL are greater than those of recombinant hTRAIL. Analysis of these results suggests that hTRAIL-expressing–ES cell-derived astrocytes should be considered in the development of new in vivo strategies to treat malignant human gliomas.
Collapse
Affiliation(s)
- Isabelle M Germano
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | |
Collapse
|
23
|
Nguyen DM, Yeow WS, Ziauddin MF, Baras A, Tsai W, Reddy RM, Chua A, Cole GW, Schrump DS. The Essential Role of the Mitochondria-Dependent Death-Signaling Cascade in Chemotherapy-Induced Potentiation of Apo2L/TRAIL Cytotoxicity in Cultured Thoracic Cancer Cells. Cancer J 2006; 12:257-73. [PMID: 16925970 DOI: 10.1097/00130404-200607000-00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Despite adequately expressing functional receptors for tumor necrosis factor receptor apoptosis-inducing ligand (TRAIL), many cultured tumor cells are refractory to the cytotoxic effect of this ligand. Cytotoxic chemotherapeutic drugs have been shown to synergize with Apo2L/TRAIL to mediate apoptosis in cancer cells. The main goal of this study was to evaluate the effect of either cisplatin or paclitaxel, two common used chemotherapeutic agents for solid tumors, on enhancing Apo2L/TRAIL cytotoxicity in a panel-cultured thoracic cancer cells and to examine the role of the mitochondria-dependent caspase activation cascade in mediating apoptosis of combination-treated cells. METHODS Cultured thoracic cancer cells were treated with cisplatin/Apo2L/TRAIL or paclitaxel/Apo2L/TRAIL sequential combinations in vitro. Cell viability and apoptosis were determined by 4,5-dimethylthiazo-2-yl)-2,5-diphenyl tetrazolium bromide and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assays. Stable transfectants expressing high levels of Bcl-2 were created by retroviral gene transfer. Specific proteolytic activity of caspases 3, 6, 8, and 9 were measured by commercially available kits using fluorescent substrates. RESULTS All cell lines preferentially expressed high levels of DR4 and/or DR5 and low levels of DcR1/DcR2; all of which were not altered by chemotherapeutic drug treatments. Pretreatment of these cancer cells with sublethal concentrations of either cisplatin or paclitaxel increased their susceptibility to Apo2L/TRAIL by twofold to >20-fold. Profound synergistic induction of apoptosis was observed in combination-treated cells. Viability of primary normal cells was affected by neither Apo2L/TRAIL nor the combinations of chemotherapy and Apo2L/TRAIL. Overexpression of Bcl-2 or inhibition of caspase 9 activity completely abrogated combination-induced cytotoxicity and apoptosis, indicating the essential role of the mitochondria-dependent death signaling cascade in this process. Robust activation of caspase 8 in combination-treated cells was completely suppressed either by Bcl-2 overexpression or by blocking of the activity of the mitochondria-regulated caspase 9, thus identifying the amplification feedback loop as the source of elevated caspase 8 activity. Finally, mitochondria-mediated amplification of caspase 8 activity was indispensable for complete caspase activation and full execution of apoptosis, because suppression of its activity using the selective caspase 6 inhibitor (located downstream of the caspase 3 but upstream of the caspase 8 in the feedback loop) resulted in profound suppression of not only caspase 8 activity but also those of caspases 9 and 3, as well as complete protection of cancer cells from combination-induced cytotoxicity. CONCLUSION Cisplatin or paclitaxel synergistically interacts with Apo2L/TRAIL to mediate profound induction of apoptosis. The mitochondria-dependent caspase activation cascade and the amplification feedback loop are essential for the complete execution of the cell death program. Furthermore, our data identify mitochondria as the direct target for the development of more refined strategies to enhance the therapeutic effect of Apo2L/TRAIL as an anticancer agent.
