1
|
Abedrabbo M, Sloomy S, Abu-Leil R, Kfir-Cohen E, Ravid S. Scribble, Lgl1, and myosin IIA interact with α-/β-catenin to maintain epithelial junction integrity. Cell Adh Migr 2023; 17:1-23. [PMID: 37743653 PMCID: PMC10761038 DOI: 10.1080/19336918.2023.2260645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
E-cadherin-catenin complex together with the cytoskeleton, builds the core of Adherens junctions (AJs). It has been reported that Scribble stabilizes the coupling of E-cadherin with catenins promoting epithelial cell adhesion, but the mechanism remains unknown. We show that Scribble, Lgl1, and NMII-A reside in a complex with E-cadherin-catenin complex. Depletion of either Scribble or Lgl1 disrupts the localization of E-cadherin-catenin complex to AJs. aPKCζ phosphorylation of Lgl1 regulates AJ localization of Lgl1 and E-cadherin-catenin complexes. Both Scribble and Lgl1 regulate the activation and recruitment of NMII-A at AJs. Finally, Scribble and Lgl1 are downregulated by TGFβ-induced EMT, and their re-expression during EMT impedes its progression. Our results provide insight into the mechanism regulating AJ integrity by Scribble, Lgl1, and NMII-A.
Collapse
Affiliation(s)
- Maha Abedrabbo
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shirel Sloomy
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Reham Abu-Leil
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Einav Kfir-Cohen
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shoshana Ravid
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
2
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
3
|
Cartón-García F, Brotons B, Anguita E, Dopeso H, Tarragona J, Nieto R, García-Vidal E, Macaya I, Zagyva Z, Dalmau M, Sánchez-Martín M, van Ijzendoorn SCD, Landolfi S, Hernandez-Losa J, Schwartz Jr S, Matias-Guiu X, Ramón y Cajal S, Martínez-Barriocanal Á, Arango D. Myosin Vb as a tumor suppressor gene in intestinal cancer. Oncogene 2022; 41:5279-5288. [DOI: 10.1038/s41388-022-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
|
4
|
Messa L, Celegato M, Bertagnin C, Mercorelli B, Alvisi G, Banks L, Palù G, Loregian A. The Dimeric Form of HPV16 E6 Is Crucial to Drive YAP/TAZ Upregulation through the Targeting of hScrib. Cancers (Basel) 2021; 13:cancers13164083. [PMID: 34439242 PMCID: PMC8393709 DOI: 10.3390/cancers13164083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Understanding the mechanisms of action of HPV oncoproteins is pivotal for the rationale development of anti-cancer drugs to treat HPV-related malignancies. The aim of the present study was to explore more in detail the mechanism of action of the HPV16 oncoprotein E6 that directly fosters the YAP/TAZ signaling pathway, a conserved cascade highly active in HPV-related cancers. We confirmed previous evidence about the importance of the PDZ-protein targeting in this process, highlighting here the importance of hScrib degradation, and discovered that the targeting of the Scribble module involves the dimeric form of HPV16 E6. The findings here presented extend our knowledge about the mechanism through which the oncoprotein E6 targets a PDZ-host factor to degradation in cancer cells. Abstract Human papillomavirus is the most common viral infectious agent responsible for cancer development in humans. High-risk strains are known to induce cancer through the expression of the viral oncogenes E6 and E7, yet we have only a partial understanding of the precise mechanisms of action of these viral proteins. Here we investigated the molecular mechanism through which the oncoprotein E6 alters the Hippo-YAP/TAZ pathway to trigger YAP/TAZ induction in cancer cells. By employing E6 overexpression systems combined with protein–protein interaction studies and loss-of-function approaches, we discovered that the E6-mediated targeting of hScrib, which supports YAP/TAZ upregulation, intimately requires E6 homodimerization. We show that the self-association of E6, previously reported only in vitro, takes place in the cytoplasm and, as a dimer, E6 targets the fraction of hScrib at the cell cortex for proteasomal degradation. Thus, E6 homodimerization emerges as an important event in the mechanism of E6-mediated hScrib targeting to sustain downstream YAP/TAZ upregulation, unraveling for the first time the key role of E6 homodimerization in the context of its transforming functions and thus paving the way for the possible development of E6 dimerization inhibitors.
Collapse
Affiliation(s)
- Lorenzo Messa
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Marta Celegato
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Beatrice Mercorelli
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy;
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (L.M.); (M.C.); (C.B.); (B.M.); (G.A.); (G.P.)
- Correspondence: ; Tel.: +39-049-8272363
| |
Collapse
|
5
|
Samji P, Rajendran MK, Warrier VP, Ganesh A, Devarajan K. Regulation of Hippo signaling pathway in cancer: A MicroRNA perspective. Cell Signal 2020; 78:109858. [PMID: 33253912 DOI: 10.1016/j.cellsig.2020.109858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies have suggested that Hippo signaling is not only involved in controlling organ size in Drosophila but can also regulate cell proliferation, tissue homeostasis, differentiation, apoptosis and regeneration. Any dysregulation of Hippo signaling, especially the hyper activation of its downstream effectors YAP/TAZ, can lead to uncontrolled cell proliferation and malignant transformation. In majority of cancers, expression of YAP/TAZ is extremely high and this increased expression of YAP/TAZ has been shown to be an independent predictor of prognosis and indicator of increased cell proliferation, metastasis and poor survival. In this review, we have summarized the most recent findings about the cross talk of Hippo signaling pathway with other signaling pathways and its regulation by different miRNAs in various cancer types. Recent evidence has suggested that Hippo pathway is also involved in mediating the resistance of different cancer cells to chemotherapeutic drugs and in a few cancer types, this is brought about by regulating miRNAs. Therefore, the delineation of the underlying mechanisms regulating the chemotherapeutic resistance might help in developing better treatment options. This review has attempted to provide an overview of different drugs/options which can be utilized to target oncogenic YAP/TAZ proteins for therapeutic interventions.
Collapse
Affiliation(s)
- Priyanka Samji
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| | - Manoj K Rajendran
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Vidya P Warrier
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Akshayaa Ganesh
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| | - Karunagaran Devarajan
- Cancer Biology Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
| |
Collapse
|
6
|
Santoni MJ, Kashyap R, Camoin L, Borg JP. The Scribble family in cancer: twentieth anniversary. Oncogene 2020; 39:7019-7033. [PMID: 32999444 PMCID: PMC7527152 DOI: 10.1038/s41388-020-01478-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Among the more than 160 PDZ containing proteins described in humans, the cytoplasmic scaffold Scribble stands out because of its essential role in many steps of cancer development and dissemination. Its fame has somehow blurred the importance of homologous proteins, Erbin and Lano, all belonging to the LRR and PDZ (LAP) protein family first described twenty years ago. In this review, we will retrace the history of LAP family protein research and draw attention to their contribution in cancer by detailing the features of its members at the structural and functional levels, and highlighting their shared-but also different-implication in the tumoral process.
Collapse
Affiliation(s)
- Marie-Josée Santoni
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Rudra Kashyap
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France ,grid.5596.f0000 0001 0668 7884Cellular and Molecular Medicine, Katholisch University of Leuven, Leuven, Belgium
| | - Luc Camoin
- grid.463833.90000 0004 0572 0656Aix Marseille Université, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Jean-Paul Borg
- grid.463833.90000 0004 0572 0656Centre de Recherche en Cancérologie de Marseille, CRCM, Equipe labellisée Ligue ‘Cell Polarity, Cell Signaling and Cancer’, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, 13009 Marseille, France ,grid.463833.90000 0004 0572 0656Aix Marseille Université, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
7
|
Ouyang Z, Chen M, Sun J, Zhai J. Expression and role of hScrib in endometrium, endometriosis, and endometrial adenocarcinoma. Medicine (Baltimore) 2019; 98:e14076. [PMID: 30702562 PMCID: PMC6380690 DOI: 10.1097/md.0000000000014076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To explore the role of hScrib in the pathogenesis of endometriosis.This was a retrospective study of 240 women in our hospital between January 2014 and January 2017. The expression of hScrib in endometrium (EM), endometriosis (EMs), and endometrial adenocarcinoma (EC) was investigated, and compared the differences among them. Serum levels, protein expressions, localizations, and correlations of hScrib and E-cadherin were determined.The levels of serum soluble hScrib and E-cadherin were significantly highest in EC, followed by EMs, and healthy women (P < .05). hScrib protein content was opposite result in 3 tissues (P < .05), and was negatively correlated with r-AFS stage in EMs. The location changed from membrane to cytoplasm. Co-localization of hScrib with E-cadherin was found at extensive cell-cell boundaries in EMs.hScrib and E-cadherin may be as new diagnostic markers of endometriosis. Low expression of hScrib leads to the loss of cell polarity and stability. Also, hScrib may induce EMT through regulating E-cadherin, might play an important role in pathogenesis of endometriosis.