Collapse
Affiliation(s)
- Dao M Nguyen
- Section of Thoracic Oncology, Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hu G, Barnes BJ. Interferon regulatory factor-5-regulated pathways as a target for colorectal cancer therapeutics. Expert Rev Anticancer Ther 2006; 6:775-84. [PMID: 16759167 DOI: 10.1586/14737140.6.5.775] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Colorectal cancer is the second most common cause of cancer-related death. A significant obstacle to successful management of patients with colorectal cancer is intrinsic drug resistance or, in patients who initially responded to chemotherapy, acquired drug resistance. Failure in normal apoptotic pathways often contributes to resistance to anticancer drugs or radiotherapy. As a result, the identification of genes that control cell death and apoptosis has come to the forefront of cancer research, leading to new targets and novel therapeutic strategies in the treatment of colorectal cancer. To this effect, the authors have recently identified a new apoptotic signaling pathway that occurs through the transcription factor interferon regulatory factor-5. Here, the different strategies for targeting the interferon regulatory factor-5 signaling pathway in colorectal cancer are discussed. These strategies can be applied to a new generation of cytotoxic agents, as well as to novel biological compounds that are directed at inducing and/or activating interferon regulatory factor-5 or key components of this pathway.
Collapse
Affiliation(s)
- Goudong Hu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
25
|
Efron PA, Chen MK, Iyengar M, Dai W, Nagaram A, Beierle EA. Differential response of neuroblastoma cells to TRAIL is independent of PI3K/AKT. J Pediatr Surg 2006; 41:1072-80. [PMID: 16769337 DOI: 10.1016/j.jpedsurg.2006.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND In many human tumor cells, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through caspase activation, whereas activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway prevents apoptosis. We hypothesized that inhibition of PI3K/Akt would increase TRAIL-induced apoptosis in neuroblastoma cells. METHODS SK-N-AS, SH-SY5Y, and IMR-32 neuroblastoma cells were cultured with either standard media or media with PI3K/Akt inhibitor for 24 hours. These cells were then exposed to 100 ng/mL of TRAIL for 90 minutes and harvested. Cells either underwent flow cytometric analysis of apoptosis, had protein extracted for Western blot, had RNA extracted for reverse transcription-polymerase chain reaction, or had cell lysates analyzed for caspase-3, -8, and -9. RESULTS Baseline expression of TRAIL receptors and Akt varied among the cell lines. Inhibition of PI3K/Akt decreased caspase-3 activation in the AS and SY cells, but did not alter TRAIL-induced apoptosis in any of the cell lines. Activity of caspase-8 and -9 was also unaffected by PI3K/Akt attenuation. CONCLUSIONS Inhibition of the PI3K/Akt pathway does not increase the sensitivity of neuroblastoma cell lines to TRAIL-induced apoptosis. Neuroblastoma is unique in that activation of the PI3K/Akt pathway is either not essential to its TRAIL resistance or counteracted because of the multiple repetitive pathways of TRAIL resistance.
Collapse
Affiliation(s)
- Philip A Efron
- Division of Pediatric Surgery, Department of Surgery, University of Florida College of Medicine, Box 100286, JHMHSC, Gainesville, FL 32610-0286, USA
| | | | | | | | | | | |
Collapse
|
26
|
Kuijlen JMA, de Haan BJ, Helfrich W, de Boer JF, Samplonius D, Mooij JJA, de Vos P. The efficacy of alginate encapsulated CHO-K1 single chain-TRAIL producer cells in the treatment of brain tumors. J Neurooncol 2006; 78:31-9. [PMID: 16598433 DOI: 10.1007/s11060-005-9071-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 11/03/2005] [Indexed: 10/24/2022]
Abstract
OBJECT Patients with astrocytic tumors in the central nervous system (CNS) have low survival rates despite surgery and radiotherapy. Innovative therapies and strategies must be developed to prolong survival of these patients. The alginate microencapsulation method, used to continuously release a certain cytotoxic agent in the vicinity of the tumor, is such a novel therapeutic strategy. The biological functionality of the apoptosis inducing scFv425:sTRAIL protein, which was released through the microencapsulation method, was studied in vitro. Analysis of the intracerebral biocompatibility of alginate capsules was performed by implantation of empty alginate capsules in the brain of mice. METHOD Chinese Hamster Ovary cells (CHO-K1) were recombinantly engineered to produce the single chain anti-EGFR-sTRAIL protein (scFv425:sTRAIL). The CHO-K1 producer cells were encapsulated in an alginate capsule with a semi-permeable membrane through which the scFv425:sTRAIL protein could be released. RESULTS In vitro studies show maintained biological functionality of the released scFv425:sTRAIL protein. There was no immunological tissue response detectable after intracerebral implantation of the alginate capsules in mice brains. CONCLUSION Biological functionality of the produced scFv425:sTRAIL protein is maintained and intracerebral biocompatibility of the capsules is warranted. Alginate encapsulation of CHO-K1--scFv425:sTRAIL--producer cells and subsequently their intracerebral implantation is technically feasible. This study justifies further in vivo experiments.