Collapse
|
8
|
Won SJ, Cheung See Kit M, Martin BR. Protein depalmitoylases. Crit Rev Biochem Mol Biol 2018; 53:83-98. [PMID: 29239216 PMCID: PMC6009847 DOI: 10.1080/10409238.2017.1409191] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Protein depalmitoylation describes the removal of thioester-linked long chain fatty acids from cysteine residues in proteins. For many S-palmitoylated proteins, this process is promoted by acyl protein thioesterase enzymes, which catalyze thioester hydrolysis to solubilize and displace substrate proteins from membranes. The closely related enzymes acyl protein thioesterase 1 (APT1; LYPLA1) and acyl protein thioesterase 2 (APT2; LYPLA2) were initially identified from biochemical assays as G protein depalmitoylases, yet later were shown to accept a number of S-palmitoylated protein and phospholipid substrates. Leveraging the development of isoform-selective APT inhibitors, several studies report distinct roles for APT enzymes in growth factor and hormonal signaling. Recent crystal structures of APT1 and APT2 reveal convergent acyl binding channels, suggesting additional factors beyond acyl chain recognition mediate substrate selection. In addition to APT enzymes, the ABHD17 family of hydrolases contributes to the depalmitoylation of Ras-family GTPases and synaptic proteins. Overall, enzymatic depalmitoylation ensures efficient membrane targeting by balancing the palmitoylation cycle, and may play additional roles in signaling, growth, and cell organization. In this review, we provide a perspective on the biochemical, structural, and cellular analysis of protein depalmitoylases, and outline opportunities for future studies of systems-wide analysis of protein depalmitoylation.
Collapse
Affiliation(s)
- Sang Joon Won
- a Program in Chemical Biology , University of Michigan , Ann Arbor , MI , USA
| | | | - Brent R Martin
- a Program in Chemical Biology , University of Michigan , Ann Arbor , MI , USA
- b Department of Chemistry , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
9
|
Milgrom-Hoffman M, Humbert PO. Regulation of cellular and PCP signalling by the Scribble polarity module. Semin Cell Dev Biol 2017; 81:33-45. [PMID: 29154823 DOI: 10.1016/j.semcdb.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Since the first identification of the Scribble polarity module proteins as a new class of tumour suppressors that regulate both cell polarity and proliferation, an increasing amount of evidence has uncovered a broader role for Scribble, Dlg and Lgl in the control of fundamental cellular functions and their signalling pathways. Here, we review these findings as well as discuss more specifically the role of the Scribble module in PCP signalling.
Collapse
Affiliation(s)
- Michal Milgrom-Hoffman
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
10
|
Alzahrani F, Clattenburg L, Muruganandan S, Bullock M, MacIsaac K, Wigerius M, Williams BA, Graham MER, Rigby MH, Trites JRB, Taylor SM, Sinal CJ, Fawcett JP, Hart RD. The Hippo component YAP localizes in the nucleus of human papilloma virus positive oropharyngeal squamous cell carcinoma. J Otolaryngol Head Neck Surg 2017; 46:15. [PMID: 28222762 PMCID: PMC5320711 DOI: 10.1186/s40463-017-0187-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/02/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND HPV infection causes cervical cancer, mediated in part by the degradation of Scribble via the HPV E6 oncoprotein. Recently, Scribble has been shown to be an important regulator of the Hippo signaling cascade. Deregulation of the Hippo pathway induces an abnormal cellular transformation, epithelial to mesenchymal transition, which promotes oncogenic progression. Given the recent rise in oropharyngeal HPV squamous cell carcinoma we sought to determine if Hippo signaling components are implicated in oropharyngeal squamous cell carcinoma. METHODS Molecular and cellular techniques including immunoprecipiations, Western blotting and immunocytochemistry were used to identify the key Hippo pathway effector Yes-Associated Protein (YAP)1. Oropharyngeal tissue was collected from CO2 laser resections, and probed with YAP1 antibody in tumor and pre-malignant regions of HPV positive OPSCC tissue. RESULTS This study reveals that the Scribble binding protein Nitric Oxide Synthase 1 Adaptor Protein (NOS1AP) forms a complex with YAP. Further, the NOS1APa and NOS1APc isoforms show differential association with activated and non-activated YAP, and impact cellular proliferation. Consistent with deregulated Hippo signaling in OPSCC HPV tumors, we see a delocalization of Scribble and increased nuclear accumulation of YAP1 in an HPV-positive OPSCC. CONCLUSION Our preliminary data indicates that NOS1AP isoforms differentially associate with YAP1, which, together with our previous findings, predicts that loss of YAP1 enhances cellular transformation. Moreover, YAP1 is highly accumulated in the nucleus of HPV-positive OPSCC, implying that Hippo signaling and possibly NOS1AP expression are de-regulated in OPSCC. Further studies will help determine if NOS1AP isoforms, Scribble and Hippo components will be useful biomarkers in OPSCC tumor biology.
Collapse
Affiliation(s)
- Faisal Alzahrani
- Division of Otolaryngology, Department of Surgery, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NS, Canada
| | | | | | - Martin Bullock
- Department of Pathology, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NS, Canada
| | - Kaitlyn MacIsaac
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Michael Wigerius
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Blair A Williams
- Division of Otolaryngology, Department of Surgery, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NS, Canada
| | - M Elise R Graham
- Division of Otolaryngology, Department of Surgery, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NS, Canada
| | - Matthew H Rigby
- Division of Otolaryngology, Department of Surgery, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NS, Canada
| | - Jonathan R B Trites
- Division of Otolaryngology, Department of Surgery, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NS, Canada
| | - S Mark Taylor
- Division of Otolaryngology, Department of Surgery, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NS, Canada
| | | | - James P Fawcett
- Division of Otolaryngology, Department of Surgery, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NS, Canada. .,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | - Robert D Hart
- Division of Otolaryngology, Department of Surgery, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
11
|
APT2 Inhibition Restores Scribble Localization and S-Palmitoylation in Snail-Transformed Cells. Cell Chem Biol 2017; 24:87-97. [PMID: 28065656 DOI: 10.1016/j.chembiol.2016.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/28/2016] [Accepted: 12/13/2016] [Indexed: 11/23/2022]
Abstract
The multidomain scaffolding protein Scribble (Scrib) organizes key signaling complexes to specify basolateral cell polarity and suppress aberrant growth. In many human cancers, genetically normal Scrib mislocalizes from cell-cell junctions to the cytosol, correlating with enhanced growth signaling and malignancy. Here we confirm that expression of the epithelial-to-mesenchymal transcription factor (EMT-TF) Snail in benign epithelial cells leads to Scrib displacement from the plasma membrane, mimicking the mislocalization observed in aggressive cancers. Upon further examination, Snail promotes a transcriptional program that targets genes in the palmitoylation cycle, repressing many protein acyl transferases and elevating expression and activity of protein acyl thioesterase 2 (APT2). APT2 isoform-selective inhibition or knockdown rescued Scrib membrane localization and palmitoylation while attenuating MEK activation. Overall, inhibiting APT2 restores balance to the Scrib palmitoylation cycle, promoting membrane re-localization and growth attenuation. These findings emphasize the importance of S-palmitoylation as a post-translational gatekeeper of cell polarity-mediated tumor suppression.
Collapse
|
12
|
Chen H, Mruk DD, Lee WM, Cheng CY. Planar Cell Polarity (PCP) Protein Vangl2 Regulates Ectoplasmic Specialization Dynamics via Its Effects on Actin Microfilaments in the Testes of Male Rats. Endocrinology 2016; 157:2140-59. [PMID: 26990065 PMCID: PMC4870864 DOI: 10.1210/en.2015-1987] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Planar cell polarity (PCP) proteins confer polarization of a field of cells (eg, elongating/elongated spermatids) within the plane of an epithelium such as the seminiferous epithelium of the tubule during spermatogenesis. In adult rat testes, Sertoli and germ cells were found to express PCP core proteins (eg, Van Gogh-like 2 [Vangl2]), effectors, ligands, and signaling proteins. Vangl2 expressed predominantly by Sertoli cells was localized at the testis-specific, actin-rich ectoplasmic specialization (ES) at the Sertoli-spermatid interface in the adluminal compartment and also Sertoli-Sertoli interface at the blood-testis barrier (BTB) and structurally interacted with actin, N-cadherin, and another PCP/polarity protein Scribble. Vangl2 knockdown (KD) by RNA interference in Sertoli cells cultured in vitro with an established tight junction-permeability barrier led to BTB tightening, whereas its overexpression using a full-length cDNA construct perturbed the barrier function. These changes were mediated through an alteration on the organization actin microfilaments at the ES in Sertoli cells, involving actin-regulatory proteins, epidermal growth factor receptor pathway substrate 8, actin-related protein 3, and Scribble, which in turn affected the function of adhesion protein complexes at the ES during the epithelial cycle of spermatogenesis. Using Polyplus in vivo-jetPEI reagent as a transfection medium to silence Vangl2 in the testis in vivo by RNA interference with high efficacy, Vangl2 KD led to changes in F-actin organization at the ES in the epithelium, impeding spermatid and phagosome transport and spermatid polarity, meiosis, and BTB dynamics. For instance, step 19 spermatids remained embedded in the epithelium alongside with step 9 and 10 spermatids in stages IX-X tubules. In summary, the PCP protein Vangl2 is an ES regulator through its effects on actin microfilaments in the testis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (H.C., D.D.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Pokfulam, Hong Kong, China
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (H.C., D.D.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Pokfulam, Hong Kong, China
| | - Will M Lee
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (H.C., D.D.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (H.C., D.D.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
13
|
Ahmed SM, Macara IG. Mechanisms of polarity protein expression control. Curr Opin Cell Biol 2016; 42:38-45. [PMID: 27092866 DOI: 10.1016/j.ceb.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 01/09/2023]
Abstract
Polarity is a universal feature of cells during division and often at other stages of the cell cycle or after post-mitotic differentiation. A conserved machinery, present in all animals, initiates and maintains polarity. Multi-cellular animals organize themselves with respect to the axes of symmetry of the organism through the process of planar cell polarity, but many tissues also express a cell-intrinsic form of polarity, for instance to segregate the apical and basolateral membranes of epithelial cells. Although the genes and proteins involved in apical-basal polarity have been known for many years, the regulation of their expression remains ill-defined. Maintenance of the correct expression levels is essential for normal cell lineage allocation, tissue morphogenesis and cell survival. Here we summarize what is known about the transcriptional and post-transcriptional regulation of polarity protein expression, and discuss areas that remain to be understood.
Collapse
Affiliation(s)
- Syed Mukhtar Ahmed
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA.
| |
Collapse
|
14
|
Loss of the cell polarity determinant human Discs-large is a novel molecular marker of nodal involvement and poor prognosis in endometrial cancer. Br J Cancer 2016; 114:1012-8. [PMID: 27002939 PMCID: PMC4984904 DOI: 10.1038/bjc.2016.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/04/2015] [Accepted: 01/13/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Recent Drosophila studies showed that Discs-large (Dlg) is critical for regulation of cell polarity and tissue architecture. We investigated the possibility that loss of the human homologue of Drosophila Dlg (DLG1) is involved in endometrial carcinogenesis. METHODS We analysed DLG1 expression in 160 endometrial cancers by immunohistochemical staining. Its expression was confirmed by quantitative real-time PCR (RT-PCR). We investigated the roles of DLG1 in growth and invasion by knockdown experiment in endometrial cancer cell lines. RESULTS Human DLG1 localises at cellular membrane in normal endometrial tissues. Loss of DLG1 was observed in 37 cases (23.1%). Loss of DLG1 was observed in patients with advanced stage and high-grade histology. It was also observed in patients with nodal metastasis, deep myometrial invasion, and negative oestrogen and progesterone receptors. Patients with loss of DLG1 showed poorer overall survival (P=0.0019). Immunohistochemistry data correlated with RT-PCR data. Knockdown of Dlg1 in endometrial cancer cells resulted in accelerated tumour migration and invasion in vitro. CONCLUSIONS Tissue polarity disturbance because of loss of DLG1 was shown to confer more aggressive characteristics to endometrial cancer cells. Our study revealed that DLG1 expression is a novel molecular biomarker of nodal metastasis, high-grade histology, and poor prognosis in endometrial cancer.
Collapse
|
15
|
James CD, Roberts S. Viral Interactions with PDZ Domain-Containing Proteins-An Oncogenic Trait? Pathogens 2016; 5:pathogens5010008. [PMID: 26797638 PMCID: PMC4810129 DOI: 10.3390/pathogens5010008] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
Many of the human viruses with oncogenic capabilities, either in their natural host or in experimental systems (hepatitis B and C, human T cell leukaemia virus type 1, Kaposi sarcoma herpesvirus, human immunodeficiency virus, high-risk human papillomaviruses and adenovirus type 9), encode in their limited genome the ability to target cellular proteins containing PSD95/ DLG/ZO-1 (PDZ) interaction modules. In many cases (but not always), the viruses have evolved to bind the PDZ domains using the same short linear peptide motifs found in host protein-PDZ interactions, and in some cases regulate the interactions in a similar fashion by phosphorylation. What is striking is that the diverse viruses target a common subset of PDZ proteins that are intimately involved in controlling cell polarity and the structure and function of intercellular junctions, including tight junctions. Cell polarity is fundamental to the control of cell proliferation and cell survival and disruption of polarity and the signal transduction pathways involved is a key event in tumourigenesis. This review focuses on the oncogenic viruses and the role of targeting PDZ proteins in the virus life cycle and the contribution of virus-PDZ protein interactions to virus-mediated oncogenesis. We highlight how many of the viral associations with PDZ proteins lead to deregulation of PI3K/AKT signalling, benefitting virus replication but as a consequence also contributing to oncogenesis.
Collapse
Affiliation(s)
- Claire D James
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK.
- Present address; Virginia Commonwealth University, School of Dentistry, W. Baxter Perkinson Jr. Building, 521 North 11th Street, P.O. Box 980566, Richmond, VA 23298-0566, USA.
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK.
| |
Collapse
|
16
|
Ganti K, Broniarczyk J, Manoubi W, Massimi P, Mittal S, Pim D, Szalmas A, Thatte J, Thomas M, Tomaić V, Banks L. The Human Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy. Viruses 2015; 7:3530-51. [PMID: 26147797 PMCID: PMC4517114 DOI: 10.3390/v7072785] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/01/2023] Open
Abstract
Cancer-causing HPV E6 oncoproteins are characterized by the presence of a PDZ binding motif (PBM) at their extreme carboxy terminus. It was long thought that this region of E6 had a sole function to confer interaction with a defined set of cellular substrates. However, more recent studies have shown that the E6 PBM has a complex pattern of regulation, whereby phosphorylation within the PBM can regulate interaction with two classes of cellular proteins: those containing PDZ domains and the members of the 14-3-3 family of proteins. In this review, we explore the roles that the PBM and its ligands play in the virus life cycle, and subsequently how these can inadvertently contribute towards the development of malignancy. We also explore how subtle alterations in cellular signal transduction pathways might result in aberrant E6 phosphorylation, which in turn might contribute towards disease progression.
Collapse
Affiliation(s)
- Ketaki Ganti
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Justyna Broniarczyk
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Wiem Manoubi
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Paola Massimi
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Suruchi Mittal
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - David Pim
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Anita Szalmas
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Jayashree Thatte
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Miranda Thomas
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Vjekoslav Tomaić
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Lawrence Banks
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| |
Collapse
|
17
|
Seiki T, Nagasaka K, Kranjec C, Kawana K, Maeda D, Nakamura H, Taguchi A, Matsumoto Y, Arimoto T, Wada-Hiraike O, Oda K, Nakagawa S, Yano T, Fukayama M, Banks L, Osuga Y, Fujii T. HPV-16 impairs the subcellular distribution and levels of expression of protein phosphatase 1γ in cervical malignancy. BMC Cancer 2015; 15:230. [PMID: 25886518 PMCID: PMC4399203 DOI: 10.1186/s12885-015-1141-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 02/27/2015] [Indexed: 12/16/2022] Open
Abstract
Background The high risk Human Papillomavirus (HPV) E6 oncoproteins play an essential role in the development of cervical malignancy. Important cellular targets of E6 include p53 and the PDZ domain containing substrates such as hScrib and Dlg. We recently showed that hScrib activity was mediated in part through recruitment of protein phosphatase 1γ (PP1γ). Methods Expression patterns of hScrib and PP1γ were assessed by immunohistochemistry of HPV-16 positive cervical intraepithelial neoplasm (CIN), classified as CIN1 (n = 4), CIN2 (n = 8), CIN3 (n = 8), cervical carcinoma tissues (n = 11), and HPV-negative cervical tissues (n = 8), as well as by subfractionation assay of the HPV-16 positive cervical cancer cell lines, CaSki and SiHa. To explore the effects of the HPV-16 oncoproteins, we have performed siRNA knockdown of E6/E7 expression, and monitored the effects on the expression patterns of hScrib and PP1γ. Results We show that PP1γ levels in HPV-16 positive tumour cells are reduced in an E6/E7 dependent manner. Residual PP1γ in these cells is found mostly in the cytoplasm as opposed to the nucleus where it is predominantly found in normal cells. We have found a striking concordance with redistribution in the pattern of expression (9/11; 81.8%) and loss of PP1γ expression in HPV-16 positive cervical tumours (2/11; 18.2%). Furthermore, this loss of PP1γ expression and redistribution in the pattern of expression occurs progressively as the lesions develop (8/8; 100%). Conclusion Together, these results suggest that PP1γ may be a novel target of the HPV-16 oncoproteins and indicate that it might be a potential novel biomarker for HPV-16 induced malignancy.