Collapse
Affiliation(s)
- Jos M A Kuijlen
- Department of Neurosurgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Fandy TE, Srivastava RK. Trichostatin A sensitizes TRAIL-resistant myeloma cells by downregulation of the antiapoptotic Bcl-2 proteins. Cancer Chemother Pharmacol 2006; 58:471-7. [PMID: 16435155 DOI: 10.1007/s00280-005-0184-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 12/23/2005] [Indexed: 11/24/2022]
Abstract
PURPOSE In this study, we have investigated the effect of trichostatin A (TSA) pretreatment on the cytotoxicity of TRAIL in TRAIL-resistant myeloma cells. METHODS AND RESULTS MM1S myeloma cells exhibited resistance to TRAIL-induced apoptosis even at high doses of TRAIL and was sensitive to low doses of TSA. Sequential treatment of myeloma cells with TSA followed by TRAIL enhanced TRAIL cytotoxicity. TSA induced the transcription of TRAIL death receptor DR5 without affecting the transcription of DR4 and the decoy receptors; DcR1 and DcR2. However, the surface expression of both DR4 and DR5 was not modulated by TSA treatment. TSA treatment repressed the transcription and downregulated the expression of the antiapoptotic Bcl-2 proteins; Bcl-2 and Bcl-XL. Surprisingly, the effect of TSA on the proapoptotic Bcl-2 proteins was mixed, the two isoforms of PUMA (alpha, beta), Noxa, Bax were downregulated, while Bim was upregulated. Although MM1S cells showed higher expression level of FLIP(S) than other TRAIL-sensitive myeloma cells, the enhancing effect of TSA was not accompanied by FLIP(S) downregulation. CONCLUSION In conclusion, TSA sensitized TRAIL-resistant myeloma cells by downregulating the antiapoptotic Bcl-2 protein without altering FLIP(S) expression.
Collapse
Affiliation(s)
- Tamer E Fandy
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, 21201-1180, USA.
| | | |
Collapse
|
28
|
Yang X, Wang J, Liu C, Grizzle WE, Yu S, Zhang S, Barnes S, Koopman WJ, Mountz JD, Kimberly RP, Zhang HG. Cleavage of p53-vimentin complex enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of rheumatoid arthritis synovial fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:705-19. [PMID: 16127151 PMCID: PMC1698724 DOI: 10.1016/s0002-9440(10)62045-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rheumatoid arthritis synovial fibroblasts (RASFs) contribute to arthritic cartilage degradation. Although RASFs are normally resistant to apoptosis, Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based gene therapy has been successfully used in a mouse model of arthritis. We investigated this further by treating human RASFs with nontoxic doses of the proteasome inhibitor lactacystin. Treatment induced cytosolic accumulation of p53 and enhanced the susceptibility of RASFs to apoptosis mediated by TRAIL-R2 (DR5) but not Fas. A specific role for p53 in TRAIL-R2-mediated apoptosis was indicated by the ability of p53 siRNA to significantly reduce RASF apoptosis and by the reduced apoptosis of RASFs bearing p53 mutations on treatment with anti-DR5 antibody or anti-DR5 antibody plus lactacystin. p53 immunoprecipitation followed by mass spectrometry identified a vimentin-p53 complex, an interaction that was confirmed by reciprocal vimentin-p53 immunoprecipitation and by co-immunofluorescence. Interestingly, human caspase-4 cleaved human vimentin, and blockade of caspase-4 with a chemical inhibitor or with specific siRNA significantly inhibited TRAIL-R2-mediated apoptosis of RASFs. Furthermore, blockade of caspase-4 was paralleled by persistence of a cytosolic pattern of p53 and absence of p53 translocation to the nucleus. Taken together, our findings suggest a unique role for caspase-4 in cleaving vimentin and releasing cytosolic p53 for nuclear translocation, events that may regulate the sensitivity of RASFs to receptor-mediated apoptosis.