Collapse
Affiliation(s)
- Takayuki Seiki
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Christian Kranjec
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano-99, I-34012, Trieste, Italy.
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Daichi Maeda
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Yoko Matsumoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Shunsuke Nakagawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Teikyo University, Tokyo, 173-8605, Japan.
| | - Tetsu Yano
- Department of Obstetrics and Gynecology, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano-99, I-34012, Trieste, Italy.
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
18
|
Lin WH, Asmann YW, Anastasiadis PZ. Expression of polarity genes in human cancer. Cancer Inform 2015; 14:15-28. [PMID: 25991909 PMCID: PMC4390136 DOI: 10.4137/cin.s18964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/01/2023] Open
Abstract
Polarity protein complexes are crucial for epithelial apical–basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
19
|
Boëda B, Etienne-Manneville S. Spectrin binding motifs regulate Scribble cortical dynamics and polarity function. eLife 2015; 4. [PMID: 25664942 PMCID: PMC4350421 DOI: 10.7554/elife.04726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/08/2015] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor protein Scribble (SCRIB) plays an evolutionary conserved role in cell polarity. Despite being central for its function, the molecular basis of SCRIB recruitment and stabilization at the cell cortex is poorly understood. Here we show that SCRIB binds directly to the CH1 domain of β spectrins, a molecular scaffold that contributes to the cortical actin cytoskeleton and connects it to the plasma membrane. We have identified a short evolutionary conserved peptide motif named SADH motif (SCRIB ABLIMs DMTN Homology) which is necessary and sufficient to mediate protein interaction with β spectrins. The SADH domains contribute to SCRIB dynamics at the cell cortex and SCRIB polarity function. Furthermore, mutations in SCRIB SADH domains associated with spina bifida and cancer impact the stability of SCRIB at the plasma membrane, suggesting that SADH domain alterations may participate in human pathology. DOI:http://dx.doi.org/10.7554/eLife.04726.001 Proteins found in cells often have more than one role. Scribble is one such multi-tasking protein that is found in a diverse range of species, including fruit flies and humans. Although Scribble commonly helps to ensure that the components of a cell are in their correct locations, its exact roles vary between species. To perform its role well, Scribble itself must localize to the cell cortex—the inside surface of the cell membrane—at the regions where cells connect to one another. How this localization occurs is not fully understood; and defects in the human form of Scribble have been linked to diseases including spina bifida and cancer. Much of the Scribble protein is very similar across different species, but the fruit fly and human version of the protein have large differences in their ‘C-terminal region’ that makes up one end of each protein. Boëda and Etienne-Manneville now show that in humans and other animals with backbones—but not in fruit flies—the C-terminal region of Scribble contains three repeats of a sequence called the SADH motif. These motifs can bind to proteins called beta spectrins, which connect the cell's outer membrane to the scaffolding-like structure inside the cell that provides support. Mutations that alter the SADH motif interfere with Scribble's ability to bind to the scaffolding, and alters Scribble localization at cell–cell contacts or the cell cortex. Boëda and Etienne-Manneville also found that some mutations linked to spina bifida and cancer affect the SADH motif, suggesting that this motif has a wider role in disease. While the abnormal localization of Scribble inside cells is frequently observed in particularly difficult to survive cancers, the molecular mechanism that causes Scribble to fail to localize to the cell periphery is still poorly understood. Boëda and Etienne-Manneville's work establishes the beta spectrin family of proteins as regulators that stabilize Scribble at the cell cortex and suggests that Scribble-associated diseases might depend on the integrity of the spectrin network. DOI:http://dx.doi.org/10.7554/eLife.04726.002
Collapse
Affiliation(s)
- Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS UMR 3691, Paris, France
| | | |
Collapse
|
20
|
Nagasaka K, Massimi P, Pim D, Subbaiah VK, Kranjec C, Nakagawa S, Yano T, Taketani Y, Banks L. The mechanism and implications of hScrib regulation of ERK. Small GTPases 2014; 1:108-112. [PMID: 21686263 DOI: 10.4161/sgtp.1.2.13649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/12/2010] [Accepted: 09/15/2010] [Indexed: 12/15/2022] Open
Abstract
Scribble is a potential tumor suppressor protein, whose loss is a frequent event in late stage cancer development. In both Drosophila and mammalian model systems, Scribble has been shown capable of regulating cell polarity, cell proliferation and apoptosis. Although several interacting partners, including βPiX, have been identified that help to explain how Scribble can regulate cell polarity and migration, little is known about how Scribble can control cell proliferation. Recent work from our laboratory has shown that Scribble can directly regulate the ERK signaling pathway. This is mediated by a direct protein-protein interaction between Scribble and ERK, which has two components. In the first, Scribble appears to anchor ERK at membrane-bound sites, with the loss of Scribble enhancing ERK nuclear translocation. In the second, Scribble can decrease the levels of active phosphorylated ERK, a function that is dependent upon the ability of Scribble to bind ERK directly. One of the consequences of this activity of Scribble is the inhibition of EJ-ras induced cell transformation. These results provide some of the first direct mechanistic information on how Scribble can regulate cell proliferation and, furthermore, they provide indications as to the identity of other signaling intermediates that may be recruited by Scribble to directly regulate mitogenic signaling pathways.
Collapse
Affiliation(s)
- Kazunori Nagasaka
- Department of Obstetrics and Gynecology; Graduate School of Medicine; University of Tokyo; Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Apico-basal polarity is a cardinal molecular feature of adult eukaryotic epithelial cells and appears to be involved in several key cellular processes including polarized cell migration and maintenance of tissue architecture. Epithelial cell polarity is maintained by three well-conserved polarity complexes, namely, PAR, Crumbs and SCRIB. The location and interaction between the components of these complexes defines distinct structural domains of epithelial cells. Establishment and maintenance of apico-basal polarity is regulated through various conserved cell signalling pathways including TGF beta, Integrin and WNT signalling. Loss of cell polarity is a hallmark for carcinoma, and its underlying molecular mechanism is beginning to emerge from studies on model organisms and cancer cell lines. Moreover, deregulated expression of apico-basal polarity complex components has been reported in human tumours. In this review, we provide an overview of the apico-basal polarity complexes and their regulation, their role in cell migration, and finally their involvement in carcinogenesis.
Collapse
Affiliation(s)
- Mohammed Khursheed
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500 001, India
| | | |
Collapse
|
22
|
Godde NJ, Sheridan JM, Smith LK, Pearson HB, Britt KL, Galea RC, Yates LL, Visvader JE, Humbert PO. Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland. PLoS Genet 2014; 10:e1004323. [PMID: 24852022 PMCID: PMC4031063 DOI: 10.1371/journal.pgen.1004323] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 03/06/2014] [Indexed: 12/16/2022] Open
Abstract
Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression.
Collapse
Affiliation(s)
- Nathan J. Godde
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Julie M. Sheridan
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lorey K. Smith
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen B. Pearson
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kara L. Britt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Ryan C. Galea
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura L. Yates
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Jane E. Visvader
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick O. Humbert
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Biology and Biochemistry, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
23
|
Rewiring cell polarity signaling in cancer. Oncogene 2014; 34:939-50. [PMID: 24632617 DOI: 10.1038/onc.2014.59] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
Disrupted cell polarity is a feature of epithelial cancers. The Crumbs, Par and Scribble polarity complexes function to specify and maintain apical and basolateral membrane domains, which are essential to organize intracellular signaling pathways that maintain epithelial homeostasis. Disruption of apical-basal polarity proteins facilitates rewiring of oncogene and tumor suppressor signaling pathways to deregulate proliferation, apoptosis, invasion and metastasis. Moreover, apical-basal polarity integrates intracellular signaling with the microenvironment by regulating metabolic signaling, extracellular matrix remodeling and tissue level organization. In this review, we discuss recent advances in our understanding of how polarity proteins regulate diverse signaling pathways throughout cancer progression from initiation to metastasis.