Collapse
Affiliation(s)
- Xinwen Yang
- Department of Medicine, University of Alabama at Birmingham, and the Birmingham Veterans Administration Medical Center, Birmingham, AL 35294-0007, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ashley DM, Riffkin CD, Muscat AM, Knight MJ, Kaye AH, Novak U, Hawkins CJ. Caspase 8 is absent or low in many ex vivo gliomas. Cancer 2005; 104:1487-96. [PMID: 16080161 DOI: 10.1002/cncr.21323] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Better treatments are required urgently for patients with malignant glioma, which currently is incurable. Death ligands, such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), may offer promise for the treatment high-grade glioma if such ligands induce apoptotic signaling in vivo in glioma cells. Caspase 8 is required for death ligand signaling, and its levels may influence the sensitivity of glioma cells to death ligands. It also may act as a tumor suppressor protein. The authors analyzed caspase 8 expression levels in ex vivo glioma specimens and explored potential mechanisms of its regulation. METHODS Eleven glioblastomas, 5 anaplastic astrocytomas, and 3 low-grade astrocytomas were studied. The levels of caspase 8, caspase 10, cellular FLICE inhibitory protein (c-FLIP), and signal transducer and activator of transcription (STAT)-1 were assayed using quantitative immunoblotting. Caspase 8 mRNA was measured by Northern blot analysis. The methylation status of the caspase 8 gene was determined by bisulfate modification of genomic DNA, cloning, and sequencing. Statistical analyses were performed using nonparametric (Spearman) correlations. RESULTS Some ex vivo glioma samples lacked detectable caspase 8, with many expressing barely detectable levels. No tumors expressed significant amounts of caspase 10 or c-FLIP. A strong association was found between caspase 8 mRNA and protein levels. Neither expression of the transcription factor STAT-1 nor caspase 8 gene methylation correlated with caspase 8 levels. CONCLUSIONS The absence of caspase 8 protein in many resected glioma samples implied that many patients with glioma may not benefit from death ligand-based treatments, unless caspase 8 (or caspase 10) protein expression can be elevated. Demethylating agents are unlikely to boost caspase 8 levels in glioma cells, but treatments that increase caspase 8 mRNA levels may up-regulate expression of the protein.
Collapse
Affiliation(s)
- David M Ashley
- Murdoch Children's Research Institute, Parkville, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Pukac L, Kanakaraj P, Humphreys R, Alderson R, Bloom M, Sung C, Riccobene T, Johnson R, Fiscella M, Mahoney A, Carrell J, Boyd E, Yao XT, Zhang L, Zhong L, von Kerczek A, Shepard L, Vaughan T, Edwards B, Dobson C, Salcedo T, Albert V. HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 2005; 92:1430-41. [PMID: 15846298 PMCID: PMC2361994 DOI: 10.1038/sj.bjc.6602487] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a variety of tumour cells through activation of TRAIL-R1 and TRAIL-R2 death signalling receptors. Here, we describe the characterisation and activity of HGS-ETR1, the first fully human, agonistic TRAIL-R1 mAb that is being developed as an antitumour therapeutic agent. HGS-ETR1 showed specific binding to TRAIL-R1 receptor. HGS-ETR1 reduced the viability of multiple types of tumour cells in vitro, and induced activation of caspase 8, Bid, caspase 9, caspase 3, and cleavage of PARP, indicating activation of TRAIL-R1 alone was sufficient to induce both extrinsic and intrinsic apoptotic pathways. Treatment of cell lines in vitro with HGS-ETR1 enhanced the cytotoxicity of chemotherapeutic agents (camptothecin, cisplatin, carboplatin, or 5-fluorouracil) even in tumour cell lines that were not sensitive to HGS-ETR1 alone. In vivo administration of HGS-ETR1 resulted in rapid tumour regression or repression of tumour growth in pre-established colon, non-small-cell lung, and renal tumours in xenograft models. Combination of HGS-ETR1 with chemotherapeutic agents (topotecan, 5-fluorouracil, and irinotecan) in three independent colon cancer xenograft models resulted in an enhanced antitumour efficacy compared to either agent alone. Pharmacokinetic studies in the mouse following intravenous injection showed that HGS-ETR1 serum concentrations were biphasic with a terminal half-life of 6.9–8.7 days and a steady-state volume of distribution of approximately 60 ml kg−1. Clearance was 3.6–5.7 ml−1 day−1 kg−1. These data suggest that HGS-ETR1 is a specific and potent antitumour agent with favourable pharmacokinetic characteristics and the potential to provide therapeutic benefit for a broad range of human malignancies.
Collapse
Affiliation(s)
- L Pukac
- Human Genome Sciences Inc., 9800 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Understanding apoptosis is often considered a key to understand the genesis of tumors and to devise innovative strategies for their treatment. Similar to other types of cancer, essential pathways regulating apoptosis are also disrupted in malignant gliomas, notably the cell cycle control mechanisms regulated by the p53 and retinoblastoma (RB) proteins and their homologs. Moreover, cultured glioma cells appear not to activate the extrinsic death receptor-dependent apoptotic pathway in response to irradiation or cytotoxic drugs. A preferential expression of antiapoptotic rather than proapoptotic BCL-2 family proteins and high level expression of inhibitor-of-apoptosis proteins (IAP) may be responsible for the failure of glioma cells to activate caspases in response to apoptotic stimuli. Although apoptosis does occur spontaneously in malignant gliomas in vivo, there is little evidence that the current modes of non-surgical treatment, radiotherapy and chemotherapy, mediate their effects via induction of apoptosis, with the possible exception of anaplastic oligodendrogliomas which often show striking tumor regression on neuroimaging. Yet, the induction of apoptosis plays a conceptual role in the majority of novel experimental approaches to malignant glioma which are currently evaluated in cell culture and preclinical rodent models.
Collapse
Affiliation(s)
- Joachim P Steinbach
- Hertie Institute for Clinical Brain Research, Department of General Neurology, School of Medicine, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
32
|
Van Geelen CMM, de Vries EGE, de Jong S. Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist Updat 2005; 7:345-58. [PMID: 15790545 DOI: 10.1016/j.drup.2004.11.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/02/2004] [Accepted: 11/03/2004] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Intrinsic, as well as acquired, resistance to chemotherapy remains a major problem in the treatment of this disease. It is, therefore, of great importance to develop new, patient-tailored, treatment strategies for colorectal cancer patients. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) acts through the pro-apoptotic DR4 and DR5 receptors in tumor cells without harming normal cells and will soon be tested in clinical trials as a novel anti-cancer agent. However, not all human colon cancer cell lines are sensitive to TRAIL due to intrinsic or acquired TRAIL-resistance. This review discusses the mechanisms and modulation of TRAIL-resistance in colon cancer cells. Cell sensitivity to TRAIL can be affected by TRAIL-receptor expression at the cell membrane, DR4/DR5 ratio and functionality of TRAIL-receptors. Additional intracellular factors leading to TRAIL-resistance affect the caspase 8/c-FLIP ratio, such as loss of caspase 8 and caspase 10 due to mutations or gene methylation, CARP-dependent degradation of active caspase 8 and changes in caspase 8 or c-FLIP expression levels. Further downstream in the TRAIL apoptotic pathway, Bax mutations, or increased expression of IAP family members, in particularly XIAP and survivin, also cause resistance. Chemotherapeutic drugs, NSAIDs, interferon-gamma and proteasome inhibitors can overcome TRAIL-resistance by acting on TRAIL-receptor expression or changing the expression of pro- or anti-apoptotic proteins.