Collapse
|
24
|
Facciuto F, Bugnon Valdano M, Marziali F, Massimi P, Banks L, Cavatorta AL, Gardiol D. Human papillomavirus (HPV)-18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein. Mol Oncol 2014; 8:533-43. [PMID: 24462519 DOI: 10.1016/j.molonc.2014.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/30/2013] [Accepted: 01/03/2014] [Indexed: 12/18/2022] Open
Abstract
High-risk human papillomavirus (HPV) infection is the principal risk factor for the development of cervical cancer. The HPV E6 oncoprotein has the ability to target and interfere with several PSD-95/DLG/ZO-1 (PDZ) domain-containing proteins that are involved in the control of cell polarity. This function can be significant for E6 oncogenic activity because a deficiency in cell polarisation is a marker of tumour progression. The establishment and control of polarity in epithelial cells depend on the correct asymmetrical distribution of proteins and lipids at the cell borders and on specialised cell junctions. In this report, we have investigated the effects of HPV E6 protein on the polarity machinery, with a focus on the PDZ partitioning defective 3 (Par3) protein, which is a key component of tight junctions (TJ) and the polarity network. We demonstrate that E6 is able to bind and induce the mislocalisation of Par3 protein in a PDZ-dependent manner without significant reduction in Par3 protein levels. In addition, the high-risk HPV-18 E6 protein promotes a delay in TJ formation when analysed by calcium switch assays. Taken together, the data presented in this study contribute to our understanding of the molecular mechanism by which HPVs induce the loss of cell polarity, with potential implications for the development and progression of HPV-associated tumours.
Collapse
Affiliation(s)
- Florencia Facciuto
- Instituto de Biología Molecular y Celular de Rosario-CONICET, Area Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marina Bugnon Valdano
- Instituto de Biología Molecular y Celular de Rosario-CONICET, Area Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Rosario, Argentina
| | - Federico Marziali
- Instituto de Biología Molecular y Celular de Rosario-CONICET, Area Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Rosario, Argentina
| | - Paola Massimi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Trieste, Italy
| | - Ana Laura Cavatorta
- Instituto de Biología Molecular y Celular de Rosario-CONICET, Area Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniela Gardiol
- Instituto de Biología Molecular y Celular de Rosario-CONICET, Area Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
25
|
Liu D, Shi M, Duan C, Chen H, Hu Y, Yang Z, Duan H, Guo N. Downregulation of Erbin in Her2-overexpressing breast cancer cells promotes cell migration and induces trastuzumab resistance. Mol Immunol 2013; 56:104-12. [DOI: 10.1016/j.molimm.2013.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/20/2013] [Accepted: 04/09/2013] [Indexed: 01/27/2023]
|
26
|
Yamben IF, Rachel RA, Shatadal S, Copeland NG, Jenkins NA, Warming S, Griep AE. Scrib is required for epithelial cell identity and prevents epithelial to mesenchymal transition in the mouse. Dev Biol 2013; 384:41-52. [PMID: 24095903 DOI: 10.1016/j.ydbio.2013.09.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/03/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
The integrity and function of epithelial tissues depend on the establishment and maintenance of defining characteristics of epithelial cells, cell-cell adhesion and cell polarity. Disruption of these characteristics can lead to the loss of epithelial identity through a process called epithelial to mesenchymal transition (EMT), which can contribute to pathological conditions such as tissue fibrosis and invasive cancer. In invertebrates, the epithelial polarity gene scrib plays a critical role in establishing and maintaining cell adhesion and polarity. In this study we asked if the mouse homolog, Scrib, is required for establishment and/or maintenance of epithelial identity in vivo. To do so, we conditionally deleted Scrib in the head ectoderm tissue that gives rise to both the ocular lens and the corneal epithelium. Deletion of Scrib in the lens resulted in a change in epithelial cell shape from cuboidal to flattened and elongated. Early in the process, the cell adhesion protein, E-cadherin, and apical polarity protein, ZO-1, were downregulated and the myofibroblast protein, αSMA, was upregulated, suggesting EMT was occurring in the Scrib deficient lenses. Correlating temporally with the upregulation of αSMA, Smad3 and Smad4, TGFβ signaling intermediates, accumulated in the nucleus and Snail, a TGFβ target and transcriptional repressor of the gene encoding E-cadherin, was upregulated. Pax6, a lens epithelial transcription factor required to maintain lens epithelial cell identity also was downregulated. Loss of Scrib in the corneal epithelium also led to molecular changes consistent with EMT, suggesting that the effect of Scrib deficiency was not unique to the lens. Together, these data indicate that mammalian Scrib is required to maintain epithelial identity and that loss of Scrib can culminate in EMT, mediated, at least in part, through TGFβ signaling.
Collapse
Affiliation(s)
- Idella F Yamben
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | | | | | | | | | | | |
Collapse
|
27
|
PDZ domains and viral infection: versatile potentials of HPV-PDZ interactions in relation to malignancy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:369712. [PMID: 24093094 PMCID: PMC3777178 DOI: 10.1155/2013/369712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/09/2013] [Accepted: 07/31/2013] [Indexed: 12/13/2022]
Abstract
Cervical cancer is caused by high-risk human papillomaviruses (HPVs), and a unique characteristic of these is a PDZ (P¯SD-95/D¯lg/Z¯O-1-)binding motif in their E6 proteins. Through this motif HPV E6 interacts with a variety of PDZ domain-containing proteins and targets them mainly for degradation. These E6-PDZ interactions exhibit extraordinarily different functions in relation to HPV-induced malignancy, depending upon various cellular contexts; for example, Dlg and Scrib show different distribution patterns from what is seen in normal epithelium, both in localization and in amount, and their loss may be a late-stage marker in malignant progression. Recent studies show that interactions with specific forms of the proteins may have oncogenic potential. In addition, it is interesting that PDZ proteins make a contribution to the stabilization of E6 and viral episomal maintenance during the course of HPV life cycle. Various posttranslational modifications also greatly affect their functions. Phosphorylation of hDlg and hScrib by certain kinases regulates several important signaling cascades, and E6-PDZ interactions themselves are regulated through PKA-dependent phosphorylation. Thus these interactions naturally have great potential for both predictive and therapeutic applications, and, with development of screening tools for identifying novel targets of their interactions, comprehensive spatiotemporal analysis is currently underway.
Collapse
|
28
|
Elsum IA, Martin C, Humbert PO. Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation. J Cell Sci 2013; 126:3990-9. [PMID: 23813956 DOI: 10.1242/jcs.129387] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The crucial role the Crumbs and Par polarity complexes play in tight junction integrity has long been established, however very few studies have investigated the role of the Scribble polarity module. Here, we use MCF10A cells, which fail to form tight junctions and express very little endogenous Crumbs3, to show that inducing expression of the polarity protein Scribble is sufficient to promote tight junction formation. We show this occurs through an epithelial-to-mesenchymal (EMT) pathway that involves Scribble suppressing ERK phosphorylation, leading to downregulation of the EMT inducer ZEB. Inhibition of ZEB relieves the repression on Crumbs3, resulting in increased expression of this crucial tight junction regulator. The combined effect of this Scribble-mediated pathway is the upregulation of a number of junctional proteins and the formation of functional tight junctions. These data suggests a novel role for Scribble in positively regulating tight junction assembly through transcriptional regulation of an EMT signaling program.
Collapse
Affiliation(s)
- Imogen A Elsum
- Cell Cycle and Cancer Genetics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | |
Collapse
|
29
|
Elsum IA, Humbert PO. Localization, not important in all tumor-suppressing properties: a lesson learnt from scribble. Cells Tissues Organs 2013; 198:1-11. [PMID: 23774808 DOI: 10.1159/000348423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Aberrant localization of proteins is increasingly being suggested as a causal player in epithelial cancers. Despite this, few studies have investigated how mislocalization of a protein can alter individual biological processes that contribute to cancer progression. Using Ras as a model of transformation, we investigate how localization of the polarity protein Scribble contributes to its tumor-suppressive properties. Wild-type Scribble has been shown to modulate Ras-mitogen-activated protein kinase (MAPK) transformation both in vitro and in vivo. By utilizing a construct that carries a mutation in the LRR domain of Scribble (Scribble P305L) resulting in a cytosolic rather than the usual membrane-bound localization, we report that discrete tumor suppressive properties of Scribble are differentially sensitive to the localization of Scribble. We find that although the Scribble P305L mislocalization mutant can no longer suppress Ras-MAPK-induced invasion or epithelial to mesenchymal transition phenotypes, mislocalized Scribble can still suppress anchorage-independent cell growth. This study illustrates that the manner in which protein mislocalization contributes to cancer is likely complex and highlights the need for careful interrogation as to how cell polarity protein mislocalization, its secondary consequences, and the mutations that give rise to their mislocalization may contribute to specific aspects of cancer progression.
Collapse
Affiliation(s)
- Imogen A Elsum
- Cell Cycle and Cancer Genetics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Vic. 3002, Australia
| | | |
Collapse
|
30
|
The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem 2012; 53:141-68. [PMID: 22928514 DOI: 10.1042/bse0530141] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Scribble, Par and Crumbs modules were originally identified in the vinegar (fruit) fly, Drosophila melanogaster, as being critical regulators of apico-basal cell polarity. In the present chapter we focus on the Scribble polarity module, composed of Scribble, discs large and lethal giant larvae. Since the discovery of the role of the Scribble polarity module in apico-basal cell polarity, these proteins have also been recognized as having important roles in other forms of polarity, as well as regulation of the actin cytoskeleton, cell signalling and vesicular trafficking. In addition to these physiological roles, an important role for polarity proteins in cancer progression has also been uncovered, with loss of polarity and tissue architecture being strongly correlated with metastatic disease.