Collapse
Affiliation(s)
- Caroline M M Van Geelen
- Department of Medical Oncology, University Hospital of Groningen, PO Box 30.001, 9700 RB Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
33
|
Shin JN, Seo YW, Kim M, Park SY, Lee MJ, Lee BR, Oh JW, Seol DW, Kim TH. Cisplatin inactivation of caspases inhibits death ligand-induced cell death in vitro and fulminant liver damage in mice. J Biol Chem 2005; 280:10509-15. [PMID: 15634686 DOI: 10.1074/jbc.m413865200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cisplatin is a platinum-containing chemotherapeutic drug that has been widely used to treat various human cancers. It acts by forming inter- and intracross-links of DNA, which is believed to be a major cause for its therapeutic efficacy. However, little attention has been paid to the effect of cisplatin on death ligand-induced cell death. Here we demonstrate that cisplatin inhibits death ligand-induced cell death in cell lines in a p53-independent manner. This inhibitory effect of cisplatin on cell death is direct, whereby cisplatin forms a complex with caspases leading to their inactivation. The cisplatin-caspase complex is reversed by the addition of reducing agent dithiothreitol, and caspase activity is regained. In addition, cisplatin shows a death-inhibition effect in in vivo animal models of fulminant liver damage induced by Fas activation and lipopolysaccharide-induced liver shock mediated by tumor necrosis factor-alpha. Together, we demonstrate that cisplatin inhibits cell death induced by death ligands in cell lines and in mice through caspase inactivation.
Collapse
Affiliation(s)
- Jin Na Shin
- Department of Biochemistry, Chosun University School of Medicine, 375 Seosuk-Dong, Dong-Gu, Gwangju, 501-759, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ciusani E, Croci D, Gelati M, Calatozzolo C, Sciacca F, Fumagalli L, Balzarotti M, Fariselli L, Boiardi A, Salmaggi A. In vitro effects of topotecan and ionizing radiation on TRAIL/Apo2L-mediated apoptosis in malignant glioma. J Neurooncol 2005; 71:19-25. [PMID: 15719269 DOI: 10.1007/s11060-004-9180-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The survival of patients with malignant gliomas is still unsatisfactory despite multimodality treatment, therefore new therapeutic strategies are required. Tumor necrosis factor apoptosis related ligand (TRAIL/Apo2L), a member of the tumor necrosis factor superfamily, may induce apoptotic cell death in several tumors, but not in normal cells, upon binding with specific receptors. In the present study, the expression and function of TRAIL receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5) has been investigated in five human glioma cell lines (U87, U138, U373, A172, SW1783) in ex vivo tumors and in primary cultures obtained from the tumors. Our data show that gliomas preferentially express TRAIL R2 and that treatment with topotecan, a topoisomerase I inhibitor, significantly up-regulates its expression as detected by flow cytometry and western blotting. Moreover, in most cases, treatment with topotecan resulted in an increased sensitivity to TRAIL-dependent apoptosis, although cyclohexymide had to be added to induce apoptosis. On glioma cell lines, the effects of irradiation on TRAIL receptors were also analysed. In our experimental conditions, irradiation with 2 Gy had a modest additive effect on TRAIL-dependent apoptosis and was not able to modulate TRAIL receptor expression.
Collapse
Affiliation(s)
- Emilio Ciusani
- Department of Clinical Investigation, National Neurological Institute C. Besta, Via Celoria, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fan QL, Zou WY, Song LH, Wei W. Synergistic antitumor activity of TRAIL combined with chemotherapeutic agents in A549 cell lines in vitro and in vivo. Cancer Chemother Pharmacol 2004; 55:189-96. [PMID: 15290100 DOI: 10.1007/s00280-004-0867-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 05/21/2004] [Indexed: 01/03/2023]
Abstract
PURPOSE To investigate the synergistic cytotoxicity of TRAIL in combination with chemotherapeutic agents in A549 cell lines, we systematically evaluated the cytotoxicity of TRAIL alone and TRAIL in combination with cisplatin, paclitaxel (Taxol) or actinomycin D in A549 cell lines in vitro and in vivo, and whether the sensitivity was correlated with the expression level of TRAIL receptors. METHODS We investigated the cytotoxicity of TRAIL alone and the synergistic antitumor effects of TRAIL in combination with chemotherapeutic agents in A549 cells by crystal violet staining and FACS in vitro. The expression levels of DR4, DR5, DcR1 and DcR2 were measured in TRAIL-treated and chemotherapeutic agent-treated A549 cells by Western blotting. The growth inhibition of tumors was evaluated in terms of incidence, volume and weight in a A549-implanted nude mice model. RESULTS Chemotherapeutic agents cisplatin (5.56 mug/ml), Taxol (10 and 30 mug/ml) or actinomycin D (9.26, 83.3 and 750 ng/ml) augmented the cytotoxicity of TRAIL in A549 cell lines within a range of concentrations of TRAIL (1.98-160 ng/ml) in vitro. The expression levels of DR4 and DR5 were not significantly different and the expression of DcR2 was slightly downregulated, but the expression of DcR1 was not detected in non-treated, TRAIL-treated and chemotherapeutic agent-treated A549 cells. The rates of tumor inhibition following treatment with TRAIL alone (15 mg/kg per day, daily for 10 days) and TRAIL/cisplatin (15 mg/kg per day TRAIL, daily for 10 days; 1.5 mg/kg per day cisplatin, daily for 10 days with 7-day intervals) were 28.3% and 76.8% by tumor weight ( P<0.05 for TRAIL alone versus control, P<0.05 for TRAIL/cisplatin versus cisplatin alone and TRAIL alone) on day 65 in vivo. CONCLUSION TRAIL in combination with chemotherapeutic agents cisplatin, Taxol or actinomycin D exerted synergistic antitumor effects in A549 cell lines in vitro and TRAIL/cisplatin demonstrated synergistic antitumor effects in vivo. The expression levels of TRAIL receptors suggested that the synergistic effects of TRAIL in combination with chemotherapeutic agents are not at the receptor level in A549 cell lines.
Collapse
Affiliation(s)
- Qing-Lin Fan
- Institute of Clinical Pharmacology, Anhui Medical University, 230032, Hefei, People's Republic of China
| | | | | | | |
Collapse
|
36
|
Curcumin sensitizes prostate cancer cells to tumor necrosis factor–related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-κB through suppression of IκBα phosphorylation. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.803.3.7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
Epidemiologic studies suggest that diet rich in plant-derived foods plays an important role in the prevention of prostate cancer. Curcumin, the yellow pigment in the spice turmeric, has been shown to exhibit chemopreventive and growth inhibitory activities against multiple tumor cell lines. We have shown previously that curcumin and tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)/Apo2L interact to induce cytotoxicity in the LNCaP prostate cancer cell line. In this study, we investigated the mechanism by which curcumin augments TRAIL-induced cytotoxicity in LNCaP cells. Subtoxic concentrations of the curcumin-TRAIL combination induced strong apoptotic response in LNCaP cells as demonstrated by the binding of Annexin V-FITC and cleavage of procaspase-3. Furthermore, LNCaP cells express constitutively active nuclear factor-κB (NF-κB), which is inhibited by curcumin. Because NF-κB has been shown to mediate resistance to TRAIL-induced apoptosis in tumor cells, we investigated whether there is a relationship between NF-κB activation and resistance to TRAIL in LNCaP prostate cancer cells. Pretreatment with curcumin inhibited the activation of NF-κB and sensitized LNCaP cells to TRAIL. A similar increase in the sensitivity of LNCaP cells to TRAIL-induced apoptosis was observed following inhibition of NF-κB by dominant negative mutant IκBα, an inhibitor of NF-κB. Finally, curcumin was found to inhibit NF-κB by blocking phosphorylation of IκBα. We conclude that NF-κB mediates resistance of LNCaP cells to TRAIL and that curcumin enhances the sensitivity of these tumor cells to TRAIL by inhibiting NF-κB activation by blocking phosphorylation of IκBα and its degradation.