Collapse
|
31
|
Yates LL, Schnatwinkel C, Hazelwood L, Chessum L, Paudyal A, Hilton H, Romero MR, Wilde J, Bogani D, Sanderson J, Formstone C, Murdoch JN, Niswander LA, Greenfield A, Dean CH. Scribble is required for normal epithelial cell-cell contacts and lumen morphogenesis in the mammalian lung. Dev Biol 2012. [PMID: 23195221 PMCID: PMC3549499 DOI: 10.1016/j.ydbio.2012.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen morphogenesis by maintaining cell–cell contacts. Thus we reveal novel and important roles for Scrib in lung development operating via the PCP pathway, and in regulating junctional complexes and cell cohesion.
Collapse
Affiliation(s)
- Laura L Yates
- Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Facciuto F, Cavatorta AL, Valdano MB, Marziali F, Gardiol D. Differential expression of PDZ domain-containing proteins in human diseases - challenging topics and novel issues. FEBS J 2012; 279:3538-3548. [PMID: 22776401 DOI: 10.1111/j.1742-4658.2012.08699.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The general features of the PDZ domain structure and functions have been extensively studied during the last decade. PDZ domains are generally present in proteins that are involved in multiple interactions to assemble functional protein complexes that control key cellular processes. One of the best characterized functions of PDZ domain-containing proteins is control of epithelial cell polarity and cell-cell contacts. In the present review, we summarize the current knowledge on regulation of expression of certain PDZ polarity proteins localized at the intercellular junctions. In addition, we provide a critical overview of recent findings regarding the role of these proteins during development of human diseases. Complete understanding of these issues is valuable for the design of novel therapeutic intervention for common pathologies, such as cancer.
Collapse
Affiliation(s)
- Florencia Facciuto
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rosario, Argentina
| | - Ana L Cavatorta
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rosario, Argentina
| | - Marina Bugnon Valdano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rosario, Argentina
| | - Federico Marziali
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rosario, Argentina
| | - Daniela Gardiol
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rosario, Argentina
| |
Collapse
|
33
|
Abstract
During development and tissue homeostasis, patterns of cellular organization, proliferation and movement are highly choreographed. Receptor tyrosine kinases (RTKs) have a crucial role in establishing these patterns. Individual cells and tissues exhibit tight spatial control of the RTKs that they express, enabling tissue morphogenesis and function, while preventing unwarranted cell division and migration that can contribute to tumorigenesis. Indeed, RTKs are deregulated in most human cancers and are a major focus of targeted therapeutics. A growing appreciation of the essential role of spatial RTK regulation during development prompts the realization that spatial deregulation of RTKs is likely to contribute broadly to cancer development and may affect the sensitivity and resistance of cancer to pharmacological RTK inhibitors.
Collapse
Affiliation(s)
- Jessica B. Casaletto
- MGH Center for Cancer Research and Harvard Medical School Department of Pathology, 149 13th Street Charlestown, MA 02129 United States
| | - Andrea I. McClatchey
- MGH Center for Cancer Research and Harvard Medical School Department of Pathology, 149 13th Street Charlestown, MA 02129 United States
- To whom correspondence should be addressed:
| |
Collapse
|
34
|
Hartleben B, Widmeier E, Wanner N, Schmidts M, Kim ST, Schneider L, Mayer B, Kerjaschki D, Miner JH, Walz G, Huber TB. Role of the polarity protein Scribble for podocyte differentiation and maintenance. PLoS One 2012; 7:e36705. [PMID: 22586490 PMCID: PMC3346764 DOI: 10.1371/journal.pone.0036705] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/05/2012] [Indexed: 11/19/2022] Open
Abstract
The kidney filter represents a unique assembly of podocyte epithelial cells that tightly enwrap the glomerular capillaries with their complex foot process network. While deficiency of the polarity proteins Crumbs and aPKC result in impaired podocyte foot process architecture, the function of basolateral polarity proteins for podocyte differentiation and maintenance remained unclear. Here we report, that Scribble is expressed in developing podocytes, where it translocates from the lateral aspects of immature podocytes to the basal cell membrane and foot processes of mature podocytes. Immunogold electron microscopy reveals membrane associated localisation of Scribble predominantly at the basolateral site of foot processes. To further study the role of Scribble for podocyte differentiation Scribble(flox/flox) mice were generated by introducing loxP-sites into the Scribble introns 1 and 8 and these mice were crossed to NPHS2.Cre mice and Cre deleter mice. Podocyte-specific Scribble knockout mice develop normally and display no histological, ultrastructural or clinical abnormalities up to 12 months of age. In addition, no increased susceptibility to glomerular stress could be detected in these mice. In contrast, constitutive Scribble knockout animals die during embryonic development indicating the fundamental importance of Scribble for embryogenesis. Like in podocyte-specific Scribble knockout mice, the development of podocyte foot processes and the slit diaphragm was unaffected in kidney cultures from constitutive Scribble knockout animals. In summary these results indicate that basolateral polarity signaling via Scribble is dispensable for podocyte function, highlighting the unique feature of podocyte development with its significant apical membrane expansions being dominated by apical polarity complexes rather than by basolateral polarity signaling.
Collapse
Affiliation(s)
- Björn Hartleben
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Eugen Widmeier
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Nicola Wanner
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Miriam Schmidts
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Sung Tae Kim
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lisa Schneider
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Britta Mayer
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Dontscho Kerjaschki
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Jeffrey H. Miner
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gerd Walz
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
35
|
Ellenbroek SIJ, Iden S, Collard JG. Cell polarity proteins and cancer. Semin Cancer Biol 2012; 22:208-15. [PMID: 22465739 DOI: 10.1016/j.semcancer.2012.02.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/06/2023]
Abstract
Cell polarity is essential in many biological processes and required for development as well as maintenance of tissue integrity. Loss of polarity is considered both a hallmark and precondition for human cancer. Three conserved polarity protein complexes regulate different modes of polarity that are conserved throughout numerous cell types and species. These complexes are the Crumbs, Par and Scribble complex. Given the importance of cell polarity for normal tissue homeostasis, aberrant polarity signaling is suggested to contribute to the multistep processes of human cancer. Most human cancers are formed from epithelial cells. Evidence confirming the roles for polarity proteins in different phases of the oncogenic trajectory comes from functional studies using mammalian cells as well as Drosophila and zebrafish models. Furthermore, several reports have revealed aberrant expression and localization of polarity proteins in different human tumors. In this review we will give an overview on the current data available that couple polarity signaling to tumorigenesis, particularly in epithelial cells.
Collapse
Affiliation(s)
- Saskia I J Ellenbroek
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
36
|
Mazzolini R, Dopeso H, Mateo-Lozano S, Chang W, Rodrigues P, Bazzocco S, Alazzouzi H, Landolfi S, Hernández-Losa J, Andretta E, Alhopuro P, Espín E, Armengol M, Tabernero J, Ramón y Cajal S, Kloor M, Gebert J, Mariadason JM, Schwartz S, Aaltonen LA, Mooseker MS, Arango D. Brush border myosin Ia has tumor suppressor activity in the intestine. Proc Natl Acad Sci U S A 2012; 109:1530-5. [PMID: 22307608 PMCID: PMC3277176 DOI: 10.1073/pnas.1108411109] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The loss of the epithelial architecture and cell polarity/differentiation is known to be important during the tumorigenic process. Here we demonstrate that the brush border protein Myosin Ia (MYO1A) is important for polarization and differentiation of colon cancer cells and is frequently inactivated in colorectal tumors by genetic and epigenetic mechanisms. MYO1A frame-shift mutations were observed in 32% (37 of 116) of the colorectal tumors with microsatellite instability analyzed, and evidence of promoter methylation was observed in a significant proportion of colon cancer cell lines and primary colorectal tumors. The loss of polarization/differentiation resulting from MYO1A inactivation is associated with higher tumor growth in soft agar and in a xenograft model. In addition, the progression of genetically and carcinogen-initiated intestinal tumors was significantly accelerated in Myo1a knockout mice compared with Myo1a wild-type animals. Moreover, MYO1A tumor expression was found to be an independent prognostic factor for colorectal cancer patients. Patients with low MYO1A tumor protein levels had significantly shorter disease-free and overall survival compared with patients with high tumoral MYO1A (logrank test P = 0.004 and P = 0.009, respectively). The median time-to-disease recurrence in patients with low MYO1A was 1 y, compared with >9 y in the group of patients with high MYO1A. These results identify MYO1A as a unique tumor-suppressor gene in colorectal cancer and demonstrate that the loss of structural brush border proteins involved in cell polarity are important for tumor development.
Collapse
Affiliation(s)
- Rocco Mazzolini
- Group of Molecular Oncology, and
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 50018 Zaragoza, Spain
| | - Higinio Dopeso
- Group of Molecular Oncology, and
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 50018 Zaragoza, Spain
| | - Silvia Mateo-Lozano
- Group of Molecular Oncology, and
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 50018 Zaragoza, Spain
| | - Wakam Chang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, 06520-8103 CT
| | - Paulo Rodrigues
- Group of Molecular Oncology, and
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 50018 Zaragoza, Spain
| | | | | | | | | | - Elena Andretta
- Group of Molecular Oncology, and
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 50018 Zaragoza, Spain
| | - Pia Alhopuro
- Department of Medical Genetics, Genome-Scale Biology Research Program, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | | | | | - Josep Tabernero
- Department of Medical Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | | | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; and
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; and
| | - John M. Mariadason
- Ludwig Institute for Cancer Research, Melbourne Centre for Clinical Sciences, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Simo Schwartz
- Group of Drug Delivery and Targeting, Centro de Investigaciones en Bioquímica y Biología Molecular-Nanomedicine, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 50018 Zaragoza, Spain
| | - Lauri A. Aaltonen
- Department of Medical Genetics, Genome-Scale Biology Research Program, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Mark S. Mooseker
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, 06520-8103 CT
| | - Diego Arango
- Group of Molecular Oncology, and
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 50018 Zaragoza, Spain
| |
Collapse
|
37
|
Pearson HB, Perez-Mancera PA, Dow LE, Ryan A, Tennstedt P, Bogani D, Elsum I, Greenfield A, Tuveson DA, Simon R, Humbert PO. SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia. J Clin Invest 2011; 121:4257-67. [PMID: 21965329 DOI: 10.1172/jci58509] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/16/2011] [Indexed: 01/15/2023] Open
Abstract
Loss of cellular polarity is a hallmark of epithelial cancers, raising the possibility that regulators of polarity have a role in suppressing tumorigenesis. The Scribble complex is one of at least three interacting protein complexes that have a critical role in establishing and maintaining epithelial polarity. In human colorectal, breast, and endometrial cancers, expression of the Scribble complex member SCRIB is often mislocalized and deregulated. Here, we report that Scrib is indispensable for prostate homeostasis in mice. Scrib heterozygosity initiated prostate hyperplasia, while targeted biallelic Scrib loss predisposed mice to prostate intraepithelial neoplasia. Mechanistically, Scrib was shown to negatively regulate the MAPK cascade to suppress tumorigenesis. Further analysis revealed that prostate-specific loss of Scrib in mice combined with expression of an oncogenic Kras mutation promoted the progression of prostate cancer that recapitulated the human disease. The clinical significance of the work in mice was highlighted by our observation that SCRIB deregulation strongly correlated with poor survival in human prostate cancer. These data suggest that the polarity network could provide a new avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Helen B Pearson
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
More than a decade ago, three viral oncoproteins, adenovirus type 9 E4-ORF1, human T-lymphotropic virus type 1 Tax, and high-risk human papillomavirus E6, were found to encode a related carboxyl-terminal PDZ domain-binding motif (PBM) that mediates interactions with a select group of cellular PDZ proteins. Recent studies have shown that many other viruses also encode PBM-containing proteins that bind to cellular PDZ proteins. Interestingly, these recently recognized viruses include not only some with oncogenic potential (hepatitis B virus, rhesus papillomavirus, cottontail rabbit papillomavirus) but also many without this potential (influenza virus, Dengue virus, tick-borne encephalitis virus, rabies virus, severe acute respiratory syndrome coronavirus, human immunodeficiency virus). Examination of the cellular PDZ proteins that are targets of viral PBMs reveals that the viral proteins often interact with the same or similar types of PDZ proteins, most notably Dlg1 and other members of the membrane-associated guanylate kinase protein family, as well as Scribble. In addition, cellular PDZ protein targets of viral PBMs commonly control tight junction formation, cell polarity establishment, and apoptosis. These findings reveal a new theme in virology wherein many different virus families encode proteins that bind and perturb the function of cellular PDZ proteins. The inhibition or perturbation of the function of cellular PDZ proteins appears to be a widely used strategy for viruses to enhance their replication, disseminate in the host, and transmit to new hosts.
Collapse
|
39
|
Cell Adhesion and Transcriptional Activity - Defining the Role of the Novel Protooncogene LPP. Transl Oncol 2011; 2:107-16. [PMID: 19701494 DOI: 10.1593/tlo.09112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/20/2009] [Accepted: 02/25/2009] [Indexed: 12/13/2022] Open
Abstract
Integrating signals from the extracellular matrix through the cell surface into the nucleus is an essential feature of metazoan life. To date, many signal transducers known as shuttle proteins have been identified to act as both a cytoskeletal and a signaling protein. Among them, the most prominent representatives are zyxin and lipoma preferred (translocation) partner (LPP). These proteins belong to the LIM domain protein family and are associated with cell migration, proliferation, and transcription. LPP was first identified in benign human lipomas and was subsequently found to be overexpressed in human malignancies such as lung carcinoma, soft tissue sarcoma, and leukemia. This review portrays LPP in the context of human neoplasia based on a study of the literature to define its important role as a novel protooncogene in carcinogenesis.
Collapse
|
40
|
Li X, Yang H, Liu J, Schmidt MD, Gao T. Scribble-mediated membrane targeting of PHLPP1 is required for its negative regulation of Akt. EMBO Rep 2011; 12:818-24. [PMID: 21701506 DOI: 10.1038/embor.2011.106] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 01/20/2023] Open
Abstract
PHLPP1 (PH domain leucine-rich-repeats protein phosphatase) is a Ser/Thr protein phosphatase that acts as a tumour suppressor by negatively regulating Akt. Here, we show that PHLPP1 is recruited to the cell membrane by binding to a scaffolding protein: Scribble. Knockdown of Scribble (Scrib) results in redistribution of PHLPP1 from the membrane to the cytoplasm and an increase in Akt phosphorylation, whereas overexpression of Scrib has the opposite effect. Furthermore, PHLPP1-dependent inhibition of cell proliferation is facilitated by the formation of a Scrib, PHLPP1 and Akt trimeric complex. Thus, our findings identify a functional interaction between PHLPP1 and Scrib in negatively regulating Akt signalling.
Collapse
Affiliation(s)
- Xin Li
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
The correct establishment and maintenance of cell polarity are crucial for normal cell physiology and tissue homeostasis. Conversely, loss of cell polarity, tissue disorganisation and excessive cell growth are hallmarks of cancer. In this review, we focus on identifying the stages of tumoural development that are affected by the loss or deregulation of epithelial cell polarity. Asymmetric division has recently emerged as a major regulatory mechanism that controls stem cell numbers and differentiation. Links between cell polarity and asymmetric cell division in the context of cancer will be examined. Apical–basal polarity and cell–cell adhesion are tightly interconnected. Hence, how loss of cell polarity in epithelial cells may promote epithelial mesenchymal transition and metastasis will also be discussed. Altogether, we present the argument that loss of epithelial cell polarity may have an important role in both the initiation of tumourigenesis and in later stages of tumour development, favouring the progression of tumours from benign to malignancy.
Collapse
|
42
|
Ohsawa S, Sugimura K, Takino K, Xu T, Miyawaki A, Igaki T. Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev Cell 2011; 20:315-28. [PMID: 21397843 DOI: 10.1016/j.devcel.2011.02.007] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 01/21/2011] [Accepted: 02/18/2011] [Indexed: 12/13/2022]
Abstract
A newly emerged oncogenic cell in the epithelial population has to confront antitumor selective pressures in the host tissue. However, the mechanisms by which surrounding normal tissue exerts antitumor effects against oncogenically transformed cells are poorly understood. In Drosophila imaginal epithelia, clones of cells mutant for evolutionarily conserved tumor suppressor genes such as scrib or dlg lose their epithelial integrity and are eliminated from epithelia when surrounded by wild-type tissue. Here, we show that surrounding normal cells activate nonapoptotic JNK signaling in response to the emergence of oncogenic mutant cells. This JNK activation leads to upregulation of PVR, the Drosophila PDGF/VEGF receptor. Genetic and time-lapse imaging analyses reveal that PVR expression in surrounding cells activates the ELMO/Mbc-mediated phagocytic pathway, thereby eliminating oncogenic neighbors by engulfment. Our data indicate that JNK-mediated cell engulfment could be an evolutionarily conserved intrinsic tumor-suppression mechanism that eliminates premalignant cells from epithelia.