Collapse
|
37
|
Song JH, Song DK, Pyrzynska B, Petruk KC, Van Meir EG, Hao C. TRAIL triggers apoptosis in human malignant glioma cells through extrinsic and intrinsic pathways. Brain Pathol 2004; 13:539-53. [PMID: 14655759 PMCID: PMC8096004 DOI: 10.1111/j.1750-3639.2003.tb00484.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many malignant glioma cells express death receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), yet some of these cells are resistant to TRAIL. Here, we examined signaling events in TRAIL-induced apoptosis and searched for therapeutic agents that could overcome TRAIL resistance in glioma cells. TRAIL induced apoptosis through death receptor 5 (DR5) and was mediated by caspase-8-initiated extrinsic and intrinsic mitochondrial pathways in sensitive glioma cell lines. TRAIL also triggered apoptosis in resistant glioma cell lines through the same pathways, but only if the cells were pretreated with chemotherapeutic agents, cisplatin, camptothecin and etoposide. Previous studies suggested that this was due to an increase in DR5 expression in wild-type TP53 cells, but this mechanism did not account for cells with mutant TP53. Here, we show that a more general effect of these agents is to downregulate caspase-8 inhibitor c-FLIP(S) (the short form of cellular Fas-associated death domain-fike interleukin-1-converting enzyme-inhibitory protein) and up-regulate Bak, a pro-apoptotic Bcl-2 family member, independently of cell's TP53 status. Furthermore, we showed that TRAIL alone or in combination with chemotherapeutic agents, induced apoptosis in primary tumor cultures from patients with malignant gliomas, reinforcing the potential of TRAIL as an effective therapeutic agent for malignant gliomas.
Collapse
Affiliation(s)
- Jin H. Song
- Departments of Laboratory Medicine and Pathology, and University of Alberta, Edmonton
| | - Doyoun K. Song
- Departments of Laboratory Medicine and Pathology, and University of Alberta, Edmonton
| | - Beata Pyrzynska
- Departments of Neurologic Surgery, Hematology/Oncology and Winship Cancer Institute, Emory University, Atlanta, Ga
| | | | - Erwin G. Van Meir
- Departments of Neurologic Surgery, Hematology/Oncology and Winship Cancer Institute, Emory University, Atlanta, Ga
| | - Chunhai Hao
- Departments of Laboratory Medicine and Pathology, and University of Alberta, Edmonton
| |
Collapse
|
38
|
Abstract
Encouragingly, some types of cancer can now be considered treatable, with patients reasonably expecting their disease to be cured. Chemotherapy and radiation therapy are effective against these cancers because they activate the so-called intrinsic apoptosis pathways within the cancer cells. Unfortunately currently available treatments are only effective against a subset of tumor types. In contrast, other cancers, such as malignant glioma, typically do not respond to currently available therapies. Some of this resistance can be attributed to these tumor cells failing to undergo apoptosis upon anticancer treatment. Recently, considerable research attention has focused on triggering apoptosis in chemotherapy- and radiation-therapy-resistant cancer cells via an alternative route-the "extrinsic" pathway, as a means of bypassing this block in apoptosis. Binding of members of the tumor necrosis factor-alpha (TNF-alpha) family of death ligands to their receptors on the cell surface triggers this pathway. Death ligands can kill some cancer cells that are resistant to the apoptotic pathway triggered by conventional anticancer treatments. Some death ligands, such as TNF-alpha and FasL, cause unacceptable toxicity to normal cells and are therefore not suitable anticancer agents. However another death ligand, TNF-related apoptosis-inducing ligand (TRAIL)/Apo-2L, and antibodies that emulate its actions, show greater promise as candidate anticancer drugs because they have negligible effects on normal cells. This review will discuss the ability of TRAIL to induce apoptosis in malignant glioma cells and the potential clinical applications of TRAIL-based agents for glioma treatment.
Collapse
Affiliation(s)
- Christine J Hawkins
- Murdoch Children's Research Institute Department of Haematology and Oncology, Royal Children's Hospital Department of Paediatrics, University of Melbourne Parkville, Victoria 3052, Australia
| |
Collapse
|