Collapse
Affiliation(s)
- Shizue Ohsawa
- Department of Cell Biology, G-COE, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Namdarian B, Wong E, Galea R, Pedersen J, Chin X, Speirs R, Humbert PO, Costello AJ, Corcoran NM, Hovens CM. Loss of APKC expression independently predicts tumor recurrence in superficial bladder cancers. Urol Oncol 2011; 31:649-55. [PMID: 21549621 DOI: 10.1016/j.urolonc.2011.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/02/2011] [Accepted: 03/28/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Epithelial-mesenchymal transition (EMT) is known to play an important role in the development of tumor invasion and progression in tumors of epithelial origin. Our aim was to investigate the role of tight junction proteins, Par3/Par6/atypical protein kinase C (APKC), Discs large (Dlg), and Scribble in human bladder pathogenesis. METHODS We evaluated levels of APKC, Dlg, and Scribble in 92 superficial bladder tumors using tissue microarrays and immunohistochemistry, and correlated expression with pathologic variables and clinical outcomes. RESULTS There was a slight apparent enrichment in strong vs. weak staining for APKC (54.9% vs. 45.1%), Dlg (65.7% vs. 34.3%), and a marked enrichment for Scribble (75% vs. 25%) in the superficial bladder tumors. Univariate analysis determined that both tumor focality and APKC expression were significantly associated with tumor recurrence (P < 0.05). Multivariate analysis using the Cox's proportional hazards model revealed that only APKC (P = 0.025) as well as tumor focality (P = 0.018) were independent and significant prognostic factors for tumor recurrence in all patients. We found that no immunohistochemical staining of any of the cell polarity proteins significantly predicted for tumor progression on either univariate or multivariate analysis. CONCLUSIONS Loss of APKC expression in superficial bladder tumors is a strong predictor of tumor recurrence.
Collapse
Affiliation(s)
- Benjamin Namdarian
- Department of Surgery, Division of Urology, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Epithelial cell polarity and tumorigenesis: new perspectives for cancer detection and treatment. Acta Pharmacol Sin 2011; 32:552-64. [PMID: 21499288 DOI: 10.1038/aps.2011.20] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of cell-cell adhesion and cell polarity is commonly observed in tumors of epithelial origin and correlates with their invasion into adjacent tissues and formation of metastases. Growing evidence indicates that loss of cell polarity and cell-cell adhesion may also be important in early stage of cancer. In first part of this review, we delineate the current understanding of the mechanisms that establish and maintain the polarity of epithelial tissues and discuss the involvement of cell polarity and apical junctional complex components in tumor pathogenesis. In the second part we address the clinical significance of cell polarity and junctional complex components in cancer diagnosis and prognosis. Finally, we explore their potential use as therapeutic targets in the treatment of cancer.
Collapse
|
45
|
Griffiths PD. Viruses in tight places. Rev Med Virol 2011; 21:65-6. [PMID: 25363493 DOI: 10.1002/rmv.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- P D Griffiths
- Centre for Virology, University College London Medical School, London, UK
| |
Collapse
|
46
|
Dünnebier T, Schlaefer K, Gilbert M, Baisch C, Justenhoven C, Brauch H, Harth V, Spickenheuer A, Rabstein S, Pesch B, Brüning T, Ko YD, Hamann U. No association of polymorphisms in the cell polarity gene SCRIB with breast cancer risk. Breast Cancer Res Treat 2010; 127:259-64. [DOI: 10.1007/s10549-010-1194-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
|
47
|
Nagasaka K, Pim D, Massimi P, Thomas M, Tomaić V, Subbaiah VK, Kranjec C, Nakagawa S, Yano T, Taketani Y, Myers M, Banks L. The cell polarity regulator hScrib controls ERK activation through a KIM site-dependent interaction. Oncogene 2010; 29:5311-21. [PMID: 20622900 DOI: 10.1038/onc.2010.265] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cell polarity regulator, human Scribble (hScrib), is a potential tumour suppressor whose loss is a frequent event in late-stage cancer development. Little is yet known about the mode of action of hScrib, although recent reports suggest its role in the regulation of cell signalling. In this study we show that hScrib is a direct regulator of extracellular signal-regulated kinase (ERK). In human keratinocytes, loss of hScrib results in elevated phospho-ERK levels and concomitant increased nuclear translocation of phospho-ERK. We also show that hScrib interacts with ERK through two well-conserved kinase interaction motif (KIM) docking sites, both of which are also required for ERK-induced phosphorylation of hScrib on two distinct residues. Although wild-type hScrib can downregulate activation of ERK and oncogenic Ras co-transforming activity, an hScrib mutant that lacks the carboxy terminal KIM docking site has no such effects. These results provide a clear mechanistic explanation of how hScrib can regulate ERK signalling and begin to explain how loss of hScrib during cancer development can contribute to disease progression.
Collapse
Affiliation(s)
- K Nagasaka
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shai A, Pitot HC, Lambert PF. E6-associated protein is required for human papillomavirus type 16 E6 to cause cervical cancer in mice. Cancer Res 2010; 70:5064-73. [PMID: 20530688 DOI: 10.1158/0008-5472.can-09-3307] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-risk human papillomaviruses (HPV) cause certain anogenital and head and neck cancers. E6, one of three potent HPV oncogenes that contribute to the development of these malignancies, is a multifunctional protein with many biochemical activities. Among these activities are its ability to bind and inactivate the cellular tumor suppressor p53, induce expression of telomerase, and bind to various other proteins, including Bak, E6BP1, and E6TP1, and proteins that contain PDZ domains, such as hScrib and hDlg. Many of these activities are thought to contribute to the role of E6 in carcinogenesis. The interaction of E6 with many of these cellular proteins, including p53, leads to their destabilization. This property is mediated at least in part through the ability of E6 to recruit the ubiquitin ligase E6-associated protein (E6AP) into complexes with these cellular proteins, resulting in their ubiquitin-mediated degradation by the proteasome. In this study, we address the requirement for E6AP in mediating acute and oncogenic phenotypes of E6, including induction of epithelial hyperplasia, abrogation of DNA damage response, and induction of cervical cancer. Loss of E6AP had no discernible effect on the ability of E6 to induce hyperplasia or abrogate DNA damage responses, akin to what we had earlier observed in the mouse epidermis. Nevertheless, in cervical carcinogenesis studies, there was a complete loss of the oncogenic potential of E6 in mice nulligenic for E6AP. Thus, E6AP is absolutely required for E6 to cause cervical cancer.
Collapse
Affiliation(s)
- Anny Shai
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
49
|
Lelièvre SA. Tissue polarity-dependent control of mammary epithelial homeostasis and cancer development: an epigenetic perspective. J Mammary Gland Biol Neoplasia 2010; 15:49-63. [PMID: 20101444 PMCID: PMC2861422 DOI: 10.1007/s10911-010-9168-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 01/11/2010] [Indexed: 11/29/2022] Open
Abstract
The basoapical organization of monolayered epithelia is defined by the presence of hemidesmosomes at the basal cellular pole, where the cell makes contacts with the basement membrane, and tight junctions at the opposite apical pole. In the mammary gland, tight junctions seal cell-cell contacts against the lumen and separate the apical and basolateral cell membranes. This separation is critical to organize intracellular signaling pathways and the cytoskeleton. The study of the impact of the highly organized apical pole, and notably apical polarity regulators (Crb complex, Par complex, and Scrib, Dlg, Lgl proteins) and tight junction proteins on cell phenotype and gene expression has revealed an intricate relationship between apical polarity and the cell nucleus. The goal of this review is to highlight the role of the apical pole of the tissue polarity axis in the epigenetic control of tissue phenotype. The organization of the apical pole and its importance in mammary homeostasis and tumorigenesis will be emphasized before presenting how apical polarity proteins impact gene expression indirectly, by influencing signal transduction and the location of transcription regulators, and directly, by participating in chromatin-associated complexes. The relationship between apical polarity and cell nucleus organizations might explain how apical polarity proteins could switch from nuclear repressors to nuclear promoters of cancerous behavior following alterations in the apical pole. The impact of apical polarity proteins on epigenetic mechanisms of gene expression will be discussed in light of increased evidence supporting a role for apical polarity in the fate of breast neoplasms.
Collapse
Affiliation(s)
- Sophie A Lelièvre
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, 625 Harrison Street, Lynn Hall, West Lafayette, IN 47907-2026, USA.
| |
Collapse
|
50
|
Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators. Curr Opin Genet Dev 2010; 20:41-50. [PMID: 20093003 DOI: 10.1016/j.gde.2009.12.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/12/2009] [Accepted: 12/16/2009] [Indexed: 12/24/2022]
Abstract
In this review we discuss both gene expression and protein localization changes of polarity proteins in carcinoma. We highlight the importance of protein mislocalization and its possible role in cancer. We also discuss the emerging role of polarity proteins as regulators of proliferation, apoptosis, tissue polarity, epithelial-mesenchymal transition, in addition to their known role in cell junction biogenesis.
Collapse
|